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Abstract

The performance of distributed small satellite synthetic aperture radar systems degrades significantly due to the
unavoidable array errors, including gain, phase, and position errors, in real operating scenarios. In the conventional
method proposed in (IEEE T Aero. Elec. Sys. 42:436–451, 2006), the spectrum components within one Doppler bin
are considered as calibration sources. However, it is found in this article that the gain error estimation and the
position error estimation in the conventional method can interact with each other. The conventional method may
converge to suboptimal solutions in large position errors since it requires the joint iteration between gain-phase
error estimation and position error estimation. In addition, it is also found that phase errors can be estimated well
regardless of position errors when the zero Doppler bin is chosen. In this article, we propose a method obtained by
modifying the conventional one, based on these two observations. In this modified method, gain errors are firstly
estimated and compensated, which eliminates the interaction between gain error estimation and position error
estimation. Then, by using the zero Doppler bin data, the phase error estimation can be performed well
independent of position errors. Finally, position errors are estimated based on the Taylor-series expansion.
Meanwhile, the joint iteration between gain-phase error estimation and position error estimation is not required.
Therefore, the problem of suboptimal convergence, which occurs in the conventional method, can be avoided with
low computational method. The modified method has merits of faster convergence and lower estimation error
compared to the conventional one. Theoretical analysis and computer simulation results verified the effectiveness
of the modified method.

Keywords: Array signal processing, Distributed small satellite synthetic aperture radar (DSS-SAR) systems, Error
estimation
1. Introduction
With the development of spaceborne synthetic aperture
radar (SAR) systems, the functions, such as SAR image,
ground moving target indication (GMTI), and SAR inter-
ferometry (InSAR), have been well performed [1-4]. In the
conventional spaceborne SAR systems, large antennas are
required due to the minimum antenna area constraint [5].
However, it leads to the failure for the systems to obtain
an image of wide area since the illumination area is in-
versely related to the aperture size of the antennas [6].
Distributed small satellite synthetic aperture radar (DSS-
SAR) systems [6-12] were developed to deal with the
problem and have received considerable attention in re-
cent years. In DSS-SAR systems, several small satellites
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move in a special orbital configuration and function as a
single “virtual satellite”. A small antenna covering wide
area is placed on each satellite with the total antenna area
constituted by all the small antennas satisfying the mini-
mum antenna area requirement. Due to the flying forma-
tion of DSS-SAR systems, along-track baselines and
across-track baselines may exist synchronously. And the
across-track baseline is needed for terrain height estima-
tion [7] while the along-track baseline is suitable for the
function of SAR and GMTI [8]. In [9], the SAR train con-
figuration is analyzed and many scholars focus their
attention on SAR imaging or GMTI based on this config-
uration [10,11]. However, for the echo received by each
small satellite, range or azimuth (Doppler) ambiguities will
occur due to the use of small antennas. In order to image
a wide swath unambiguously, the echoes of small antennas
should be combined coherently in the DSS-SAR system.
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Figure 1 Configuration of the DSS-SAR array.
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In [10,11], the low pulse repetition frequency (PRF) is
chosen to avoid range ambiguity which results in Doppler
ambiguity, and the approaches are also given to suppress
Doppler ambiguity. However, their excellent performance
is critically dependent on the knowledge of the array
manifold (parameterized by many parameters, such as
angle of arrivals, and antennas’ position information). The
array manifold is used in coherent combination of small
antennas’ echoes to suppress Doppler ambiguity [10]. In
practice, there always exist various perturbations in the
array manifold which are always called as array errors,
such as gain, phase, and position errors. Since the array
manifold cannot be exactly obtained because of the exist-
ence of array errors, the performance of Doppler ambigu-
ity suppression [11,12] can significantly be degraded.
Therefore, it is necessary to estimate and calibrate array
errors prior to carry out Doppler ambiguity suppression.
In [12], the array error calibration method has also been
discussed.In array error estimation of DSS-SAR systems,
the existing array calibration methods [13-18] can be ap-
plied to the systems only when proper calibration sources
are chosen. In [12], spectrum components within one
Doppler bin are used as calibration sources with known
directions which are called “virtual calibration sources.”
Since the number of spectrum components is more than
one due to Doppler ambiguity, it is possible to apply array
calibration methods with more than one calibration
source [15-18] to DSS-SAR systems. In [12], a two-step it-
erative auto-calibration method is presented to estimate
gain-phase and position errors. In the first step, assuming
that position errors are known, gain-phase errors are
estimated by using the method in [16]. In the second step,
based on the gain-phase error estimated in the former
step, position errors can be obtained by the least squared
method [17]. These two steps should be iterated alterna-
tively to obtain final solutions. For convenience, the array
error estimation method in [12] is named as the conven-
tional method (the comparison in this article is limited in
terms of array error estimation method).
In the conventional method, two kinds of errors, the

