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Abstract

Soft computing techniques have shown much potential in a variety of computer vision and image analysis tasks. In
this paper, an overview of recent soft computing approaches to the colour quantisation problem is presented. Colour
quantisation is a common image processing technique to reduce the number of distinct colours in an image. Those
selected colours form a colour palette, while the resulting image quality is directly determined by the choice of
colours in the palette. The use of generic optimisation techniques such as simulated annealing and soft
computing-based clustering algorithms founded on fuzzy and rough set ideas to formulate colour quantisation
algorithms is discussed. These methods are capable of deriving good colour palettes and are shown to outperform
standard colour quantisation techniques in terms of image quality. Furthermore, a hybrid colour quantisation
algorithm which combines a generic optimisation approach with a common clustering algorithm is shown to lead to
improved image quality. Finally, it is demonstrated how optimisation-based colour quantisation can be employed in
conjunction with a more appropriate measure for image quality.
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1 Introduction
Colour quantisation is a common image processing tech-
nique that allows the representation of true colour images
using only a small number of colours. True colour images
typically use 24 bits per pixel resulting overall in 224, i.e.
more than 16 million, different colours. Colour quanti-
sation uses a colour palette that contains only a small
number of distinct colours (usually between 8 and 256),
and pixel data are then stored as indices to this palette.
Since each pixel in the image now takes on one of the
colours of the palette, the choice of the colours that make
up the palette is of crucial importance for the quality of
the quantised image.
A common way of expressing this quality is to cal-

culate the difference between the original (unquantised)
imageO and its colour-quantised counterpartQ for which
the mean-squared error (MSE) is the most widely used
measure:

MSE(O,Q) = 1
3nm

n∑
i=1

m∑
j=1

((RO(i, j)−RQ(i, j))2

+(GO(i, j)−GQ(i, j))2+(BO(i, j)−BQ(i, j))2),
(1)
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where R(i, j), G(i, j), and B(i, j) are the red, green, and
blue pixel values at location (i, j), and n and m are the
dimensions of images.
However, the selection of the optimal colour palette is

known to be an NP-complete problem [1]. In the image
processing literature, many different algorithms have been
introduced that aim to find a palette that allows for
good image quality of the quantised image. A relatively
simple approach is the popularity algorithm [2], which -
typically following a uniform quantisation to 5 bits per
channel - selects the N colours that are represented most
often to form the colour palette. In median cut quantisa-
tion [2], an iterative procedure repeatedly splits (by a plane
through the median point) colour cells into sub-cells. In
octree quantisation [3], the colour space is represented
as an octree where sub-branches are successively merged
to form the palette, while Neuquant [4] employs a one-
dimensional self-organising Kohonen neural network to
generate the colour map.
In this paper, we present several soft computing

approaches to colour quantisation. In particular, in
Section 2.1, we show how general purpose optimisation
algorithms such as simulated annealing can be used to
derive a good colour palette. Colour quantisation can
also be regarded as a clustering problem. Consequently,
in Section 2.2, several soft computing-based clustering
algorithms, namely fuzzy based clustering, rough set
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based clustering and a combined fuzzy-rough clustering
approach, and their application to the colour quantisation
problem, are discussed. In Section 2.3, we present exper-
imental results that confirm that these soft computing-
based methods do indeed make effective approaches
for colour quantisation, outperforming several standard
algorithms. A hybrid optimisation scheme for colour
quantisation is described in Section 2.4 and shown to
lead to improved performance. In Section 2.5, we show
that by adapting the objective function, optimisation-
based colour quantisation can be formulated, employing a
more appropriate image quality metric. Finally, Section 3
concludes the paper.

2 Review
2.1 Soft computing-based optimisation for colour

quantisation
The main advantage of black-box optimisation algorithms
is that they do not require any domain-specific knowl-
edge yet are able to provide a near-optimal solution. This
makes them suitable for a variety of problems, and in the
following, we show how they can be employed to lead to
an effective colour quantisation algorithm.
While there are many different optimisation algorithms

