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Abstract

in dynamic environments.

This article presents an algorithm for moving object detection (MOD) in robot visual simultaneous localization and
mapping (SLAM). This MOD algorithm is designed based on the defining epipolar constraint for the corresponding
feature points on image plane. An essential matrix obtained using the state estimator is utilized to represent the
epipolar constraint. Meanwhile, the method of speeded-up robust feature (SURF) is employed in the algorithm to
provide a robust detection for image features as well as a better description of landmarks and of moving objects
in visual SLAM system. Experiments are carried out on a hand-held monocular camera to verify the performances
of the proposed algorithm. The results show that the integration of MOD and SURF is efficient for robot navigating

Keywords: simultaneous localization, and mapping (SLAM), moving object detection (MOD), moving object track-
ing (MQOT), speeded-up robust features (SURF), monocular vision

1. Introduction

In recent years, more and more researchers solve the
simultaneous localization and mapping (SLAM) as well
as the moving object tracking (MOT) problems concur-
rently. Wang et al. [1] developed a consistency-based
moving object detector and provided a framework to
solve the SLAMMOT problems. Bibby and Reid [2] pro-
posed a method that combines sliding window optimiza-
tion and least-squares together with expectation
maximization to do reversible model selection and data
association that allows dynamic objects to be included
directly into the SLAM estimation. Zhao et al. [3] used
GPS data and control inputs to achieve global consis-
tency in dynamic environments. There are many advan-
tages to cope with SLAM and MOT problems
simultaneously: for example, mobile robots might navi-
gate in a dynamic environment crowded with moving
objects. In this case the SLAM could be corrupted with
the inclusion of moving entities if the information of
moving objects is not taken account. Furthermore, the
robustness of robot localization and mapping algorithms
can be improved if the moving objects are discriminated
from the stationary objects in the environment.
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Using cameras to implement SLAM is the current
trend because of their light weight and low-cost fea-
tures, as well as containing rich appearance and texture
information of the surroundings. However, it is still a
difficult problem in visual SLAM to discriminate the
moving objects from the stationary landmarks in
dynamic environments. To deal with this problem, we
propose the moving object detection (MOD) algorithm
based on the epipolar constraint for the corresponding
feature points on image plane. Given an estimated
essential matrix it is possible to investigate whether a
set of corresponding image points satisfy the defining
epipolar constraint in image plane. Therefore, the epipo-
lar constraint can be utilized to distinguish the moving
objects from the stationary landmarks in dynamic
environments.

For visual SLAM systems, the features in the environ-
ment are detected and extracted by analyzing the image
taken by the robot vision, and then the data association
between the extracted features and the landmarks in the
map is investigated. Many researchers [4,5] employed
the concept by Harris and Stephens [6] to extract appar-
ent corner features from one image and tracked these
point features in the consecutive image. The descriptors
of the Harris corner features are rectangle image
patches. When the camera translates and rotates, the
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scale and orientation of the image patches will be chan-
ged. The detection and matching of Harris corner might
fail in this case, unless the variances in scale and orien-
tation of the image patches are recovered. Instead of
detecting corner features, some works [7,8] detect the
features by using the scale-invariant feature transform
(SIFT) method [9] which provides a robust image fea-
ture detector. The unique properties of image features
extracted by SIFT method are further described by
using a high-dimensional description vector [9]. How-
ever, the feature extraction by SIFT requires more com-
putational cost than that by Harris’s method [6]. To
improve the computational speed, Bay et al. [10] intro-
duced the concept of integral images and box filter to
detect and extract the scale-invariant features, which
they dubbed speeded-up robust features (SURF). The
extracted SURF must be matched with the landmarks in
the map of a SLAM system. The nearest-neighbor (NN)
searching method [11] can be utilized to match high-
dimensional data sets of description vectors.

In this article, an online SLAM system with a moving
object detector is developed based on the epipolar con-
straint for the corresponding feature points on image
plane. The corresponding image features are obtained
using the SURF method [10] and the epipolar constraint
is calculated using an estimated essential matrix. Moving
object information is detected in image plane and inte-
grated into the MOT process such that the robustness
of SLAM algorithm can be considerably improved, parti-
cularly in highly dynamic environments where sur-
roundings of robots are dominated by non-stationary
objects. The contributions in this article are twofold.
First, we develop an algorithm to solve the problems for
MOD in image plane, and then the algorithm is inte-
grated with the robot SLAM to improve the robustness
of state estimation and mapping processes. Second, the
improved SLAM system is implemented on a hand-held
monocular camera which can be utilized as the sensor
system for robot navigation in dynamic environments.