gain-phase error and the position error, are respectively
estimated under the assumption that other kinds of
errors are known. The inherent relationship among gain,
phase, and position errors is not considered and
analyzed in the conventional method. In this article, by
studying of the conventional method, the following two
aspects are observed. First, gain error estimation and
position error estimation can affect each other, which
will influence the convergence rate. And the conven-
tional method may even suffer from suboptimal conver-
gence in large position errors. Second, if spectrum
components within the zero Doppler bin are used as
calibration sources to estimate the errors, phase error
estimation can be performed independent of position
errors. Based on the above two aspects, a modified array
error estimation method is proposed in this article. First,
in order to eliminate the interaction between the gain
and position error estimations, gain errors are first
estimated and compensated. Then, phase errors are
estimated by using the spectrum components within the
zero Doppler bin as calibration sources. Finally, position
errors are estimated based on Taylor-series expansion.
However, since Taylor-series expansion causes approxi-
mation errors, position error estimation should be
iterated in order to obtain higher estimation accuracy. In
comparison with the conventional method, the modified
method can avoid the iteration between gain-phase error
estimation and position error estimation, which guaran-
tees that it can converge to optimal solutions with lower
computational load and fast convergence speed. Simula-
tion results verify that the modified method performs
better than the conventional one.
The remainder of the article is arranged as follows. In

Section 2, the modified method for DSS-SAR systems is
described in detail. The performance of the modified
method is verified by using Monte Carlo simulations in
Section 3. The article ends with some conclusions given
in Section 4.

2. Modified method for DSS-SAR systems
2.1. Signal model
In this article, the signal model of DSS-SAR systems will
be introduced briefly as follows [12]. The SAR train con-
figuration in which all the satellites are arranged along
the X-axis as an array is given in Figure 1. The (X, Y, Z)
direction is referred to as (along-track, cross-track, and
radial). The array operates in the side-looking strip mode
and all satellites have an identical along-track velocity,
denoted by vs. θ, φ, and ϕ represent azimuth angle, inci-
dence angle, and cone angle, respectively. Azimuth angle
θ(τ, fd) can be expressed as θ(τ, fd) = θo + Δθ(τ, fd), where
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θo and Δθ(τ, fd) are the azimuth angle and the offset
from the beam center, respectively. τ denotes the fast
time corresponding to the range bin and fd denotes the
Doppler frequency which corresponds to the slow time.
True coordinates, measured coordinates, and corresponding

position errors of the mth satellite are denoted by (xm, ym,
zm), (xmo, ymo, zmo), and (Δxm, Δym, Δzm), respectively. The
relationship among them is

xm; ym; zmÞ ¼ xmo; ymo; zmoð Þ þ Δxm;Δym;Δzmð Þ;ð ð1Þ
where ymo = 0, zmo = 0. The first satellite is taken as
reference, i.e., (Δx1, Δy1, Δz1) = (0, 0, 0) is imposed. Then
the clutter echo in the range-Doppler domain received by
the mth satellite after demodulation in the strip mode and
broadside geometry can be written as [12]

Sm τ; fdð Þ ¼ gme
jξm
XI
i¼�I

e j 4πλ dm τ;fdþifrð ÞHm τ; fd þ ifrð Þ þ nm τ; fdð Þ;

ð2Þ
where gm and ξ1 are the gain and phase error of the mth
array element relative to the first array element (as such,
g1 = 1 and ξ1 = 0). λ denotes the wavelength of the carrier.
nm(τ, fd) is the additive white Gaussian noise. 2I + 1 is the
number of spectrum components within one range-
Doppler bin. The spectrum components have different
azimuth angles θ(τ, fd + ifr) and the same incidence angles
φ(τ) which can be expressed as follows:

fd þ ifr ¼ 2vs
λ

sinθ τ; fd þ ifrð Þsinφ τð Þ; i ¼ �I; . . . ; I: ð3Þ

In the following, for simplicity, ( • )i is used to denote
the variable associated with (fd + ifr), such as θi denotes
θ(τ, fd + ifr). dm