(e.g. in [5], genetic algorithms were used for colour quan-
tisation, while in [6], particle swarm optimisation [7] was
utilised), the approach in [8] employs a modification of
the well-known simulated annealing algorithm. Simulated
annealing (SA) was first introduced as a general optimi-
sation method by Kirkpatrick et al. [9], and it simulates
the annealing of metal, in which the metal is heated up
to a temperature near its melting point and then slowly
cooled down. This allows the particles to move towards
a minimum energy state, with a more uniform crystalline
structure. The process therefore permits some control
over the microstructure.
Simulated annealing is a variation of the hill-climbing

algorithm. Both start from a randomly selected point
within the search space of all possible solutions. Each
point in search space has ameasurable error value, E, asso-
ciated with it, which indicates the quality of the solution.
From the current point in search space, new trial solutions
are selected for testing from the neighborhood of the cur-
rent solution. This is usually done by moving a small step
in a random direction. Typically, small and equally dis-
tributed random numbers from the interval [−smax, smax]
are added to each component of the current solution vec-
tor, where smax is called the maximum step width and is
chosen from the interval between 0 and the upper limit of
the search space dimension.
If the decrease in error values, denoted as �E, is neg-

ative (i.e. the error of a trial solution is below that of the
current one), then the trial solution is accepted as the
current solution. However unlike hill-climbing, SA does

not automatically reject a new candidate solution if �E
is positive. Instead, it becomes the current solution with
probability p(T) which is usually determined using

p(T) = e−�E/T , (2)

where T is referred to as ‘temperature’, an abstract control
parameter for the cooling schedule. For a given temper-
ature and positive values of �E, the probability function
shown in Equation 2 has a defined upper limit of 1 and
tends towards 0 for large positive values of �E.
The algorithm starts with a high temperature, i.e. with

a high transition probability. The temperature is then
reduced towards 0, usually in steps, according to a cooling
schedule such as

Tn+1 = αTn, (3)

where Tn is the temperature at step n and α is a cooling
coefficient (usually between 0.8 and 0.99).
During each step, the temperature must be held con-

stant for an appropriate number of iterations in order to
allow the algorithm to settle into a ‘thermal equilibrium’,
i.e. a balanced state. If the number of iterations is too
small, the algorithm is likely to converge to a local mini-
mum.
For both continuous parameter optimisation and dis-

crete parameters with large search ranges, it is practically
impossible to choose direct neighbours of the current
solution as new candidate solutions due to the vast num-
ber of points in the search space. Therefore, it is necessary
to choose new candidates at some distance in a ran-
dom direction of the current solution in order to navigate
through the search space in an acceptable time. This dis-
tance could either be a fixed step width s or it could have
an upper limit, smax. Themaximum step width smax is cru-
cial to the success of SA. If smax is too small and the start
point for a search run is too far away from the global opti-
mum, the algorithm might not be able to get near that
optimum. If, on the other hand, the step width is too large
and the peak of the optimum very narrow, the algorithm
might never reach the top because most of the steps are
too large.
Step width adapting simulated annealing (SWASA) [10]

overcomes the problems associated with constant values
for smax using a scaling function to adapt the maximum
step width to the current iteration by

smax(n) = 2s0
1 + eβn/nmax

, (4)

where smax(n) is the maximum step width at iteration n,
s0 is the initial maximum step width, nmax the maximum
number of iterations, and β is an adaptation constant.
For colour quantisation, the objective is, as mentioned,

to minimise the total error introduced through the appli-
cation of a colour palette. The colour palette C for an
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image I, a codebook of k colour vectors, should then be
chosen so as to minimise the error function

E(C, I) = 1∑k
j=1 lj

k∑
i=1

li∑
j=1

||Ci − Ij|| + p(C, I), (5)

with

p(C, I) =
k∑

i=1
δai, ai =

{
1 if li = 0
0 otherwise , (6)

where li is the number of pixels Ij represented by colour Ci
of the palette, ||.|| is the Euclidean distance in RGB (red-
green-blue) space, and δ is a constant (set to δ = 10 in [8]).
The objective function E(C, I) used is hence a combina-
tion of the mean Euclidean distance, i.e. the error measure
of Equation 1, and a penalty function. The purpose of the
penalty function p(C, I) is to avoid unused palette colours
by adding a constant penalty value to the error for each
entry in the codebook that is not used in the resulting
picture.

