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Abstract

In this paper, we determine the eigenvalue intervals of the parameters A1, Ay, ..., A
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1 Introduction

The study of dynamic equations on time scales goes back to Stefan Hilger [1]. Theoret-
ically, this new theory has not only unify continuous and discrete equations, but it has
also exhibited much more complicated dynamics on time scales. Moreover, the study of
dynamic equations on time scales has led to several important applications, for example,
insect population models, biology, neural networks, heat transfer, and epidemic models;
see [2-7].

There has been much interest shown in obtaining optimal eigenvalue intervals for the
existence of positive solutions of the boundary value problems on time scales, often using
Guo-Krasnosel’skii fixed point theorem. To mention a few papers along these lines, see [8—
12]. On the other hand, there is not much work concerning the eigenvalues for iterative
system of nonlinear boundary value problems on time scales; see [13, 14].

In [15], Ma and Thompson are concerned with determining values A, by using the Guo-
Krasnosel’skii fixed point theorem for which there exist positive solutions of the m-point
boundary value problem

p@®uY —gt)yu+rf(t,u)=0, 0<t<l,
au(0) — bp(0)u/(0) = X" 2 aul&),
cu() + dp()u (1) = Y772 Baul&).

In [13], Benchohra et al. studied the eigenvalues for iterative system of nonlinear bound-
ary value problems on time scales,

Ul (0 + hai()fi(uin (0(0)) =0, 1<i<ntel0,1]lr,
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un(t) =m(t), tel01]r,
satisfying the boundary conditions,
1#;(0)=0= u,-(02(1)), 1<i<nm

The method involves application of Guo-Krasnosel’skii fixed point theorem for operators
on a cone in a Banach space.

In [14], Prasad et al. studied the eigenvalues for iterative system of nonlinear boundary
value problems on time scales,

Yol 0 + i) (i) =0, 1<i<ntelt,tulr,

Yur1(8) =31(8),  t €[t tulT,
satisfying the m-point boundary conditions,
)’i(tl) = 0)

m-1
ayi(o(tm) + By (o tm) =Y ¥ (W), 1<i<n.
k=2

They used the Guo-Krasnosel’skii fixed point theorem.
Motivated by the above results, in this study, we are concerned with determining the
eigenvalue intervals of A;, 1 < i < n, for which there exist positive solutions for the iterative

system of nonlinear m-point boundary value problems on time scales,

w0+ higi(@Ofi(win @) = 0, te[0p1<i<n, a1

up1 () = wm(8), t€0,1]r, '
satisfying the m-point boundary conditions,

au;(0) — bu;’ (0) = Y12 ajui(§y), w2

cuwi(1) +du; (1) = Y7 Bui(&), 1<i<n, '

where T is a time scale, 0,1 € T, [0,1]7 =[0,1] N'T.
Throughout this paper we assume that following conditions hold:
(C1) a,b,c,d € [0,00) with ac + ad + bc > 0; a;, B € [0,00), § € (0, )y for 1 <j <m -2,
(C2) f;:R* — R" is continuous, for 1 <i <,
(C3) g; € C([0,1]1,R*) and g; does not vanish identically on any closed subinterval of
[0,1]T, for1 <i<mn,

(C4) each of fip := lim,_, o+ fitx) and fioo = limy, o fi®) < i < m, exists as positive real

X X

number.
In fact, our results are also new when T = R (the differential case) and T = Z (the discrete
case). Therefore, the results can be considered as a contribution to this field.
This paper is organized as follows. In Section 2, we construct the Green’s function for the
homogeneous problem corresponding to (1.1)-(1.2) and estimate bounds for the Green’s
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function. In Section 3, we determine the eigenvalue intervals for which there exist positive
solutions of the boundary value problem (1.1)-(1.2) by using the Guo-Krasnosel'skii fixed
point theorem for operators on a cone in a Banach space. Finally, in Section 4, we give an

example to demonstrate our main results.

