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Abstract

In this article, we propose a method to estimate the synthetic aperture radar interferometry (InSAR) interferometric
phase based on the model of correlation weight joint pixel by using the joint subspace projection technique. In the
method, the correlation weight joint data vector is constructed and the data vector can make the noise subspace
dimension of the corresponding weight covariance matrix which is not affected by the coregistration error, thus
avoiding the trouble of calculating the noise subspace dimension before estimating the InSAR interferometric
phase. The method takes advantage of the coherence information of neighboring pixel pairs to auto-coregister the
SAR images and employs the projection of the joint signal subspace onto the corresponding joint noise subspace
to estimate the terrain interferometric phase. The method can auto-coregister the SAR images and reduce the
interferometric phase noise simultaneously. Theoretical analysis and computer simulation results show that the
method can provide accurate estimate of the interferometric phase (interferogram) even when the coregistration
error reaches one pixel. The effectiveness of the method is verified via simulated data and real data.

Keywords: SAR interferometry (InSAR), Joint subspace projection, Interferometric phase, Noise subspace, Correlation
weight joint data vector
1. Introduction
Synthetic aperture radar interferometry (InSAR) is an
important remote sensing technique to retrieve the ter-
rain digital elevation model [1,2]. Image coregistration
[1-5], InSAR interferometric phase estimation (or noise
filtering), and interferometric phase unwrapping [6-9]
are key processing procedures of InSAR. It is well
known that the performance of interferometric phase
estimation suffers seriously from the inaccuracy of
the image coregistration. Almost all the conventional
InSAR interferometric phase estimation methods are
based on interferogram filtering, such as pivoting mean
filtering [10], pivoting median filtering [11], adaptive
phase noise filtering [12]. and adaptive contoured win-
dow filtering [13]. The problem here is that when the
quality of an interferogram is very poor due to a large
coregistration error, it is very difficult for these methods
to retrieve the true terrain interferometric phases. In
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fact, the interferometric phases we obtained are random
quantities with their variances being inversely propor-
tional to the correlation coefficients between the corres-
ponding pixel pairs of the two coregistered SAR images
[2]. Therefore, the terrain interferometric phases should
be estimated statistically.
In the previous studies [14,15], we proposed a joint

subspace projection method to estimate InSAR inter-
ferometric phase in the presence of large coregistration
errors. However, the noise subspace dimension of the
covariance matrix changes with the coregistration error
[14]. For accurately estimating the InSAR interferomet-
ric phase, the noise subspace dimension of the covari-
ance matrix must be known, and the performance of the
method degrades when the noise subspace dimension is
not estimated correctly [16]. In this article, we propose a
new method based on a correlation weight joint sub-
space projection to estimate the terrain interferometric
phase accurately in the presence of large coregistration
errors. In this method, the benefit from the correlation
weight joint data vector is that the noise subspace
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dimension of the weight covariance matrix is not affected
by the coregistration error [i.e., the noise subspace dimen-
sion of the corresponding covariance matrix with the
coregistration error μ(0 < μ ≤ 1) pixel is the same as that of
the covariance matrix with accurate coregistration]. The
key processing procedures of the approach are summarized
as follows: after the coarse coregistration, the correlation
weight joint data vector is constructed which can be used
to estimate the corresponding weight covariance matrix.
The noise subspace is obtained from the eigendecom-
position of the estimated covariance matrix and the signal
subspace is spanned by the vectors that are obtained by the
Hadamard product of the principal eigenvectors (i.e., the
signal eigenvectors) of the weight correlation function
matrix (approximated by the magnitude of the weight co-
variance matrix) and the steering vector. The terrain inter-
ferometric phase estimation is then performed by the
projection of the signal subspace onto the corresponding
noise subspace, where the optimum estimation corres-
ponds to minimizing the projection. For a pair of SAR
images that are not coregistered accurately, the method
can auto-coregister them and accurately estimate the
corresponding terrain interferometric phase.
The article is arranged as follows: the statistical model

of the correlation weight joint data vector is given in Sec-
tion 2; in Section 3, the processing steps of the proposed
method are presented in details; the performance of the
method is investigated with the simulated and the real
data in Section 4; the conclusions are given in Section 5.