The SLAM problem with monocular vision will be
briefly introduced in Section 2. In Section 3, the pro-
posed algorithm of MOD is explained in detail. Some
examples to verify the performance of the data associa-
tion algorithm are described in Section 4. Section 5 is
the concluding remarks.

2. SLAM with a free-moving monocular vision
SLAM is a target tracking problem for the robot system
during navigating in the environment [12]. The targets
to be tracked include the state of the robot itself as well
as of the landmarks and moving objects in the environ-
ment. The state sequence of the SLAM system at time
step k can be expressed as
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X, = f (K1, Up—1,Wh—1) (1)

where x; is the state vector; uy is the input; wy is the
process noise. The objective of the tracking problem is
to recursively estimate the state x; of the target accord-
ing to the measurement z; at time step £,

Z, =g (Xkr Vk) (2)

where v, is the measurement noise. A hand-held
monocular vision, as shown in Figure 1, is utilized in
this article as the only sensing device for the measure-
ment in SLAM system. We treat this hand-held vision
sensor as a free-moving robot system with unknown
inputs. The states of the system are estimated by solving
the recursive SLAM problem using the extended Kal-
man filter (EKF) [12]

X1 = f (Xk—1jk—1, U—1, 0) (3a)
Pije—1 = ArPr_1j-14}, + Wi Q1 W), (3b)
Ky, = Py H (HiPyji—1 Hj, + ViR, VL) ™! (3¢)
X = Xigk—1 + Kie(z — §(Xpjr—1, 0)) (3d)
Prj. = (I — KiHy) Prjr—1 (3e)

where xyr.; and Xy, represent the predicted and esti-
mated state vectors, respectively; Kj is Kalman gain
matrix; P denotes the covariance matrix, respectively; A
and W are the Jacobian matrices of the state equation f
with respect to the state vector x; and the noise variable
Wy, respectively; Hy and Vj are the Jacobian matrices of
the measurement g with respect to the state vector x;
and the noise variable vy, respectively.

2.1. Motion model
Two coordinate systems are set at the world frame {W}
and the camera frame {C}, as shown in Figure 2. The
state vector of the SLAM system with MOT in Equation
(1) is arranged as

x=[xcm1m2---mn0102---01]T (4)

Xc is a 12 x 1 state vector of the camera including
the three-dimensional vectors of position r, rotational
angle ¢, linear velocity v, and angular velocity o, all in
world frame; m; is the three-dimensional (3D) coordi-
nates of ith stationary landmark in world frame; O; is
the state vector of jth moving object; n and [ are the
number of the landmarks and of the moving objects,
respectively.
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where w, and w,, are linear and angular velocity noise
caused by acceleration, respectively. The state of ith sta-
tionary landmark at time step k is represented by 3D
coordinates in space,

my, = [ Xa Yi Zie|" (6)

In the motion model of MOT, the targets to be
tracked include the state and motion mode of the mov-
ing object in the environment. The state of the MOT
system at time step k can be expressed as

Oj. = [oj )", forj=1,2,...,1

where 0 and sj; are the state and motion mode of jth

Figure 1 A free-moving monocular vision sensor. moving object, respectively. The MOT problem can be
N 7 expressed as a probability density function (pdf) in Baye-
sian probability

The motion of the hand-held camera is presumed to
be at constant velocity (CV), and the acceleration is p(or, sk | 1) = p(Ok | St Z1:x) - P(Sk | Z1:k) (7)
caused by an impulse noise from the external force.
Therefore, the state x¢ of the camera with a CV motion
model at time step k is expressed as:

where p(ox|swz1.1) is state inference; z;.; is the set of
measurements for time ¢ = 1 to k; p(si|zy.) is the mode
learning. The EKF-based interacting multiple model