2 Preliminaries
We need the auxiliary lemmas that will be used to prove our main results.
We define B = C[0, 1], which is a Banach space with the norm

lull = sup [u(®)].
te[0,1]T

Let /1 € C[0,1], then we consider the following boundary value problem:

—ut™ () = h(t), te[0,1]r,
aul( ) - bulA(O) = 27112 Ui (E}) (21)
cui (1) + d”l Z/m12 Bjm 5})

Denote by 6 and ¢, the solutions of the corresponding homogeneous equation
_ul (t) 0, te [O, 1]']1’; (2.2)

under the initial conditions

6(0) = b, 02(0) = a,

o(1) =d, 02 (@) = —c. (2.3)

Using the initial conditions (2.3), we can deduce from equation (2.2) for 6 and ¢ the fol-

lowing equations:

6(t) = b + at, o) =d+c(1-1t). (2.4)
Set
| -Zm za,(b rag) p-37 2ay(d + o1 - &) 05
p— Y2 Bylb + at) Z "2 B(d + c(1- )
and
0 :=ad + ac + bc. (2.6)

Lemma 2.1 Let (C1) hold. Assume that
(C5) A #0.
Ifu; € C[0,1] is a solution of the equation

1
u(t) = / G(t,s)h(s)As + A(h) (b + at) + B(h)(d + c(1 - 1)), (2.7)
0
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where
Glt.s) = { (b+ac()d+c1-1), o)<t 08)
Bb+at)d+cl-0(s)), t<s,
Ay oo L [ZF @ o G IMe)As - T ayld + 1) (29)
A Y2 B o GE o)hs)as =Y Bild +c(1- &)
and
B Z,mlz;‘l(b + ag)) 1 I Q; fo G(&j,s)h(s)As (2.10)
:0 Z/ml ﬁ](b-"ag]) }: ,31 fo G(Sp h(S)AS

then u, is a solution of the boundary value problem (2.1).

Proof Let u; satisfy the integral equation (2.7), then we have

1
w(t) = / G(t,s)h(s)As + A(h)(b + at) + B(h)(d + c(1 - 1)),
0

ie.,
= | t L +alo(®) (@ vt~ D)o
+ / 1 %(b v at)(d+c(1-0(9)h(s)As
+ A(h)(b +at) + B(h)(d + c(1 - 1)),
U’ (t) = -/Ot %(b +a(o(s)))his)As
" /t 1 %(m c(1-0(s)))hls) As
+A(h)a — B(h)c.
Hence
WEA(p) = %(—c(b+a(o(t))) a(d+ c(1- o (0)))h@)
%( (ad + ac + bo) h(t) = —h(?)
—u;®(t) = ht).
Since

11(0) = /1 %(d + c(l — cr(s)))h(s)As +A(h)b + B(h)(d + ¢),
0

A ‘a
uy (0) = /0 ;(d + c(l - o(s)))h(s)As +A(h)a — B(h)c,

Page 4 of 17
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we have

auy (0) - buy (0) = B(h)p

m-2

+ B(h)(d +c(1- Sj))].
Since
Ld
u(1) = /(; ; (b + a(a(s)))h(s)As +A(h)(b + a) + B(h)d,
A Ye
uy (1) = _/0 ; (b + a(a (s)))h(s)AS +A(h)a — B(h)c,
we have

cur(1) + dul (1) = A(h)p

Zﬂ,[ / (& 5)h(s) s + AU)b + a§)

+ B(h)(d +c(1- g,))}.
From (2.11) and (2.12), we get

=25 Ol/(b +ag)JA(h) + [p — 1 og(d + (1 - §))1B(h)
= Zl Lo fo G(&,s)h(s)As,

Z 2 Bi(b+ag)A(h) + [- Y0 Bid + c(1 - §)))B(h)
B fo G(&,8)h(s)As,

which implies that A(/) and B(k) satisfy (2.9) and (2.10), respectively.
Lemma 2.2 Let (C1) hold. Assume

(C6) A<O,p- 21"52 Bi(b+at)>0,a- Z}ngz ;> 0.
Then for u; € C[0,1] with h > 0, the solution u, of the problem (2.1) satisfies

w(t) >0 fortel0,1]r.