i = xm sinθi sinφ(τ) + ym cosθi sinφ(τ) + zm
cosϕ(τ). In the side-looking strip mode, θo = 0 and then
θi =Δθi. Moreover, Δθi is very small (|Δθi| ≤ 0.43° for a
small antenna with the azimuth length of 2 m at X-band)
in practice. Thus, cosθi = cosΔθi ≈ 1 can be obtained with
small angle approximation. Since ymo = zmo = 0,

di
m ¼ xmo þ Δxmð Þsinθisinφ τð Þ þ ymo þ Δymð Þcosθisinφ τð Þ

þ zmo þ Δzmð Þcosφ τð Þ≈ xmo þ Δxmð Þ sinθi sinφ τð Þ
þΔym sinφ τð Þ þ Δzm cosφ τð Þ

ð4Þ
Hm(τ, fd) is the complex envelope of the clutter echo

in the range-Doppler domain,

Hm τ; fdð Þ ¼ ∬σ x; yð Þh τ � 2rm x; y; z; fdð Þ
c

� �
G fdð Þe�jΨ 0 x;y;z;fdð Þdxdy

ð5Þ
where σ(x, y) is the complex surface scattering coeffi-

cient. Ψ 0 x; y; z; fdð Þ ¼ 4π
λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ z2

p � πλ
ffiffiffiffiffiffiffiffiffi
y2þz2

p
2vs2

þ 2πfd x
vs
. h
(τ) is a linear frequency modulated signal. G(fd) denotes
the Fourier transform of the function which represents
the antenna pattern and other time-variant characters
(identical to all receiving antennas). rm(x, y, z, fd) is the
slant range from the mth satellite to the ground cell,

rm x; y; z; fdð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ z2

p
þ λ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ z2

p
f 2d

8v2s

� Δymcosθ τ; fdð Þsinφ τð Þ
�Δzmcosφ τð Þ:

ð6Þ

Since Δymcosθ(τ, fd)sinφ(τ) and Δzmcosφ(τ) can be
neglected in rm(x, y, z, fd), it can be obtained that r1(x, y,
z, fd) ≈⋯≈ rM(x, y, z, fd) ≜ r(x, y, z, fd). So, as H1(τ, fd) ≈
⋯≈HM(τ, fd) ≜ H(τ, fd).
Based on the previous analysis, (2) can be rewritten as

Sm τ; fdð Þ ¼ gme
jξ0m
XI
i¼�I

ej
4π
λ d

0
m
i
Hi þ nm τ; fdð Þ ð7Þ

where

ξ0m ¼ ξm þ 4π
λ

Δym sinϕ τð Þ þ Δzm cosφ τð Þð Þ;

d0
m
i ¼ xmo þ Δxmð Þ sinθi sinφ τð Þ ¼ λ

2vs
fd þ ifrð Þ xmo þ Δxmð Þ:

It is found that the contributions of position errors to
array outputs can be separated into two parts. One part
associated with cross-track and radial position errors is
fixed for all clutter echoes and can be regarded as array
phase errors. The other part related to along-track pos-
ition errors changes with spectrum components. For
simplicity, the total phase error ξ0m is called the phase
error and the along-track position error is named as the
position error in the following. The unknown errors
considered here are the position error Δxm (m = 2,. . .,M)

and the gain-phase error gmejξ
0
m (m = 2,. . .,M). Using

vector notation, Equation (7) can be rewritten as follows

S ¼ ΓAH þ n ð8Þ

where S = [S1,. . ., SM]
T, Γ ¼ diag 1; . . . ; gMejξ

0
M

n o
, A =

[a−I,. . .,aI], ai ¼ 1; . . . ; ej
4π
λ d

0 i
M

h iT
; H = [H−I,. . .,HI]T, ( • )T

denotes the transpose operation.
The covariance matrix of S is denoted as RSS. Denote

eigenvalues and corresponding eigenvectors of the co-
variance matrix RSS with ƛm (listed in descending order)
and um (m = 1,. . ., M). Each column of ΓA is orthogonal
to the matrix U = [u2I+2,. . .,uM]. And the orthogonality
can be used to estimate the gain-phase and position
errors.
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2.2. The conventional method
According to [12], the cost function to estimate gain-
phase errors is