T o1 + (Vi1 + Wagem1 ) AL (IMM) estimator [13] can be utilized to estimate the
b Br1 + (@r_1 + Wor_1) AL motion mode of a moving object. The state is computed
Xk=1 g |~ Vo1 + Welh_1 ®)  at time step k under each possible current model using
i Oh1 + W1 r filters, with each filter using a different combination of

the previous model-conditioned estimates. The mode M’

feature

x ’

Figure 2 Coordinate setting for the camera system.
" J
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at time step k is assumed to be among the possible r
modes
MeM={M', M, -, M}

Given r motion models, the object state o in Equation
(7) is estimated. Instead of using the IMM estimator, a
single CV model is utilized in the paper. That is, the
moving objects are also presumed to move at a CV
motion model. Their coordinates in 3D space are
defined as

. g g At
oj = |:p]k1 + (V]k 1+ Wik 1) i| 8)
Vjk—1 + Wjk—1

where pj; and v are the vectors of the position and
linear velocity of jth moving object at time step %,
respectively.

2.2. Vision sensor model
The measurement vector of the monocular vision sys-
tem is expressed as

7 = |z1k 2ok -+ Zre]"

m is the number of the observed image features in
current measurement. The perspective projection
method [14] is employed to model the transformation
from 3D space coordinate system to 2D image plane.
For one observed image feature, the measurement is
denoted as

C C
ix hiy
I Ug +fu hC +Otcfuhc
Zlk:[{_"]: iz He iz | fori=1,2 ...,m (9)
iy i
Vo +fvhg

where f,, and f, are the focal lengths of the camera
denoting the distance from the camera center to the
image plane in u- and v-axis, respectively; (¢, vo) is the
offset pixel vector of the pixel image plane; o is the

C 1,CT
iyhiz]

vector of ith image feature in camera frame. The 3D
coordinates of ith image feature or landmark in world
frame, as shown in Figure 2, is given as

camera skew coefficient; hiC =[S h is the ray

m; = [Xi Yi Zi ]T =1+ Rg‘vhf: (10)

R‘é" is the rotational matrix from world frame to cam-

era frame, represented by using the elementary rotations
(15],

RY =

ChyShz SHxSPySPz + CPxCPz CPxSPySPz — SHxCP2

ChyChz SPxSPyChz — COxSPz CHrSPyChz + SPxSP2
(11)
—soy

Spxchy ChxCey
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where c@ = cos@ and s¢ = sing; ¢y, ¢, and @, are the
corresponding rotational angles in world frame. We can
utilize Equatoin (10) to calculate the ray vector of an
image feature in camera frame. The coordinates of the
feature in image plane are obtained by substituting
Equations (10) and (11) into Equation (9) with ac = 0

cpycz(Xi — 1x) + cyspz(Yi — 1y) — spy(Zi — 12)

(CpxspyCdz + spusz) (Xi — 1) + (cuspyspz — spxcez)(Yi — 17) + chucey(Zi — 1) (1 23)

Lix = uo+fu

(spxsychs — chus:) (Xi — 1) + (5puspyspz + cpxcez) (Vi — 17) + sy (Zi — 1) (12b)
(ChxSpyChz + 5u5¢2)(Xi — 12) + (chxspyspz — spucd:) (Yi — 1y) + ey (Zi — 12)

Ly = vo+fu

Moreover, the elements of the Jacobian matrices Hj
and Vj are determined by taking the derivative of z;
with respect to the state x; and the measurement noise
vi. The Jacobian matrices are obtained for the purpose
of calculating the innovation covariance matrix in EKF
estimation process [16].

2.3. Feature initialization

Because of the lack of one-dimensional range informa-
tion in image, how to initialize features becomes an
important topic. Some researchers have successfully
solved this problem either in time-delayed method [16]
or un-delayed method [17]. The un-delayed method will
be utilized in this research. When an image feature is
selected, the spatial coordinates of the image feature are
calculated by employing the method of inverse depth
parameterization [17]. Assume that there are m image
features with 3D position vectors, y;, i = 1,...,m, which is
described by the 6D state vector

o _ AW AW AW AW FW A 1T
vi= Ty Ty T 00 ¥y pil (13)
A oAl ?X,V 17 indicates the estimated state of the

camera when the feature was observed, as shown in Fig-
ure 2; p; is the estimated image depth of the feature;
éiw and @l.w are the longitude and latitude angles of
the spherical coordinate system which locates at the
camera center. To compute the longitude and latitude
angles, a normalized vector nlwin the direction of the

ray vector is constructed by using the perspective pro-
ject method:

L I, — T
le Uo liy Vo 1] (14)

Ju f

Therefore, from Figure 2, the longitude and latitude
angles of the spherical coordinate system can be
obtained as

X W
6" =tan”' | "%
Mix

a = RY (&W)[

(15a)
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w

o n
)" =tan™! !
\/ni‘;v2 + ni‘;‘/2

(15b)

When image features are selected to be new land-
marks or moving objects, the inverse depth parameteri-
zation vector in Equation (13) is assigned to be new
augmented states in the EKF-based SLAM. Meanwhile,
for each new state variable y,, the corresponding covar-
iance matrix are initialized according to

Prpe 0 0
= 0 R o |JT (16)
0 00}
I | o
J=| 9y 9y | dy Iy (17)
arWv 8¢C 821' 8pi

where R; is the covariance of the measurement noise;
G, is the deviation of the estimated image depth. How-
ever, the inverse depth coordinates are 6D and compu-
tational costly. A switching criterion is established in
reference [17] based on a linearity index L;. If L; >L 0,
the inverse depth parameterization in Equation (13) is
utilized as the augmented states; where L, is the
threshold value of the index defined in [17]. On the
other hand, if L; < L, then the state vector in Equation
(10) is chosen and modified as

Vi i .
Vi = {G‘y =7 |+ L m@, 9 (18)
cos(6")cos (1))
m(6", ¥") = sin(,") (19)
sin(6,")cos (")

where m(6", ) is the unit ray vector. In this case,

the corresponding covariance matrix is rearranged as

Phew = JPJ" (20)
1 00
aYi
J=lo_ "o (21)
3y
00 I

Furthermore, for each new state variable v;, the corre-
spondent elements of the Jacobian matrix H; are modi-
fied as:
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811 321 321 321 321 321
arV 9¢C vV dwC vy AUy
322 322 322 322 322 322
5
H, = ai (1) = | Y 9¢C VY 90 dur duy (22)
02w 9zm 0zm 02w 0zm  2m
W 9¢C vV 9wC du, vy

The derivative is taken at xj, = Xyr—1 and vx = 0.

2.4. Speeded-up robust features (SURF)

The basic concept of a scale-invariant method is to
detect image features by investigating the determinant
of Hessian matrix H in scale space [18]. In order to
speed up the detection of image features, Bay et al. [10]
utilize integral images and box filters to process on the
image instead of calculating the Hessian matrix, and
then the determinant of Hessian matrix is approximated
by

det(H)approx. = DxxDyy — (wDyy)? (23)

where D;; are the images filtered by the corresponding
box filters; w is a weight constant. The interest points
or features are extracted by examining the extreme
value of determinant of Hessian matrix. Furthermore,
the unique properties of the extracted SURF are
described by using a 64-dimensional description vector
as shown in Figure 3[9,19].

2.5. Implementation of SLAM

The SLAM is implemented on the free-moving vision
system by integrating the motion and sensor models, as
well as the extraction of SURF. A flowchart for the
developed SLAM system is depicted in Figure 4. The
images are captured by the monocular camera and fea-
tures are extracted using SURF method. In the SLAM
flowchart, data association in between the landmarks in
the database and the image features of the extracted
SUREF is carried out using the NN ratio matching strat-
egy [9]. A map managerial tactic is designed to manage
the newly extracted features and the bad features in the
system. The details of the map management have been
explained in previous article [19]. The properties of the
newly extracted features are investigated and the mov-
ing objects will be discriminated from the stationary
objects by using a proposed detection algorithm which
will be described in next section. All the stationary
landmarks and moving objects are included in the state
vector. On the other hand, those features which are not
continuously detected at each time step will be treated
as bad features and erased from the state vector in
Equation (4).
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Figure 3 64-dimensional description vector for SURF.