2.2 Soft computing-based clustering for colour
quantisation

Colour quantisation can also be seen as a clustering
problem where the task is to identify those clusters that
best represent the colours in an image. Consequently,
soft computing-based clustering algorithms can be read-
ily adapted to derive a good colour palette. In the fol-
lowing, we discuss how fuzzy c-means, rough c-means,
and a combined fuzzy-rough clustering algorithm can be
employed for colour quantisation.

2.2.1 Fuzzy c-means
Fuzzy c-means (FCM) is based on the idea of finding
cluster centres by iteratively adjusting their positions and
evaluation of an objective function as in (hard) c-means,
yet allows more flexibility by introducing the possibil-
ity of partial memberships to clusters. The general FCM
algorithm is illustrated in Figure 1.

For colour quantisation, the error function follows the
form

E =
C∑
j=1

N∑
i=1

μk
ij||xi − cj||2, (7)

where μk
ij is the fuzzy membership of pixel xi and the

colour cluster identified by its centre cj, and k is a constant
that defines the fuzziness of the resulting partitions.
E can reach the global minimum when pixels nearby

the centroid of corresponding clusters are assigned higher
membership values, while lower membership values are
assigned to pixels far from the centroid [11]. Here, the
membership is proportional to the probability that a pixel
belongs to a specific cluster where the probability is only
dependent on the distance between the image pixel and
each independent cluster centre. The membership func-
tions and the cluster centres are updated by

μij = 1∑C
m=1

( ||xj−ci||
||xj−cm||)2/(k−1)

) , (8)

and

ci =
∑N

j=1 μk
ijxj∑N

j=1 μk
ij
. (9)

Fuzzy c-means operates iteratively though the following
steps [12]:

Step 1. Initialise the cluster centres ci and let t = 0.
Step 2. Initialise the fuzzy partition memberships

functions μij according to Equation 8.
Step 3. Let t = t + 1 and compute new cluster centres ci

using Equation 9.
Step 4. Repeat steps 2 to 3 until convergence.

An initial setting for each cluster centre is required, and
FCM is guaranteed to converge to a local minimisation
solution. The efficiency of FCM has been comprehen-
sively investigated in [13]. To address the inefficiency
of the original FCM algorithm, several variants of the
fuzzy c-means algorithm have been introduced which are
discussed in the following.

Figure 1 Illustration of FCM, from left to right: data to clusters - random cluster centres - clusters converging - final settlement.
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2.2.2 Fuzzy c-means variants
While FCM often provides good clustering results, it also
suffers from a relatively high computational complexity,
especially when there are many samples as is the case for
colour quantisation. However, a number of faster FCM
variants have been developed and have also been shown
to work well for colour quantisation [14].
To combat the computational complexity of FCM,

Cheng et al. [15] proposed a multistage random sampling
strategy. This method has a lower number of feature vec-
tors and also needs fewer iterations to converge. The basic
idea is to randomly sample and obtain a small subset of
the dataset in order to approximate the cluster centres
of the full dataset. This approximation is then used to
reduce the number of iterations. Random sampling FCM
(RSFCM) consists of two phases. First, a multistage iter-
ative process of a modified FCM is performed. In the
second phase, standard FCM is performed with the clus-
ter centres approximated by the final cluster centres from
the first phase. It has been shown that RSFCM is able
to reduce the computational complexity compared to the
classical FCMmethod.
Ahmed et al. [16] introduced an alternative to classi-

cal FCM by adding a term that enables the labelling of a
pixel to be associated with its neighbourhood. As a reg-
ulator, the neighbourhood term can change the solution
towards piecewise homogeneous labelling. As a further
extension, in [17], the enhanced FCM (EnFCM) algorithm
was presented. In order to reduce the computational com-
plexity, a linearity-weighted sum image is formed from
the original image, and a modified objective function is
employed. EnFCM considers a number of pixels with sim-
ilar colours as a weight. Thus, this approach can accelerate
the convergence of searching for global similarity.
Anisotropic mean shift-based FCM (AMSFCM) is an

efficient approach to fuzzy c-means clustering which
utilises an anisotropic mean shift algorithm coupled with
fuzzy clustering [14]. Mean shift-based techniques have
been shown to be capable of estimating the local den-
sity gradients of similar pixels. These gradient estimates
are iteratively performed so that all pixels can find similar
pixels in the same image [18]. AMSFCM combines fuzzy
c-means and anisotropic mean shift, a mean shift variant
that does not suffer of shortcomings due to radially sym-
metric kernels [19]. Importantly, the AMSFCM algorithm
continuously inherits and updates the states, based on the
mutual correction of FCM and mean shift.