2. Statistical model of the correlation weight joint
data vector
When the SAR images are accurately coregistered and the
interferometric phases are flattened with a zero-height
reference plane surface, the complex data vector s(i) of a
pixel pair i (corresponding to the same ground area) of
the coregistered SAR images can be formulated as [16,17]:

s ið Þ ¼ s1 ið Þ; s2 ið Þ½ �T
¼ a φið Þ⊙ x1 ið Þ; x2 ið Þ½ �T þ n ið Þ
¼ a φið Þ⊙x ið Þ þ n ið Þ ð1Þ

where

a φið Þ ¼ 1; ejφi
� �T ð2Þ

denotes the spatial steering vector (i.e., the array steering
vector) of the pixel i, where s1 and s2 are the complex SAR
images, superscript T denotes the vector transpose oper-
ation, ϕi is the terrain interferometric phase to be
estimated, ⊙ denotes the Hadamard product, x(i) is the
complex magnitude vector (i.e., complex reflectivity vector
of scene received by the satellites) of pixel i, and n(i) is the
additive noise term. The complex data vector s (i) can be
modeled as a joint complex circular Gaussian random
vector [1,2] with zero-mean and the corresponding covari-
ance matrix Cs(i) is given by

Cs ið Þ ¼ E s ið ÞsH ið Þf g
¼ a φið ÞaH φið Þ⊙E x ið ÞxH ið Þf g þ σ2

nI

¼ σ2s ið Þa φið ÞaH φið Þ⊙Rs ið Þ þ σ2
nI

ð3Þ
where

Rs ið Þ ¼ r11 i; ið Þ; r12 i; ið Þ
r21 i; ið Þ; r22 i; ið Þ
� �

ð4Þ

is called the correlation coefficient matrix, I is a 2 × 2
identity matrix, rmn(i,i) (0 ≤ rmn(i,i) ≤ 1, n = 1,2, m = 1,2)
are the correlation coefficients between the satellites m
and n, E{} denotes the statistical expectation, superscript
H denotes vector conjugate-transpose, σs

2(i) is the back-
scatter power of the pixel i and σn

2 is the noise power.
If the SAR images are accurately coregistered and

the cross-correlation coefficients (i.e., the non-diagonal
elements) of Rs(i) are high enough, the rank of the correl-
ation coefficient matrix Rs(i) becomes 1, and the number
of the principal eigenvalue of Rs(i) is one [14].
In this article, an estimation method for InSAR inter-

ferometric phase based on correlation weight joint sub-
space projection is proposed, which can estimate the
terrain interferometric phase accurately in the presence
of large coregistration errors. Benefitting from the cor-
relation weight joint data vector, the method does not
need to calculate the noise subspace dimension before
estimating the InSAR interferometric phase.
When the azimuth coregistration error is ρ(0 < ρ < 1)

pixel and its direction is upwards (i.e., the pixel of the
image from the second satellite is shifted upwards
compared to the pixel in the first satellite image), the for-
mulation of the correlation weight joint data vector [18] si
(i,w) is shown in Figure 1, where circles represents SAR
image pixels and i denotes the desired pixel pair whose
interferometric phase is to be estimated,a the approach to
determine the data vector is presented in literature [18].

si i;wð Þ ¼ ½s1 i� 1ð Þ; s2W i� 1ð Þ; s1 ið Þ; s2W ið Þ; s1 iþ 3ð Þ;
s2W iþ 3ð Þ; s1 iþ 4ð Þ; s2W iþ 4ð Þ�T

¼ ½s1 i� 1ð Þ;wT
i�1Vi�1; s1 ið Þ;wT

i Vi; s1 iþ 3ð Þ;
wT

iþ3Viþ3; s1 iþ 4ð Þ;wT
iþ4Viþ4�T

where
w ¼ wi�1;wi;wiþ3;wiþ4½ � ð5Þ
Va ¼ s2 a� 4ð Þ; s2 að Þ½ �T a ¼ i� 1; i; iþ 3; iþ 4ð Þ

ð6Þ
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Figure 1 Formulation of the correlation weight joint data vector.
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wa ¼ r21 a� 4; að Þ; r21 a; að Þ½ �T a ¼ i� 1; i; iþ 3; iþ 4ð Þ
ð7Þ

r21 m; að Þ ¼ E s2 mð Þs∗1 að Þ� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E s2 mð Þj j2� �

E s1 að Þj j2� �q
� m ¼ a� 4; a

a ¼ i� 1; i; iþ 3; iþ 4

	 