Jp ¼
XI
i¼�I

jjUHΓaijj2; ð9Þ

where ( • )H represents the conjugate transpose oper-
ation. The cost function is given based on the MUSIC
approach. If the true Γ and ai are obtained, Jp should be
zero. Minimizing Jp, the estimation of Γ and ai can be
achieved. Thus, Δ (Δ = diag{Γ}), gain-phase errors, can
be obtained by

Δ̂ ¼ Q�1w=wTQ�1w;
ð10Þ

where

w ¼ 1; 0; . . . ; 0½ �T ; ð11Þ

Q ¼
XI
i¼�I

Di
� �H

UUHDi; ð12Þ

Di ¼ diag ai
� �

: ð13Þ

To estimate position errors, ej
4π
λ d

0 i
m (m = 1,. . .,M) is

expanded using Taylor-series based on (3):

e
j
4π
λ
d0i

m≈e
j
4π
λ
xmo sinΔθ

i sinφ τð Þ
1þ j

4π
λ
Δxm sinΔθi sinφ

� �

≈e
j
2π
vs

fd þ ifrð Þxmo
1þ j

2π
vs

fd þ ifrð ÞΔxm
� �

ð14Þ
Then, based on (3) and (14), ai can be rewritten as

˜ai ¼ aio þ aiΔΔX ð15Þ
where

aio ¼ 1; ej
2π
vs

fdþifrð Þx2o ; . . . ; ej
2π
vs

fdþifrð ÞxMo

h iT
ð16Þ

aiΔ ¼ diag

0; j
2π
vs

fd þ ifrð Þej2πvs fdþifrð Þx2o ; . . . ; j
2π
vs

fd þ ifrð Þej2πvs fdþifrð ÞxMo

	 


ð17Þ

ΔX ¼ 1;Δx2; . . . ;ΔxM½ �T ð18Þ
Therefore, the cost function (9) can be modified as

Jc ¼ jjE� FΔXjj2 ð19Þ
where E = [e−I
T . . .eI

T]T, F = [f−I
T . . .fI

T]T, ei =UHΓao
i , fi = −

UHΓaΔ
i . The position error ΔX is the least squared solu-

tion of (19)

ΔX ¼ real FFH
� ��1

FHE
n o

ð20Þ

where real (•) takes the real part of the matrix. The
phase error introduced by Taylor-series expansion above
is within 4° at X-band under the assumption that Δxm ≤
20 cm. And higher accuracy can be achieved after sev-
eral iterations. However, from computer simulations, it
is found that if Δxm > 30 cm, the estimate difference of
position errors will be larger than 0.008 m. The conven-
tional method can be summarized as joint iteration be-
tween the following two steps.

� Step 1 Choose some Doppler bin to obtain gain-
phase errors based on (10).

� Step 2 Estimate position errors based on (20) and
compensate xmo by Δxm.
2.3. Formulation of the modified method
Lets consider the gain error estimation of the conven-
tional method.
Based on (12) and (13), we obtain

Q ¼
XI
i¼�I

Ci
� �H

⊙ UUH
� �

⊙Ci ¼
XI
i¼�I

Ci
� �H

⊙Ci

( )
⊙ UUH
� �
ð21Þ

where Ci ¼
Di

11 ⋯ Di
MM

⋮ ⋱ ⋮
Di

11 ⋯ Di
MM

2
4

3
5, ⊙ denotes dot product

(i.e., element-wise multiplication). With the definition of

Zi = (Ci)H⊙Ci and Z ¼
XI
i¼�I

Zi ¼
XI
i¼�I

Ci
� �H

⊙Ci , (21)

can be rewritten as

Q ¼ Z⊙ UUH
� � ð22Þ

The element in the kth row and the lth column of the
matrix Zi and Z can be obtained, respectively, as

Zi
kl ¼ Di

kk

� �∗
⊙Di

ll ¼ ej
4π
vs

fdþifrð Þ xloþΔxl�xko�Δxkð Þ: ð23Þ
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Zkl ¼
XI
i¼�I

Zi
kl ¼ e

j
4π
vs

fd xlo þ Δxl � xko � Δxkð Þ

XI
i¼�I

e
j
4π
vs

ifr xlo � xkoð Þ þ Δxl � Δxkð Þð Þ

¼ e
j
4π
vs

fd xlo þ Δxl � xko � Δxkð Þ

1þ
XI
i¼1

cos
4π
vs

ifr xlo � xkoð Þ þ Δxl � Δxkð Þð Þ
� � !