3. Moving object detection and tracking

In the flowchart of Figure 4, the function block of MOD
is designed based on the concept of the pixel coordinate
constraint of a static object in image plane. An object in
space is represented by the corresponding features in
two consecutive images. The pixel coordinate constraint
equation for these corresponding image features can be
expressed as

hSTER/S = 0 (24)

where hg and h/dC are the homogenous normalized

image coordinates of the corresponding features
abstracted from two consecutive images, images 1 and
2, respectively. They are defined as

Iy I'y fu acfu uo
hS=Kc' | I, | WS =KZ' | I, |;andKc=| 0 f, wo
1 1 00 1

K is the matrix of camera intrinsic parameters which
can be obtained from Equation (9). Note that the image
coordinates are defined in camera frame. The essential
matrix E in Equation (24) is defined as [20]

0 —t; t,
E=[t]lxR=] t; 0 —t. |R (25)
—t ty O

where R is the rotation matrix and ¢ is the translation
vector of the camera frame with respect to world frame;
[£], is the matrix representation of the cross product
with £ The rotation matrix and translation vector would
be determined using EKF estimator. Therefore, the
essential matrix E can be calculated accordingly.
Usually, the pixel coordinate constraint in Equation (24)
is utilized to estimate the state vector and according
essential matrix. Given a set of corresponding image
points, it is possible to estimate the state vector and the
essential matrix which optimally satisfy the pixel coordi-
nate constraint. The most straight-forward approach is
to set up a total least squares problem, commonly
known as the eight-point algorithm [21]. On the con-
trary in SLAM problem, the state vector and the essen-
tial matrix is obtained using the state estimator. We
could further utilize the estimated state vector and the
essential matrix to investigate whether a set of corre-
sponding image points satisfy the pixel coordinate
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Figure 4 Flowchart of EKF-based visual SLAM.

constraint in Equation (24). First, define the known
quantities in Equation (24) as a constant vector

[abe]=[L1 1] (K EK,! (26)
Equation (26) is further rearranged as an equation of

the epipolar line constraint in image plane for two cor-
responding points [22], as shown in Figure 5

aly +bl, +¢c=0 (27)

Equation (27) indicates that the pixel coordinate of the
corresponding feature in second image will be con-
strained on the epipolar line.

Simulation of pixel constraint on the corresponding
features for the cases of camera translation and rotation
is carried out and depicted in Figure 6. Assume that the
image feature of a static object in first image is located
at (I, I,) = (80,60). In the first simulation, the camera
translates 1 cm along x.-axis direction, the correspond-

ing image feature (I, I)) in the second image must be

restricted in the epipolar line 1, as shown in Figure 6.
Similarly, if the camera translates 1 cm along y,.- or z.-
axis direction, the corresponding features (Is I) in the
second image must be located on the epipolar line 2 or
3, respectively. In the second simulation, the camera
first moves 1 cm in «x.-axis and then rotates ¢, = 15°
about x.-axis, the corresponding feature (I}, I') in sec-
ond image must be located on the epipolar line 4, as
shown in Figure 6. If the camera first moves 1 cm in x,-
axis and then rotates ¢, = 15° about y.-axis or ¢, = 15°
about z.-axis, the corresponding features (I, I,) in the
second image must be located on the epipolar line 5 or
6, respectively.

Motion and measurement noise is involved in the
state estimation process. If the measurement of image
points is subject to noise, which is the common case in
any practical situation, it is not possible to find a corre-
sponding feature point which satisfies the epipolar con-
straint exactly. That is, the corresponding feature point
might not be constrained on the epipolar line because
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of the presence of noise. Define the distance D to repre-
sent the pixel deviation of the corresponding point from
the epipolar line in image plane, as shown in Figure 7,

al'y +bI'y + ¢
Va2 + b2

D is utilized in this article to denote the pixel devia-
tion from the epipolar line which is induced by the
motion and measurement noise in state estimation pro-
cess. Depending on how the noise related to each con-
straint is measured, it is possible to design a threshold
value in Equation (28) which satisfies the epipolar con-
straint for a given set of corresponding image points.
For example, the image feature of a static object in the
first image is located at (I, I,) = (50,70) and then the
camera moves 1 cm in z.-axis. If the corresponding

D =| | (28)

image feature (I, I) in the second image is constrained
within a deviation I} is limited in a range, as shown in
Figure 7, as I} varying from 1 to 320.