ð8Þ

The corresponding weight covariance matrix can be
given by

Csi i;wð Þ ¼ E si i;wð ÞsiH i;wð Þ� �
¼ ai φið ÞaiH φið Þ⊙Rsi i;wð Þ þ σ2

nI

¼ ai φið ÞaiH φið Þ⊙

�
σ2s i� 1ð ÞRs i� 1;wi�1ð Þ 0 0 ⋯ 0
0 0 σ2

s ið ÞRs i;wið Þ 0 ⋯ 0
0 ⋯ 0 σ2s iþ 3ð ÞRs iþ 3;wiþ3ð Þ 0 0
0 ⋯ 0 0 σ2s iþ 4ð ÞRs iþ 4;wiþ4ð Þ

2
664

3
775

þσ2nI

ð9Þ

ai φið Þ ¼ 1; ejφi ; 1; ejφi ; 1; ejφi ; 1; ejφi
� �T ð10Þ

Rs a;wað Þ

¼
r11 að Þ;

X
m¼a;a�4

r∗21 m; að Þr21 a;mð ÞX
m¼a;a�4

r21 m; að Þr21 m; að Þ;
X

m¼a;a�4

r21 m; að Þj j2r22 m;mð Þ

2
664

3
775
2�2

� a ¼ i� 1; i; iþ 3; iþ 4ð Þ
ð11Þ

where Rsi(i,w) is called the weight correlation function
matrix of the pixel pair i.
In the following, the characteristics of the signal and the

noise subspaces of the weight covariance matrix Csi(i,w)
for different coregistration errors are discussed.
When the example of formula (1) is used to build the

data vector, the correlation coefficient of the corresponding
item of the data vector decreases with the increasing
coregistration error. On the contrary, the correlation coef-
ficient is not impacted by the coregistration error when the
correlation weight data vector is used. That means the cor-
relation coefficient [i.e., the cross-correlation coefficients of
Rs(a,wa) (a = i – 1, i, i + 3, i + 4)] of the corresponding
item of the correlation weight data vector with the
coregistration error μ(0 < μ ≤ 1) pixel is as high as that of
the corresponding item of the data vector with accurate
coregistration. Figure 2 shows the correlation coefficient
for various data vector versus the coregistration error to
further demonstrate the above conclusions.
From the literature [14,19], we know that the rank of Rs

(a,wa)(a = i – 1, i, i + 3, i + 4) becomes 1 when the cross-
correlation coefficients (i.e., the non-diagonal elements) of
Rs(a,wa)(a = i – 1, i, i + 3, i + 4) are high enough. There-
fore, the number of the principal eigenvalues of Rsi(i,w) is
4 according to (9), and the number of the principal
eigenvalues of Csi(i,w) is also equal to 4 [14]. That is the
dimensions of the signal subspace and the noise subspace
are both 4 in the presence of large coregistration errors.
Figure 3 shows the eigenspectra of the weight covariance
matrix for different coregistration errors to further dem-
onstrate the above conclusions.
In this case, the eigendecomposition of the weight co-

variance matrix Csi(i,w) is as follows:

Csi i;wð Þ ¼ E si i;wð ÞsiH i;wð Þ� �
¼ ai φið ÞaiH φið Þ⊙Rsi i;wð Þ þ σ2

nI

�――――
EVD

X4
k¼1

λ kð Þ
csi β

kð Þ
csi β

kð ÞH
csi þ

X4
l¼1

σ2
nβ

lð Þ
nsiβ

lð ÞH
nsi

¼
X4
k¼1

λ kð Þ
rsi þ σ2n

� �
ai φið Þ⊙β kð Þ

rsi

� �
ai φið Þ⊙β kð Þ

rsi

� �H

þ
X4
l¼1

σ2nβ
lð Þ
nsiβ

lð ÞH
nsi

ð12Þ
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Figure 2 Correlation coefficient versus the coregistration error.
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where βcsi
(k)(k = 1, 2, 3, 4) is the eigenvector corres-

ponding to the principal eigenvalue λcsi
(k)(k = 1, 2, 3, 4)

of Csi(i,w), βrsi
(k)(k = 1, 2, 3, 4) is the eigenvector

corresponding to the principal eigenvalue λrsi
(k)(k = 1,

2, 3, 4) of Rsi(i,w), σn
2 and βnsi

(l) (k = 1, 2, 3, 4) are the
noise eigenvalue and the corresponding eigenvector of
Csi(i,w). From (12) we can note that ai(φi) ⊙ βrsi