Proof Itisan immediate subsequence of the facts that G > 0 on [0, 1]t x [0, 1]y and A (%)

0, B(h) > 0.

Lemma 2.3 Let (C1) and (C6) hold. Assume
(C7) =Y 12 B <.

Then the solution u; € C[0,1] of the problem (2.1) satisfies ulA(t) >0 for t € [0,1]r.

(2.11)

(2.12)

=
O

Page 5 of 17
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Proof Assume that the inequality uf (t) < 0 holds. Since uf (¢) is nonincreasing on [0, 1],

one can verify that
m ) <u (@), te(01r

From the boundary conditions of the problem (2.1), we have

L)+ 221 Bann(E) < (1) < 0.

The last inequality yields
m=2
—em (1) + Y (&) <0.

i=1

Therefore, we obtain

m-2 m-2
Y Ban() <Y (&) < an(l),
i=1 i=1

m-2
(c - Zﬁ,)ul(l) >0
i=1
According to Lemma 2.2, we have u; (1) > 0. So, c— Y77 f; > 0. However, this contradicts

to condition (C7). Consequently, uf (t) > 0 for t € [0,1]. O

Lemma 2.4 Let (C1) and h > 0 hold. Let . € (0,1/2)1 be a constant. Then the unique
solution uy of the problem (2.1) satisfies

min i (¢) > yllwull,
te[pwl-pl

where |[u1|| = sup,¢ (o), #1(¢) and

b d
y :=min * au’ e . (2.13)
b+a d+c

Proof We have from (2.8) that
0<G(t,s) <G(o(s),s), t€[0,1], (2.14)

which implies

1
w(t) < / G(o(s),s)h(s)As + A(h)(b + a) + B(h)(d + c) (2.15)
0
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for all ¢ € [0,1]1. Applying (2.8), we have for £ € [u,1 — ],

d —
G(t,S) — d+c+(i(,lo-2))r 0 S O'(S) E t S 1;
Glo(s)s) |2y,  O0<t<s<l
d+cp < <t<1_
> li;c#, O_O'(S)_t_l 122] >y, (216)
g MWSE<s=<l
where
C[b+an d+cu
:=miny ——, —— ¢.
v b+a d+c

Thus for t € [u,1 - ],
1
u(t) = / G(t,s)h(s)As + A(h)(b + at) + B(h)(d +c(1 - t))
0
1
>y </ G(U(s),s)h(s)As +A(h)(b + a) + Bh)(d + c)) > y|wm]-
0

So, the proof is completed. g

We note that an n-tuple (u1(t), ua(t), ..., u,(t)) is a solution of the boundary value prob-
lem (1.1)-(1.2) if and only if

1 1
n(®) = 2 /0 Gltss)ar (1) 1<x2 /0 Glst,52)3a(52) -

S (xn /0 1 G(sn1,sn)qn(snm(u1(sn))Asn) e Asz) As;
+ AQuqi (Vi (120))) (b + at) + B (fs (ua (1)) (d + c1 =), te[0,1]r,
ui(t) = A; /0 1 G(t,9)qi(s)fi (uis1(5)) As + A(Aigqi ()f (ina (1)) ) (b + at)
+B(higi(Vfi(uin () (d +c(l 1)), 2<i<nte(01lr
and
up(t) =m(t), te€[0,1]r,
where

A()\.lql()ﬁ(uul()))

1S b fy G&9ais)fiwins)As p— Y ayd + o1 - §)
AT B [y GlE )ais)fi(wia () As = Y0 Bi(d + (1 - )

B(M%(')fi(uiu(')))

1| - b rag) S e fy GE9)ais)fi(uin () As
Alp- 2752 B;(b + af)) Z,m:IZ Biki fol G(&},5)q:(s)fi(uis1(s)) As

’
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To determine the eigenvalue intervals of the boundary value problem (1.1)-(1.2), we will

use the following Guo-Krasnosel’skii fixed point theorem [16].