ð24Þ

Based on (24), Z is a function of the position error ΔX

Z ¼ f ΔXð Þ: ð25Þ

And Q is also parameterized by the position error ΔX

Q ¼ f ΔXð Þ: ð26Þ

In [12], Equation (10) is used to estimate gain errors,
which means

ĝ ¼ abs Q�1
w
.

wT
Q�1w

� �
; ð27Þ

where g = [1, g2,. . .,gM]
T, abs (•) denotes the complex

modulus of the elements of a matrix. The gain error esti-
mate, ĝ, will be inaccurate because of the existence of
the position error ΔX (derived by Q). Moreover, the esti-
mation differences of gain errors will be larger with the
increase of position errors.
However, the estimate differences of gain errors can

also influence the estimation accuracy of position errors
during the second step in the conventional method. It is
analyzed as follows. ˜ai can be rewritten as

˜ai ¼ ρejη ð28Þ

where ρ = [ρ1, . . ., ρM]
T and η = [η1, . . ., ηM]

T denote the
amplitude and phase of ˜ai, respectively.
Since (15) is obtained through the Taylor-series expan-

sion, ρm (m = 2,. . .,M) approaches one but not exactly
equals one. Considering the ith “virtual calibration
sources,” the following formula can be obtained

J ic ¼ UHΓai


 

2≈ UHΓ˜ai



 

2 ð29Þ

Based on the solution obtained by (10), the element in
the kth row and the kth column of Γ˜ai (which is a diag-
onal matrix) can be expressed as
Γ˜ai
� �

kk ¼ gke
jξ0kρke

jηk

¼ ĝk þ Δgkð Þej ξ̂0kþΔξ0k
� �

ρke
jηk

¼ ĝk e
jξ̂0k ρk ĝk þ Δgk ĝk e

j ηkþΔξ0kð Þ
¼ ĝk e

jξ̂0k ρ̂k e
jη̂k ð30Þ

where ĝk and Δgk denote estimated values and

differences of gain errors, ξ̂0k and Δξ0k represent
estimated values and differences of phase errors, respect-
ively. Then ρ̂k ¼ ρk ĝk þ Δgkð Þ=̂gk and η̂k ¼ ηk þ Δξ0k in-
stead of ρk and ηk will be obtained if (29) is used to
estimate position errors. Thus, Δgk will affect the pos-
ition error estimation accuracy. Considering the fact that
position errors have an effect on the gain error estima-
tion during the first step while gain errors affect position
error estimation during the second step, estimating
differences of gain and position errors using (27) and
(20) iteratively in the conventional method could con-
verge to suboptimal solutions in large position errors.
So, gain errors should be estimated first and then

compensated. Here, the method in [18] is used to esti-
mate gain errors

ĝm ¼ 1
P

X
fd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RSS fdð Þð Þmm � σ2n
RSS fdð Þð Þ11 � σ2n

s
m ¼ 1; . . . ;Mð Þ;

ð31Þ

where P is the number of Doppler bins, σn
2 can be

obtained by averaging ƛ2I+2 to ƛM.
After estimating gain errors, phase and position error

estimations will be considered in the following. The con-
ventional method requires joint iteration between phase
and position error estimations. Through the following
study, the joint iteration is avoided in the modified
method.
In the certain Doppler bin fd = 0, there exist 2I + 1

spectrum components which are ifr, i = −I, . . ., I, due to
the existence of Doppler ambiguity. Based on (13), we
obtain

D�i ¼ Di
� ��

: ð32Þ

Hence, C− i = (Ci)∗ is obtained and so as the following
equation

Z�i ¼ C�i
� �H

⊙C�i
� �

¼ Ci
� �∗� �H

⊙ Ci
� �∗� �

¼ Ci
� �H

⊙Ci
� �∗

¼ Zi
� �∗

: ð33Þ



Table 1 Simulation parameters of DSS-SAR systems

Orbit altitude 750 km

Incidence angle 45°

Band X-band

Antenna size 2 m × 1 m

Bandwidth 100 MHz

PRF 1496 Hz

Velocity 7481.5 m/s
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Thus, Z can be obtained as

Z ¼
Xi
i¼1

2 real Zi
� �þ real Z0

� � ¼ Xi
i¼�I

real Zi
� �

: ð34Þ

Based on (21) and (34), the phase of Q behaves inde-
pendently of position errors. Hence, using the data of
the zero Doppler bin, phase errors can directly be
obtained without the influence of existing position errors
by the following estimator