2.2.3 Rough c-means
Lingras and West [20] introduced a rough set-inspired
clustering algorithm based on the well-known c-means
algorithm. In this rough c-means (RCM) approach, each
cluster ck is described not only by its centre mk , but also
contains additional information, in particular its lower

approximation ck , its upper approximation ck , and its
boundary area cbk = ck − ck . The clustering algorithm
proceeds in the following steps:

Step 1. Each data sample is randomly assigned to one
lower approximation. Since the lower
approximation of a cluster is a subset of its upper
approximation, this also automatically assigns the
sample to the upper approximation of the same
cluster.

Step 2. The cluster centres are updated as

mk =

⎧⎪⎪⎨
⎪⎪⎩

ωl
∑

xi∈ck
xi
|ck| + ωb

∑
xi∈cbk

xi
|cbk|

if cbk �= {}

ωl
∑

xi∈ck
xi
|ck| otherwise

.

(10)

The cluster centres are hence determined as a
weighted average of the samples belonging to the
lower approximation and the boundary area,
where the weights ωl and ωb define the relative
importance of the two sets.

Step 3. For each data sample, the closest cluster centre is
determined and the sample is assigned to its
upper approximation. Then, all clusters that are at
most ε further away than the closest cluster are
determined. If such clusters exist, the sample will
also be assigned to their upper approximations. If
no such cluster exists, the sample is assigned also
to the lower approximation of the closest cluster.

Step 4. If the algorithm has converged (i.e. if the cluster
centres do not change any more, or after a pre-set
number of iterations), terminate; otherwise, go to
step 2.

Strictly speaking, this algorithm does not implement all
properties set out for rough sets [21] and hence belongs
to the reduced interpretation of rough sets as lower and
upper approximations of data [22].
Peters [23] pointed out some potential pitfalls of the

algorithm in terms of objective function and numerical
stability and suggested some improvements to overcome
these. Equation 10 is revised to

mk = ωl
∑
xi∈ck

xi
|ck| + ωu

∑
xi∈ck

xi
|ck| , (11)

with ωl + ωu = 1, i.e. as a convex combination of lower
and upper approximation means. In order to overcome
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the possibility of situations with empty lower approxima-
tions, the calculation of cluster centres can be modified so
that for empty lower approximations, the cluster centre is
calculated as the average of samples in the upper approxi-
mation or by ensuring that each lower approximation has
at least one member.
In [24], an RCM-based colour quantisation is intro-

duced which follows the clustering approach from [20]
and [23], assigning the data sample closest to the cluster
centre to its lower approximation, though with a differ-
ent initialisation approach where rather than randomly
assigning samples to clusters, random cluster centres are
generated first and then the algorithm proceeds with steps
3, 2, and 4 (i.e., steps 2 and 3 reversed) in order to derive a
colour palette.

2.2.4 Fuzzy-rough c-means
Fuzzy-rough c-means (FRCM) clustering [25] utilises, in
addition to the fuzziness of fuzzy c-means, concepts
of rough set theory to provide an effective clustering
algorithm that can also be adapted for colour quantisation
[26]. In particular, as in rough c-means, each cluster is
represented by a lower and an upper approximation. How-
ever, while the lower approximation is defined as crisp, the
boundary area is fuzzy. While the aim is to minimise the
same error function E as in Equation 7, memberships are
defined as

μij =

⎧⎪⎪⎨
⎪⎪⎩

1 ∀xi ∈ cj
1∑C

l=1

( ||xi−mj||
||xi−ml||)2/(α−1)

)∀xi ∈ cbj
. (12)

Calculation of cluster centres mj remains as given in
Equation 9, while lower and upper approximations are
defined as detailed in Section 2.2.3 for rough c-means.
The difference between fuzzy c-means and fuzzy-rough c-
means is hence that the membership values in the lower
approximation are 1 (i.e. crisp), while those in the bound-
ary region are fuzzy memberships. In other words, fuzzy-
rough c-means first partitions the data into two classes:
lower approximation and boundary area, and only those
points in the boundary region are fuzzified. This in turn
leads to faster convergence when compared to FCM [25].
In contrast to rough c-means, samples in the boundary
region are not all treated equally but are rather assigned
membership values depending on their distance to the
cluster centroids. In addition, there is no need to specify
weights for the calculation for cluster centroids.