Theorem 2.1 [16] Let B be a Banach space, and let P C B be a cone in B. Assume Q2 and
Q, are open subsets of B with 0 € Q1 and Q1 C Q,, and let

T:PN(Q\Q2)—P

be a completely continuous operator such that either
i) 1Tull < lull, u e PNoy, and || Tull > |lull, u € PN 3y, or
(i) ||Tull = lull, u e PN 0oy, and ||Tul| < ||u|l, u € P NIRQ;.
Then T has a fixed point in P N (Qy \ Q).

3 Positive solutions in a cone

In this section, we establish criteria to determine the eigenvalue intervals for which the
boundary value problem (1.1)-(1.2) has at least one positive solution in a cone. We con-
struct a cone P C B by

P= {u €B:u(t)>00n[0,1]rand min u(f) > )/||u||},
te[pwl-plr

where y is given in (2.13).
Now, we define an integral operator T': P — B, for u; € P, by

1

1
Tu, () =)»1/ G(t, s)q(s)fi <)»2/ G(s1,82)q2(s2) - - -
0 0

1
fn—l (An/(; G(sn—l:Sn)qn(sn)f;t(ul(sn))Asn) e A‘SZ)ASI

+ A(Mq (A (u2(1))) (b + at) + B(aqr ()i (u2(1)) ) (d + (1 - 1)). (3.1)

Notice from (C1)-(C6) and Lemma 2.2 that, for u; € P, Tu;(t) > 0 on £ € [0,1]T. Also, we
have from (2.8), that

1

1
Tuy(t) < ?»1/ G(U(Sl):sl)611(51)f1()vzfO G(s1,52)q2(s2) - -
0

1

Jna ()‘-n / G(snl:Sn)qn(Sn)ﬁd(ul(Sn))Asn) ~~-ASz)AS1
0

+ A(Mq(Vfi (42())) (b + @) + B(aqi (Vi (u2()))(d + ¢),

so that

1

1
| T | S)»l/o G(G(Sl),Sl)ql(Sl)ﬁ()vzfo G(s1,52)q2(s2) - - -

1
fn—l <)\‘Vl\/0\ G(Sn—l: Sn)qn(sn) n(ul(sn))ASn> e ASZ) A51
+ A1 (Vfi (w2 () (B + @) + BOaqr (s (ua()) ) (d + ©). (3:2)
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Next, if #; € P, we have from Lemma 2.4 and (3.2) that

min  Tuy(¢)
te[pl-pl

1 1
= min {/\1/0 G(t,sl)ql(sl)ﬁ(/b/o G(s1,82)q2(s2) - - -

te[w,l-pl

1

Jn1 (An fo G(8-1,81)qn(5n) n(ul(sn))Asn> ~~~A32)AS1

+ A(ads (i (120)) (b + at) + Blaas (Vi (1209)) (d + (1 - t))}
1 1
ZV(M/O G(o (s1),51)q1(s1) 1()»2/(; G(s1,52)q2(s2) - - -

1

,}Cnl()\n/ G(Snlrsn)q;'l(sn)f;q(ul(sn))Asn> “‘A52>A51

0

A (i (120)) (b + @) + Bas (Vi (120))) (d + c>)
> vl T,

Hence, Tu; € P and T : P — 'P. In addition, the operator T is completely continuous by
an application of the Arzela-Ascoli theorem.

Now, we investigate suitable fixed points of T belonging to the cone P. For convenience
we introduce the following notations.