ξ̂0 ¼ angle Q�1
w
.

wT
Q�1w

� �
ð35Þ

where ξ̂0 ¼ ξ01; ξ
0
2; . . . ; ξ

0
M½ �T , angle(·) returns the phase

angles of a matrix. This result is consistent with the
phenomenon mentioned in [12] that when fd = 0 is
chosen, the estimation accuracy of phase errors can be
satisfactory with position errors assumed to be zero.
Since Δξ0k is induced without the effect of position
errors, we do not discuss the influence of Δξ0k on the es-
timation of the position error, ΔX, described by (30).
Based on the analysis above, the modified method can

be summarized as follows.

� Step 1 Estimate gain errors based on (31) and
compensate the received data using estimated gain
errors.

� Step 2 Choose the zero Doppler bin to obtain phase
error estimate ξ̂0 based on (35).

� Step 3 Use ξ̂0 to reconstruct ˜Γ ¼ diag eĵξ
0

n o
and

estimate position errors based on (20).

Through the analysis above, phase error estimation
method can perform robustly with the existence of pos-
ition errors. Since the Taylor-series expansion is used in
estimating position errors, Step 3 should be applied re-
peatedly in order to obtain higher estimation accuracy
with xmo compensated by Δxm (which is estimated in the
former iteration) in each iteration.
In the modified method, gain errors are compensated

first, hence the relationship between gain and position
error estimations is eliminated, which guarantees the es-
timation accuracy.
The change on the iterative fashion makes it possible

for the modified method to work with less computa-
tional load. Let L denote the iteration number for the
conventional method, the computational load is 3LM3

which mainly arises from the matrix eigen-
decomposition (equals M3) and the matrix inversion
(equals M3). However, the computational load of the
modified method is 2M3 + L0M3 in which L0 denotes the
iteration number of Step 3. From the computer
simulations, we find that the estimates of the gain,
phase, and position errors through the conventional
method do not converge to the final solutions even
when L equals to be 10 and the zero Doppler bin is
chosen. And for the modified method, L0 should be more
than two to satisfy the estimation accuracy. For example,
based on the assumptions that L = 10 and L0 = 3, the
computational load of the modified algorithm is 5M3,
which is lower than that of the conventional method
(30M3).
3. Simulation experiment
To verify the effectiveness of the modified method, com-
puter simulations are given in this section. Experimental
results are obtained based on 200 trials. The simulated
DSS-SAR system in the side-looking mode is composed
by seven satellites and all the satellites distribute uni-
formly with the antenna spacing l = vsTr/M (Tr is the
pulse repetition period) in the along-track direction
[9,12]. The other parameters are listed in Table 1. The
gain, phase, and position errors for each of the M
satellites, i.e., gm, ξ

0
m, and Δxm, are defined as uniform

random variables in [1 − α, 1 + α], [−π, π], and [−Δp,
Δp], respectively. They are generated and maintained in-
variant in each trial. The average root mean squared
error (ARMSE) of gain, phase, and position errors are