(k)(k =
1, 2, 3, 4) is in the signal subspace of Csi(i,w), βnsi

(l)

(k = 1, 2, 3, 4) is in the noise subspace of Csi(i,w),
and the signal subspace are orthogonal to the noise
subspace [14].
From the results derived above, we can see that the

new formulation of the correlation weight joint data
vector proposed in this article has the advantage that
the noise subspace dimension of the corresponding
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Figure 3 Eigenspectra of the weight covariance matrix for
accurate coregistration, coregistration errors of 0.5 and 1
pixels, respectively.
weight covariance matrix is independent of the
coregistration error. That is to say, the noise subspace
dimension of the corresponding covariance matrix with
the coregistration error μ(0 < μ ≤ 1) pixel is the same as
that of the accurate covariance matrix (in this article,
the noise subspace dimension of the corresponding co-
variance matrix with the accurate coregistration is 4).
Therefore, it is not required to calculate the noise sub-
space dimension before estimating the InSAR interfero-
metric phase, thus the introduced trouble will be
avoided.
3. Processing procedures
In this section, we give the detailed steps for this
proposed method.
Step 1. Coregister SAR images.
The SAR images are coarsely coregistered using the

cross-correlation information of the SAR image intensity
or other strategies [1,2] after SAR imaging of the echoes
acquired by each satellite.
Remark 1: The required image coregistration accuracy

for the proposed method can be 1 pixel, which is much
lower than the required accuracy (from 1/10 to 1/100 pixel)
for conventional methods. The low coregistration accuracy
requirement can greatly facilitate coregistration processing.
Step 2. Estimate the covariance matrix.
An example to construct the formulation of the correl-

ation weight joint data vector js(i,w) is shown in Figure 4
when the coregistration error is μ(0 ≤ μ ≤ 1) pixels and
its direction is unknown.

js i;wð Þ ¼ ½s1 i� 1ð Þ; s2W i� 1ð Þ; s1 ið Þ; s2W ið Þ; s1 iþ 3ð Þ;
s2W iþ 3ð Þ; s1 iþ 4ð Þ; s2W iþ 4ð Þ�T

¼ ½s1 i� 1ð Þ;wT
i�1Vi�1; s1 ið Þ;wT

i Vi; s1 iþ 3ð Þ;
wT

iþ3Viþ3; s1 iþ 4ð Þ;wT
iþ4Viþ4�T

where

Va ¼ ½s2 a� 5ð Þ; s2 a� 4ð Þ; s2 a� 3ð Þ; s2 a� 1ð Þ; s2 að Þ;
s2 aþ 1ð Þ; s2 aþ 3ð Þ; s2 aþ 4ð Þ; s2 aþ 5ð Þ�T
a ¼ i� 1; i; iþ 3; iþ 4ð Þ

ð13Þ

wa ¼ ½̂r21 a� 5; að Þ; r̂21 a� 4; að Þ; r̂21 a� 3; að Þ;
r̂21 a� 1; að Þ; r̂21 a; að Þ; r̂21 aþ 1; að Þ;
r̂21 aþ 3; að Þ; r̂21 aþ 4; að Þ; r̂21 aþ 5; að Þ�T

a ¼ i� 1; i; iþ 3; iþ 4

ð14Þ
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Figure 4 Formulation of the correlation weight data vector when the coregistration error is unknown.
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r̂21 m; að Þ ¼

XK
k¼�K

s2 mþ kð Þs�1 aþ kð Þ












ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXK
k¼�K

s2 mþ kð Þj j2
XK
k¼�K

s1 iþ kð Þj j2
vuut

m ¼ a� 5; a� 4; a� 3; a� 1; a; aþ 1; aþ 3; aþ 4; aþ 5
a ¼ i� 1; i; iþ 3; iþ 4

	 


ð15Þ
The corresponding weight covariance matrix can be

given by

Cjs i;wð Þ ¼ E js i;wð ÞjsH i;wð Þf g
¼ ai φið ÞaiH φ;ið Þ⊙Rjs i;wð Þ þ σ2nI

ð16Þ

where Rjs(i,w) is called the weight correlation function
matrix of the pixel pair i. Under the assumption that the
neighboring pixels have the identical terrain height and
the complex reflectivity is independent from pixel-to
-pixel [16], the weight covariance matrix Cjs(i,w) given
by (16) can be estimated by its sample covariance matrix