There are two situations that the pixel coordinate con-
straint in Equation (24) will result in trivial solutions.
First, if the camera is motionless between two consecu-
tive images, we can see from Equation (25) that the
essential matrix becomes a zero matrix. Therefore, the
object status could not be obtained by investigating the
pixel coordinate constraint. In this case, we assume the
camera being stationary in space and compute the pixel
distance in between the corresponding features in two
consecutive images to determine the object status. Sec-
ond, if the image feature of a static object in the first
image is located near the center of image plane (I, 1,) =

(160,120), the coefficients of the epipolar line obtained
from Equation (26) are zero. Therefore, any point in the
second image will satisfy the equation of the epipolar
line in Equation (27). This situation is simulated and the
result is depicted in Figure 8. In the simulation, the
pixel coordinate in the first image I, varies from 0 to
320 and I, is fixed at 120. The corresponding feature
(I, I) in the second image is limited within the pixel
coordinate constraint hgTEh/g < 1073. We can see that

the range of the corresponding 1;, is unlimited when (Z,,
L) is close to (160,120), as shown in Figure 8. In real
applications, those features located in a small region
near the center of the image plane need a special treat-
ment because the epipolar line constraint is not valid in
this situation.

4. Experimental results

In this section, the experimental works of the online
SLAM with a moving object detector are implemented
on a laptop computer running Microsoft Window XP.
The laptop computer is Asus U5SF with Intel Core 2
Duo T5500 (1.66 GHz), Mobile Intel i945GM chipset
and 1 Gb DDR2. The free-moving monocular camera
utilized in this work is Logitech C120 CMOS web-cam
with 320 x 240-pixels resolution and USB 2.0 interface.
The camera is calibrated using the Matlab tool provided
by Bouquet [23]. The focal lengths are f,, = 364.4 pixels
and f, = 357.4 pixels. The offset pixels are 1y = 156.0
pixels and v, = 112.1 pixels, respectively. We carried out
three experiments including the SLAM task in a static
environment, SLAM with MOT, and people detection
and tracking.
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4.1. SLAM in static environment

In this experiment, the camera is carried by a person to
circle around a bookshelf (1.5 m x 2 m floor dim.) in
our laboratory. The resultant map and the camera pose
estimation are plotted in Figure 9. In this figure, the
estimated states of the camera and landmarks are illu-
strated in a 3D plot. The ellipses in the figure indicate
the uncertainty of the landmarks obtained from the
extracted image features. The rectangular box represents
the free-moving monocular camera and the solid line
depicts the trajectory of the camera. More detail image
frames of the experimental results are illustrated in Fig-
ures 10, 11, 12, 13, 14, 15, 16, and 17. For each figure,
the captured image is shown in the left panel and the
top-view plot is depicted in the right panel. The (blue)
circular marks in the left panel of the figures indicate
the landmarks extracted from the captured image with
an unknown image depth, while the (red) square marks
represent the landmarks with a known and stable image
depth. In the right panel of the figures, the estimated
states of the camera and landmarks are illustrated in a
2D plot. The red (dark) ellipses represent the uncer-
tainty of the landmarks which have known image depths
and the green (light) ellipses denote the uncertainty of

the landmarks which have unknown image depths.
Meanwhile, the rectangular box represents the free-
moving camera and the trajectory of the estimated cam-
era pose is plotted as solid lines. As shown in the right
panel of Figure 10 for the 31st image frame, the SLAM
system starts up and captures four image features with
known positions. These features will help to initialize
the map scale. After the start-up, more image features
are extracted and treated as landmarks with unknown
image depth, as indicated in circular marks in Figure 11
for the 32nd frame. In Figure 12 for the 71st frame, the
uncertainty of the image depth of feature 10 is reduced
to a small region (red ellipse). The SLAM system builds
the environment map and estimates the camera pose
concurrently, when the camera is carried to circle
around the laboratory, as shown in Figure 13 for the
645th frame. In Figures 14 and 15 for the 2265th and
2340th frames, the camera comes to the place it had vis-
ited before and the trajectory loop is closing. Some old
landmarks (with number less than 100) are captured
again and the covariance of the state vector is reduced
gradually. The second and third times of loop-closure
are depicted in Figures 16 and 17 for the 3355th and
4254th frames. In these frames, old landmarks are
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visited again and the covariance of the state vector is
reduced further.