2.3 Colour quantisation performance
In order to evaluate the various colour quantisation algo-
rithms, we performed a set of experiments on a set of
six test images. These images, Lenna, Peppers, Mandrill,

Sailboat, Airplane, and Pool, are commonly used in the
colour quantisation literature and hence present a good
test bed for evaluation purposes. We applied all seven
discussed algorithms, that is SWASA, FCM, RSFCM,
EnFCM, AMSFCM, RCM, and FRCM, to all images to
generate quantised images with a palette of 16 colours.
For the simulated annealing algorithm, a population-

based version of the SWASA algorithm with a population
size of 10 was employed. The start temperature T0 was
chosen to be 20, and the cooling coefficient α was set
to 0.9. The parameters s0 and β were set to 100 and
5.3, respectively. The temperature was kept constant for
over 20 iterations, and the maximum number of iterations
was set to 10,000. For the rough c-means approach, we
adopted the parameters ωl = 0.7, ωu = 0.3, and τ =
0.001 (image pixel values are normalised to [ 0; 3]3). For
the fuzzy c-means and fuzzy rough c-means algorithms,
the fuzziness exponent α was set to 1.2.
To put the results we obtained into context, we also

implemented four popular colour quantisation algorithms
(which are often integrated in typical image processing
software) to generate corresponding quantised images
with palette size 16. The algorithms we tested were as
follows:

• Popularity algorithm [2]: Following a uniform
quantisation to 5 bits per channel, the N colours that
are represented most often form the colour palette.

• Median cut quantisation [2]: An iterative algorithm
that repeatedly splits (by a plane through the median
point) colour cells into sub-cells.

• Octree quantisation [3]: The colour space is
represented as an octree where sub-branches are
successively merged to form the palette.

• Neuquant [4]: A one-dimensional self-organising
Kohonen neural network is applied to generate the
colour map.

For all algorithms, pixels in the quantised images were
assigned to their nearest neighbours in the colour palette
to provide the best possible image quality.
The obtained results are listed in Table 1, expressed in

terms of average (over 10 runs of the algorithms) peak-
signal-to-noise ratio (PSNR) defined as

PSNR(O,Q) = 10 log10
2552

MSE(O,Q)
, (13)

with MSE(O,Q) calculated as in Equation 1. A higher
PSNR hence indicates better image quality.
As can be seen from Table 1, all the soft computing

algorithms provide very good results and clearly outper-
form standard colour quantisation algorithms. The results
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Table 1 Quantisation results, given in terms of PSNR (dB) with the best result for each image in boldface

Lenna Peppers Mandrill Sailboat Pool Airplane average

Popularity algorithm [2] 22.24 18.56 18.00 8.73 19.87 15.91 17.22

Median cut [2] 23.79 24.10 21.52 22.01 24.57 24.32 23.39

Octree [3] 27.45 25.80 24.21 26.04 29.39 28.77 26.94

Neuquant [4] 27.82 26.04 24.59 26.81 27.08 28.24 26.73

SWASA [8] 27.79 26.16 24.46 26.69 29.84 29.43 27.40

FCM [14] 28.81 26.77 25.03 27.25 31.03 30.23 28.17

RSFCM [14] 28.70 26.70 24.98 27.32 30.81 30.73 28.20

EnFCM [14] 28.61 26.74 24.87 27.22 31.11 29.92 28.08

AMSFCM [14] 28.63 26.71 24.66 27.24 30.87 29.96 28.01

RCM [24] 28.63 26.67 25.02 27.62 29.40 30.50 27.98

FRCM [26] 28.44 26.80 25.03 27.47 31.20 31.24 28.73

Figure 2 Results of colour quantisation algorithms applied to the Pool image (top row). Shown are the quantised images after applying (from
left to right, top to bottom) popularity, median cut, octree, Neuquant, rough c-means, and fuzzy-rough c-means algorithms.
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of the different fuzzy clustering approaches are fairly simi-
lar which suggests that the computationally more efficient
versions (RSFCM, EnFCM, AMSFCM) can be employed
without sacrificing image quality. Also, the rough set
approach gives similar performance and the presented
rough colour quantisation approach hence adds to the
applications of rough sets in the field of imaging and
vision. The best performance is achieved by the com-
bined fuzzy-rough c-means approach, which gives the
best image quality for four of the six images and overall
provides a PSNR improvement of more than 0.5 compared
to the next ranked algorithm.
Figure 2 shows the Pool image together with the images