C^js i;wð Þ, i.e.,

C^js i;wð Þ ¼ 1
2K þ 1

XK
k¼�K

js iþ k;wð ÞjsH iþ k;wð Þ

ð17Þ

where 2 K + 1 is the number of i.i.d. samples from the
neighboring pixel pairs.
Remark 2: According to the Reed–Mallett–Brennan

rule [20], the effective number of looks (i.e., the num-
ber of i.i.d. samples) that 2 K + 1 ≥ 2 M – 1 would
make the estimation loss within 3 dB if the

dimensions of the covariance matrix C^js i;wð Þ are M × M.
The detailed analysis of the effective number of looks is
presented in [21].
It is easy to obtain enough i.i.d. samples for locally flat
terrains. However, an imaging terrain in practice cannot
be relied upon to be so flat that the adjacent pixels have
the identical terrain height. If the local terrain slope is
available in advance or can be estimated [15], the
steering vector (i.e., the interferometric phase) variation
due to the different terrain height from pixel-to-pixel
can be compensated, which greatly enlarges the size of
the sample window.
Step 3. Subspace estimation by eigendecomposing.

The estimated covariance matrix C^js i;wð Þ of the dimen-
sions 8 × 8 can be eigendecomposed into

C
^
js i;wð Þ ¼

XK
k¼1

λ̂ kð Þ
cjs

β
^ kð Þ
cjs

β
^ kð ÞH
cjsi þ

X8�K

l¼1

λ̂ lþKð Þ
cjs

β
^ lð Þ
njs
β
^ lð ÞH
njs

ð18Þ

where K (in this article, K is equal to 4) is the

number of the principal eigenvalues of C^js i;wð Þ,
λ̂

1ð Þ
cjs > λ̂

2ð Þ
cjs > ⋯ > λ̂

Kð Þ
cjs >> λ̂

Kþ1ð Þ
cjs > ⋯ > λ̂

8ð Þ
cjs , eigen-

vectors β
^ lð Þ
njs l ¼ 1; 2; . . . ; 8� Kð Þ corresponding to the

smaller eigenvalues λ̂
lþKð Þ
cjs l ¼ 1; 2; . . . ; 8� Kð Þ span the

noise subspace, i.e.,

Nc ¼ span β
^ 1ð Þ
njs ;

β
^ 2ð Þ
njs ; . . . ;

β
^ 8�Kð Þ
njs

� �
ð19Þ

whereas the larger eigenvectors β
^ kð Þ
cjs k ¼ 1; 2; . . . ;Kð Þ

corresponding to the principal eigenvalues λ̂
kð Þ
cjs k ¼ 1; 2;ð

. . . ;KÞ span the signal subspace, i.e.,

Sc ¼ span β
^ 1ð Þ
cjs ;

β
^ 2ð Þ
cjs ; . . . ;

β
^ Kð Þ
cjs

� �
ð20Þ
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The noise power is often estimated by [14]

σ̂n
2 ¼ 1

8� K

X8�K

l¼1

λ̂ lþKð Þ
cjs ð21Þ

The joint correlation function matrix R
^
js i;wð Þ can be

approximated as the amplitude (i.e., the absolute value)

of the estimated covariance matrix C^js i;wð Þ [14], i.e.,

R^js i;wð Þ ¼ C^js i;wð Þ � σ̂
2

nI



 


 ð22Þ

By eigendecomposing R^js i;wð Þ , we obtain K principal

eigenvectors β
^ kð Þ
rjs k ¼ 1; 2; . . . ;Kð Þ . As shown by (12), the

same signal subspace spanned by the principal eigenvectors

β
^ kð Þ
cjs k ¼ 1; 2; . . . ;Kð Þ of C^js i;wð Þ can be spanned by the

Hadamard product vectors ai φið Þ⊙β
^ kð Þ
rjs k ¼ 1; 2; . . . ;Kð Þ, i.e.,

Sc ¼ span ai φið Þ⊙β
^ 1ð Þ
rjs ; ai φið Þ⊙β

^ 2ð Þ
rjs ; . . . ; ai φið Þ⊙β

^ kð Þ
rjs

� �
ð23Þ

Step 4. Projection of signal subspace onto noise
subspace.
As mentioned above, the signal subspace is orthogonal

to the noise subspace, which is used to estimate the
interferometric phase ϕi.
Definition of cost function:

J ¼
XK
k¼1

X8�K

l¼1

ai φið Þ⊙β
^ kð Þ
rjs Þ

H
β
^ lð Þ
njs
β
^ lð ÞH
njs ai φið Þ⊙β

^ kð Þ
rjs

	 
 