The map size and the sampling frequency (Hz) at each
frame are depicted in Figure 18. The map size increases
to about 145 features at the first loop-closure and
remains at almost constant size (about 200 features at
the third loop-closure). That is, the SLAM can rely on
the map with old landmarks for localization when it
repeats visiting the same environment. The high sam-
pling frequency in Figure 18 is about 20 Hz when the
map size is small. When the map size increases, the low
sampling frequency keeps at about 5 Hz.

The deviations of the camera pose in xyz-axis are
plotted in Figure 19. The camera pose deviations
decrease suddenly at each loop-closure, because the old
landmarks are revisited and the camera pose and land-
mark locations are updated accordingly. We also can
see from Figure 19 that the lower-bound of the pose
deviation is further decreased after each loop-closure.

4.2. SLAM with MOT

The camera is carried to move around at one corner of
our laboratory in this example. Meanwhile, the SLAM is
implemented to map the environment and estimate the

camera pose, as well as to detect and track a moving
object. The estimated camera pose and landmarks are
illustrated in a 3D plot as shown in Figure 20. The
ellipses in the figure indicate the landmarks obtained
from the extracted image features. The rectangular box
represents the free-moving monocular camera and the
solid line depicts the trajectory of the camera. More
detail image frames of experimental results are illu-
strated in Figures 21, 22, 23, 24, 25, 26, 27, 28, 29 and
30. For each figure, the captured image is shown in the
left panel and the top-view plot is depicted in the right
panel of each figure. As shown in Figure 21 for the
52nd image frame, the SLAM system starts up and cap-
tures four image features with known 3D coordinates.
After the start-up, some stationary features with
unknown status are extracted and treated as new land-
marks for mapping, as shown in the 98th frame in Fig-
ure 22. These stationary landmarks are initialized using
inverse depth parameterization [17]. The system demon-
strates a stable implementation of SLAM as shown in
Figures 22, 23, 24, and 25. In Figure 26, soon after the
feature no. 30 is detected, it is discriminated from the
stationary features using the proposed MOD algorithm
and then treated as a moving object. This moving object
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is tracked in the image plane and encircled by a rectan-
gle in Figures 26, 27, 28, 29 and 30. Therefore, the
developed system demonstrates the capability of simul-
taneous localization, mapping and MOT.

4.3. People detection and tracking

In this experiment, the SLAM system with MOD is uti-
lized to detect and track a moving people in the envir-
onment. The camera is carried to move around at a
corner of our laboratory. The estimated states of the
camera pose, the landmarks, and the moving people are
illustrated in a 2D top-view plot in the right panel of
Figures 31, 32, 33, 34, and 35. The captured image is
shown in the left panel of each figure. As shown in Fig-
ure 31 for the 350th image frame, the SLAM system
builds the environment map and estimates the camera
pose concurrently and stably. The ellipses in the right
panel indicate the landmarks obtained from the
extracted image features. The rectangular box represents

the free-moving monocular camera and the thin solid
line depicts the trajectory of the camera. One person
gets in the scene, as shown in the 365th frame in Figure
32, and two image features on the human body are
detected. These image features are discriminated from
the stationary features using the proposed MOD algo-
rithm, and are further initialized in state vector and
tracked using Equation (8). The SLAM system continu-
ously tracks the moving people until he goes out the
scene, as shown in Figures 33, 34, and 35. The trajectory
of the moving people is depicted as a thick solid line in
the right panel of each figure. Hence, the developed sys-
tem also demonstrates the capability of simultaneous
localization, mapping, and moving people tracking.

5. Conclusions

In this research, we developed an algorithm for detec-
tion and tracking of moving objects to improve the
robustness of robot visual SLAM system. SURFs are also
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Figure 9 Three-dimensional map and camera pose estimation.
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Figure 23 330th frame: SLAM.
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Figure 35 410th frame: MOT.
A

utilized to provide a robust detection of image features
and a stable description of the features. Three experi-
mental works have been carried out on a monocular
vision system including SLAM in a static environment,
SLAM with MOT, and people detection and tracking.
The results showed that the monocular SLAM system
with the proposed algorithm has the capability to sup-
port robot systems simultaneously navigating and track-
ing moving objects in dynamic environments.
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