defined as 1
M�1

XM
m¼2

RMSE gmf g , 1
M�1

XM
m¼2

RMSE ξ0mf g ,

1
M�1

XM
m¼2

RMSE Δxmf g, respectively. L and L0 are set to be

10 and 3, respectively. The Doppler frequency fd is fixed
to be zero.
3.1. Effect of SNR
Suppose Δp = 0.25 l and α = 0.2. The ARMSE curves of
gain, phase, and position error estimates versus signal-to
-noise ratio (SNR) are shown in Figure 2a–c, respect-
ively. From Figure 2, it is observed that both the modi-
fied method and the conventional method perform
better as the SNR increases. From Figure 2a,c, it can be
seen that gain and position error estimation
performances of the conventional method are worse
than those of the modified method. It is because gain
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Figure 2 ARMSE of gain, phase and position error estimates
versus SNR. (a) ARMSE of gain error estimates versus SNR; (b)
ARMSE of phase error estimates versus SNR; (c) ARMSE of position
error estimates versus SNR.
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and position error estimations cannot be separated in
the conventional method and they interfere with each
other. However, in the modified method, because gain
errors are corrected before estimating position errors,
position error estimates can converge to optimal
solutions. The position error estimate ARMSE is lower
than 0.01 m when the SNR is larger than 15 dB. In
addition, it is shown in Figure 2b that phase error
estimations can work well for both methods. This is
consistent with the analysis in modified method for
DSS-SAR system, which shows that position errors have
no influence on the phase error estimation when the
zero Doppler bin is chosen. However, the computational
load of the modified algorithm is lower than the conven-
tional method.
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Figure 3 ARMSE of phase and position error estimates versus
gain error by the modified method. (a) ARMSE of phase error
estimates versus gain error; (b) ARMSE of position error estimates
versus gain error.
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Figure 5 ARMSE of gain, phase and position error estimates
versus number of iterations. (a) ARMSE of gain error estimates
versus number of iterations; (b) ARMSE of phase error estimates
versus number of iterations; (c) ARMSE of position error estimates
versus number of iterations.
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3.2. Effect of gain errors
In the simulation, α changes from 0 to 0.4. Δp = 0.25 l.
SNR is 20 dB. The other parameters in the simulation are
the same as the former. The effect of gain estimation
errors on the following phase and position error
estimations in the modified method is given in Figure 3,
where the curve gained without calibrating gain errors is
denoted as “before gain error calibrated” while the other
curve named “after gain error calibrated” is obtained by
calibrating gain errors first. It can be seen that if gain
errors cannot be well calibrated, the position error estima-
tion difference becomes larger with the increment of α,
while the change of phase error estimation can be ignored.
By using the modified method, both of phase and position
error estimations can work well. It is clear that gain errors
have serious influence on the following position error esti-
mation and it is necessary to estimate gain errors first.

3.3. Effect of position errors
Fixing SNR to 20 dB. α = 0.2. ARMSE curves of gain,
phase, and position error estimates versus position error
are shown in Figure 4a–c, respectively. Local simulation
results (small figures embedded in Figure 4) are also
given for better explanation. Being consistent with the
analysis in modified method for DSS-SAR system, gain
and position error estimations interfere with each other,
which make gain and position error estimations con-
verge to suboptimal solutions in the conventional
method. So, the estimation accuracy of the conventional
method cannot satisfy the requirement. The gain error
estimate ARMSE is larger than 0.1 while the position
error estimate ARMSE is close to 0.03 when Δp = 0.07 l.
In addition, phase error estimates obtained by both of
the conventional method and the modified method are
approximately equal to each other when Δp ≤ 0.28 l. This
is consistent with the previous analysis. By using the
data of the zero Doppler bin, phase errors can be
estimated with existing position errors. However, when
Δp ≥ 0.35 l, the conventional method fails to work since
gain and position error estimates deviate badly from the
true values which has a strong impact on the phase error
estimation.

3.4. Effect of iterations
Fix α = 0.2, Δp = 0.25 l and suppose SNR to be 20 dB.
The gain, phase, and position error estimation perform-
ance of the conventional method versus the number of
iterations is shown in Figure 5a–c, respectively. It is
observed from Figure 5a,c that the conventional method
converges slowly and even to suboptimal solutions since
gain and position error estimations can interact with
each other. However, it is noticed from Figure 5b that
the phase error estimation can work well as we analyzed
before.
For the modified method, only the position error esti-
mate ARMSE versus the number of iterations is shown
in Figure 5c since only the position error estimation is
iterated in the modified method. It is noticed from
Figure 5c that the position error estimation converges to
the optimal solution with less than three iterations. To
sum up, the computational load of the modified method
is less than that of the conventional method. Meanwhile
better performance can be obtained by the modified
method.

4. Conclusions
In this study, we focus on gain, phase, and position error
estimations of DSS-SAR systems. Based on the conven-
tional method, a modified array error estimation method
is proposed here. In the conventional method, the esti-
mation of gain and position errors may converge to sub-
optimal solutions especially when position errors are
large and the joint iteration between the gain-phase and
position error estimations are needed. That is because of
the interaction between the estimations of gain and pos-
ition errors. In the modified method, gain errors are first
estimated and compensated before the other errors’ esti-
mation, which guarantees the position error estimation
accuracy to be higher than that in the conventional
method. Meanwhile, by using the zero Doppler bin data,
the phase error estimation can behave independently of
position errors. Then the joint iteration strategy between
the gain-phase and position error estimations in the
conventional method can be avoided, which makes the
modified method perform stably with low computational
load. Theoretical analysis and simulation results demon-
strate the effectiveness of the modified method.
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