ð24Þ

where

ai φið Þ ¼ 1; ejφi ; 1; ejφi ; 1; ejφi ; 1; ejφi
� �T ð25Þ

The minimization of J can provide the optimum esti-
mate of the interferometric phase ϕi, i.e., φ̂i ¼ φi.
Remark 3: The computational burden will be high if

the minimization of J is obtained via search of ϕi in the
principal phase interval [−π, +π]. To reduce the compu-
tational burden, a fast algorithm to compute the
minimization of J is developed in Appendix, where the
closed-form solution to the estimate of φi is directly
obtained by using the fast algorithm.
With the use of the above four steps, the terrain inter-

ferogram can be recovered after the pixel pairs of the
SAR images are processed separately.
4. Performance investigation
In this section, we demonstrate the robustness of the
method to coregistration errors by using two sets of
simulated data and a real dataset.
We assume that there are two formation-flying satellites

in the cartwheel formation, and we select one orbit pos-
ition for simulation, with an effective cross-track baseline
of 562.93 m, an orbit height of 750 km, and an incidence
angle of 50°. We use a two-dimensional Hann window to
simulate the terrain and use the statistical model to gener-
ate the complex SAR image pairs [22]. The signal-to-noise
ratio of the SAR images is 16 dB.
Here, the number of the samples to estimate the co-

variance matrix is 7 (in range) × 7 (in azimuth) = 49.
The variation of the standard deviation of the interfero-
metric phase with the increasing coregistration error
was computed by means of 1,000 Monte Carlo
simulations.
Figures 5, 6, and 7 compare the simulation results for

various techniques and coregistration errors. Compar-
ing Figures 5, 6, and 7, we can observe that the large
coregistration error heavily affects the interferograms
obtained by pivoting mean filtering, pivoting median
filtering, adaptive phase noise filtering, and adaptive
contoured window filtering. On the contrary, the large
coregistration error has almost no effect on the inter-
ferograms obtained by the proposed method. We can
see that the proposed method in this article is robust to
large coregistration errors (up to 1 pixel).
Now we demonstrate the robustness of the method

to local misregistration [16] (note that by “local mis-
registration” we mean that the coregistration error is
not same for every image pixel) using the simulated
data above.
Figure 8 shows the interferograms obtained by various

techniques for the local misregistration. From the simula-
tion results, we can observe that the local misregistration
heavily affects the interferograms obtained by pivoting
mean filtering, pivoting median filtering, adaptive phase
noise filtering, and adaptive contoured window filtering.
However, the proposed method is robust to the increasing
coregistration error. In other words, our method can ac-
curately estimate the corresponding terrain interferomet-
ric phase in the presence of the local misregistration.
Figure 9 shows the variation of the standard deviation

of the interferometric phase with the increasing co-
registration error. We can see that the performance of
our method is as good as that of the joint subspace pro-
jection method [14]. However, our method can avoid
the trouble of calculating the noise subspace dimension
before estimating the InSAR interferometric phase.
The second simulated data are the interferometric data

pair of Mount Etna (the data are produced based on the
SIR-C/X-SAR data acquired at X-band).b
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Figure 6 Image coregistration error of 0.5 pixels. Interferograms obtained by (a) pivoting mean filtering, (b) pivoting median filtering, (c)
adaptive phase noise filtering, (d) adaptive contoured window filtering, and (e) the proposed method.
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Figure 5 Accurate coregistration. Interferograms obtained by (a) pivoting mean filtering, (b) pivoting median filtering, (c) adaptive phase noise
filtering, (d) adaptive contoured window filtering, and (e) the proposed method.
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Figure 8 Local misregistration. Interferograms obtained by (a) pivoting mean filtering, (b) pivoting median filtering, (c) adaptive phase noise
filtering, (d) adaptive contoured window filtering, and (e) the proposed method.
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Figure 7 Image coregistration error of 1 pixel. Interferograms obtained by (a) pivoting mean filtering, (b) pivoting median filtering, (c)
adaptive phase noise filtering, (d) adaptive contoured window filtering, and (e) the proposed method.
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Figure 9 Standard deviation of the interferometric phase versus the coregistration error.
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Figure 10 shows the interferograms generated from
the Mount Etna data. Figure 10a is the interferogram
obtained by conventional processing [16] (i.e., directly
computing the interferometric phase pixel-by-pixel),
and Figure 10b is the interferogram obtained by the ap-
proach proposed in this article.
Figure 11 confirms the effectiveness of the proposed

method in processing of the ERS1/ERS2 (European Re-
mote Sensing 1 and 2 tandem satellites, ERS1 orbit =
32585, ERS2 orbit = 12912, frame = 2781, 1997-10-08/
09, Zhangbei, China) real data.
Figure 11 shows the interferograms generated from the