colour quantised by the popularity, median cut, octree,
and Neuquant algorithms as well as two of the soft-
computing based techniques, namely the rough c-means
and fuzzy-rough c-means approaches. It is clear that the
popularity algorithm performs poorly on this image and
assigns virtually all of the colours in the palette to green
and achromatic colours. Median cut is better but still
provides a fairly poor colour reproduction; most of the
colours in the quantised image are fairly different from the
original. The same holds true for the images produced by
Neuquant. Here, the most obvious artefact is the absence
of an appropriate red colour in the colour palette. A far
better result is achieved by the octree algorithm, although
here also, the red is not very accurate and the colour of
the cue is greenish instead of brown. Clearly better image
quality is maintained by applying the rough c-means algo-
rithm. Although the colour palette has only 16 entries,
all colours of the original image are accurately presented
including the red ball and the colour of the billiard cue.
A further improvement is achieved by the fuzzy-rough c-
means colour quantisation technique which achieves even
better colour reproduction, e.g. in the reflections on the
black ball.

2.4 Hybrid optimisation-based colour quantisation
Figure 3 shows a typical run of the simulated anneal-
ing optimisation method applied to colour quantisation
as explained in Section 2.1. The solid line represents the
average quantisation error over time (iterations) while the
dashed line represents the best solution of each iteration.
As can be seen in Figure 3, there is always a varia-

tion in error values within the population which indicates
that although simulated annealing is able to find good
solutions (as was confirmed in Section 2.3), i.e. solu-
tions from within the region around the global optimum,
it rarely exploits that region completely. Therefore, in
[27], SWASA was combined with a standard c-means
clustering algorithm [28] to provide a stacked hybrid
optimisation method. C-means clustering is guaranteed
to converge towards the local clustering minimum by
iteratively carrying out the following two steps:

1

Figure 3 Typical run of SA optimisation for colour quantisation
[27].

• Each input vector is mapped to its closest codeword
by a nearest neighbour search.

• The input vectors assigned in each class (i.e. for each
codeword) are represented by the centroid of the
vectors in that class.

In this hybridised algorithm, the SA component is hence
responsible for identifying the region in the search space
that will contain the global optimum while the c-means
component will then descend into the minimum present
in that region.
To show the effect of this hybridisation, we ran the com-

bined algorithm on the same image dataset that was used
in Section 2.3, and show the results, again in terms of
PSNR, in Table 2. As can be seen from there, the further
adjustment through application of a subsequent cluster-
ing step does indeed improve image quality significantly,
resulting in a colour quantisation algorithm that also
outperforms all algorithms from Table 1.

2.5 Image quality metric-based colour quantisation
Although many colour quantisation algorithms have
been proposed, virtually all of them define the goal of
quantisation as that of finding a palette that minimises the
MSE, given in Equation 1, of the resulting image. It is how-
ever well known that metrics such as MSE and PSNR do
not correspond very well to how the human visual sys-
tem operates and how humans judge differences between
images. An image with a higher MSE does not necessar-
ily have perceptually lower image quality; similarly, two
images that are perceived with equal quality are likely to
have different values in terms of MSE or PSNR.
Furthermore, RGB, the device space, is poorly related

to the human visual system. Colour differences calculated
as Euclidean distances between RGB co-ordinates do not
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Table 2 Quantisation results, given in terms of PSNR (dB), of the hybrid SA algorithm