ERS1/ERS2 real data. Figure 11a is the interferogram
obtained by conventional processing, and Figure 11b is
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(a)                  
Figure 10 Interferograms obtained by (a) conventional processing, an
the interferogram obtained by the approach proposed in
this article.

5. Conclusions
We have proposed a new method to estimate the terrain
interferometric phases from the InSAR image pair. Bene-
fiting from the new formulation of correlation weight joint
data vector, the method does not need to calculate the
noise subspace dimension before estimating the InSAR
interferometric phase, thus the introduced trouble will be
avoided. The method is based on the projection of the
joint signal subspace onto the corresponding joint noise
subspace, and takes advantage of the coherence informa-
tion of the neighboring pixel pairs to auto-coregister the
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d (b) proposed method for Mount Etna data.
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Figure 11 The interferograms obtained by (a) the conventional processing, and (b) the proposed method for the ERS1/ERS2 real data.
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SAR images, where the phase noise is reduced simultan-
eously. A fast algorithm is developed to implement the
method, which can significantly reduce the computational
burden. The effectiveness of the method is verified via
simulated data and real data.

Appendix
Fast algorithm to compute the optimum interferometric
phase estimate
If U, V, and W are arbitrary complex column vectors,
then [14]

U⊙Vð ÞHW ⋅WH U⊙Vð Þ
¼ UH W ⋅WH

� �
⊙ V∗⋅ V∗ð ÞH
� �h i

U ð26Þ

Using Equation (26), we can rewrite the cost function
of (24) as

J ¼
XK
k¼1

X8�K

l¼1

ai φið Þ⊙β̂
kð Þ
rjs

� �H
β̂

lð Þ
njsβ̂

lð ÞH
njs ai φið Þ⊙β̂

kð Þ
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� �
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X8�K

l¼1

aiH φið Þ β̂
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lð Þ
njs

H
� �

⊙ β̂
kð Þ
rjs

∗
β̂

kð Þ
rjs

∗
� �H	 
� �

ai φið Þ
� �

¼ aiH φið Þ
XK
k¼1

X8�K

l¼1

β̂
lð Þ
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∗
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Let A ¼
XK
k¼1

X8�K

l¼1

β̂
lð Þ
njsβ̂

lð Þ
njs

H
� �

⊙ β̂
kð Þ
rjs

∗
β̂

kð Þ
rjs

∗
� �H	 
� �

. It

can easily be proved that A(8 × 8) is a Hermitian matrix.
Then (27) can be rewritten as

J ¼ aiH φið Þ
XK
k¼1

X8�K

l¼1

β̂
lð Þ
njsβ̂
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where

β φið Þ ¼ 1; ejφi
� �T ð29Þ

Let B ¼
X16
m¼1

Am ¼ b11 b12
b21 b22

� �
. It can easily be proved

that B is a Hermitian matrix, i.e., b12
∗ = b21, Let b12 = |

b12|e
jμ. Then,

J ¼ βH φið Þ
X16
m¼1

Am

( )
β φið Þ ¼ βH φið ÞBβ φið Þ

¼ 1; e�jφi½ � b11 b12
b21 b22

� �
1
ejφi

� �

¼ b11 þ b22 þ b21e�jφi þ b12ejφi

¼ b11 þ b22 þ b12j jejμ⋅ejφið Þ∗ þ b12j jejμ⋅ejφi

¼ b11 þ b22 þ 2 b12j j cos μþ φið Þ
ð30Þ
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Obviously, the minimization of J can be obtained for
μ + φi = −π + 2kπ (k is an integer and μ = angle(b12)).
Since –π ≤ μ < π and –π < φi < π, thus

φi ¼
�π � μ μ≤0ð Þ
π � μ μ > 0ð Þ

�
ð31Þ

Endnotes
aAs shown in Figure 1, the horizon is along range and

the verticality is along azimuth.
bEpsilon Nought, Radar Remote Sensing: http://epsilon.

nought.de/.
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