Lenna Peppers Mandrill Sailboat Pool Airplane average

SWASA [8] 27.79 26.16 24.46 26.69 29.84 29.43 27.40

Hybrid SWASA [27] 29.70 27.17 25.37 27.95 31.57 32.94 28.97

correspond well to how humans perceive colour differ-
ences. Much research has been done on deriving colour
spaces such as CIELAB and CIELUV that are designed
to be perceptually uniform, i.e. where Euclidean distances
correspond to perceived distances in all regions of the
colour space [29]. Uniform colour spaces have been used
in colour quantisation algorithms and have been shown to
perform better compared to algorithms based on the RGB
space [30].
However, the application of a perceptual uniform colour

space alone does not guarantee improved image quality.
Uniform colour spaces were developed for and hence only
accurately model the colour differences between large
patches of uniformly coloured samples. Real images on the
other hand seldomly comprise such large areas. Therefore,
it is crucial to also take into account the spatial charac-
teristics of images when developing an appropriate image
quality metric [31].
S-CIELAB (for spatial CIELAB [32]) first converts the

RGB image into an opponent colour space. The individual
channels are then convolved with a kernel whose shape is
estimated from the visual spatial sensitivity to that chan-
nel. This convolution simulates the blurring that occurs
in the human visual system. Both the opponent colour
space and the convolution kernels were derived following
a series of experiments on the pattern-colour separabil-
ity of the visual system [33]. After the filtering, the image
is converted to XYZ and then to CIELAB to provide spa-
tial CIELAB co-ordinates. The difference between two
images can then be expressed as the average colour dif-
ference, expressed in terms of �E units, between the two
S-CIELAB representation, where the colour difference is
usually calculated as the Euclidean distance between two
colours.
In contrast to colour spaces such as CIELAB, for which

colour quantisation can be easily adapted [30] by con-
verting the RGB image to the new colour space and then

applying the quantisation algorithm, this is not possible
for S-CIELAB. The reason is that S-CIELAB does not sim-
ply provide a new colour space but takes into account
the spatial interaction between neighbouring pixels. It is
therefore image dependent, and identical S-CIELAB co-
ordinates in two different images can originate from fairly
different original RGB values. In the context of colour
quantisation, this means that converting an image to S-
CIELAB and performing the quantisation there will not
lead to an optimal palette. Rather, the palette has to be
found in the palette search space, and then the image
quality is calculated based on the quantised image. This
is possible using optimisation techniques such as the
SWASA algorithm explained in Section 2.1 to develop an
image metric-based colour quantisation algorithm [34].
The objective function to be minimised here is defined
as the average �E between the original image O and the
image quantised using the colour palette.
That this leads indeed to improved performance is again

evaluated on the same image dataset as in Section 2.3. The
results are given in Table 3. From there, it is evident that
optimisation-based colour quantisation based on min-
imising MSE clearly outperforms conventional algorithms
also when expressed in terms of S-CIELAB image quality.
However, directly optimising with respect to this image
metric leads to a significant further improvement, reduc-
ing the average �E from 6.65 to 4.37.

3 Conclusions
In this paper, we have given an overview of recent
soft computing-based colour quantisation approaches and
have shown that this family of algorithms work very well,
resulting in quantised images with high image quality.
In particular, we have discussed the use of optimisa-
tion algorithms such as simulated annealing and of soft
computing-based clustering algorithms including fuzzy
c-means, rough c-means, and combined fuzzy-rough

Table 3 Quantisation results, given in terms of�ES−CIELAB

Lenna Peppers Mandrill Sailboat Pool Airplane average

Popularity algorithm [2] 11.92 21.81 20.54 41.03 9.31 15.59 20.03

Median cut [2] 10.34 8.89 10.66 10.10 7.73 7.05 9.13

Octree [3] 7.20 7.92 9.36 6.66 4.85 3.57 6.59

Neuquant [4] 7.13 7.84 9.79 5.50 5.65 4.21 6.68

SWASA/MSE [8] 6.78 7.77 9.28 6.48 5.69 3.87 6.65

SWASA/S-CIELAB [34] 4.57 6.33 6.27 3.50 3.06 2.47 4.37
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c-means approaches in this context. All techniques were
compared against standard colour quantisation meth-
ods and were shown to clearly outperform them. A
hybrid colour quantisation algorithm, combining simu-
lated annealing with a c-means clustering algorithm, was
shown to lead to improved performance, while by mod-
ifying the objective function, optimisation-based colour
quantisation algorithms can be tuned with respect to a
particular image quality metric. Although the compiled
results convincingly demonstrate that soft computing-
based methods are well suited for the colour quantisation
problem, it should also be noted that they typically have
higher demands in terms of computational complexity
and might hence be suitable only for situations where the
quantisation stage is not time critical.
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