Let

1-n -1
M, = max { [)/2/ G(U(S),S)%(S)Asﬁoo] }
m

1<i<n

and

1 -1
M, = min { |:(/0 G(o(s),s)qi(s)As +A(qi(-))(b +a)+ B(qi(~))(d + c)>fioi| }

1<i<nm

Theorem 3.1 Suppose conditions (C1)-(C7) are satisfied. Then, for each ’i, s, ..., 1, sat-
isfying

Mi<hi<My, 1<i<mn, (3.3)

there exists an n-tuple (u1, Uy, ..., u,) satisfying (1.1)-(1.2) such that u;(t) > 0,1 <i<n, on
[01 I]T

Proof Let Ak, 1 <k <mn,beasin (3.3). Now, let € > 0 be chosen such that

1-u -1
max { |:y2/ G(a(s),5)qi(s) As(fico — e)i| } < min A
i

1<i<n 1<k<n

and

1 -1
max Ax < min {[(./o G(o(s),s)qi(s)As+A(qi('))(b+a)+B(q,'('))(d+c)> (fio +e)] }

1<k<n 1<i<n
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We investigate fixed points of the completely continuous operator 7 : P — P defined by
(3.1). Now, from the definitions of fj5, 1 < i < n, there exists an H; > 0 such that, for each
1<i<mn,
filx) < (fio +€)x, O0<x<H,.
Let u; € P with ||uy|| = H;. We have from (2.14) and the choice of ¢, for 0 <s,_; <1,
1
)\n/ G($1-1,81)qn(Sn)fn (ul(Sn))ASn
0
1
<hu / G(U(sn)v Sn)qn(sn) n(ul(sn))ASn
0

1
<o / G(0/(50), ) @n(5n) Foo + tr(5,) i
0

1
< )"n \/0 G(O’(S,,), Sn)qn(sn)ASn(an + 6)”MIH

< lwmll

<H,.
It follows in a similar manner from (2.14), for 0 <s,,_» <1, that
1 1
-1 / G($1-2,81-1)qn-1(Sn-1)fu1 <)Ln / G(Sn-1,52)qn(Su)fn (ul (Sn)) ASV[) Ay
0 0

1
< Aua f G (0 (51-1)sSn-1) Gn-1(8n-1) A1 (1,0 + €)1 |
0

< llmll = Hi.
Continuing with this bootstrapping argument, we have, for 0 <t <1,
1 1
M / G(t,s)qi(sift <12 / G(s1,82)g2(52) - - fu (w1 (50)) Ay - - - A32> Asy
0 0

1
< ?»1/ G(o (s1),51)q1(51) Asi(fio + €)Hi,
0

AMqr () (u2(9)))
3 M ,m12 o fo GEs)q(s)As  p— Z o a,(d+c(1—§j)) Hfl(uz)”
A Z‘:l ,ijo G(&,8)q1(s) As —Z,':1 Bi(d +c(1-§)))

< MA(q1() JAC
B(hai()fi (u2()))

_ Z;Zfz o;(b + a(§)) ]’"12 o fo G(&,9)qi(s)As

~Y TP Bbra) Y [y G s)qi(s)As
< MB(a0) A

M

i)
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so that, for 0 <t <1,
1
Tur(t) <M (f G(o (s1),51)q1(s1) Asi (fro + €)Hy
0
+A(q1()) i) | & + @) + B(q1 () | Ai(wa2) || (d + C)>
1
<M (/ G(o(s1),81)q1(s1) Asy
0

+A(q1()) @ +a) + B(q1())(d + C)) (fio + €)H;

=H =l
Hence, ||Tuy|| < Hy = ||u1]|. If we set
@ = {u € Blllul < Hi},
then
[Tl < llm ]l for uy € P N 0. (3.4)

Next, from the definitions of fi,, 1 < i < n, there exists H, > 0 such that, for each 1 <

i<m,

Let
H,
H, =maxi{2H;,— ;.
14
Let uy € P and ||u;|| = H,. Then, we have from Lemma 2.4
min ;1 (t) > yllm| > Ho.
te[pwl-pl

Consequently, from Lemma 2.4 and the choice of €, for 0 <s,_; <1, we have

1
)"n / G(Sn—b Sn)qn (Sn)fn (ul (Sn)) Asn
0

v

G o (Sn): Sn)qn (Sn)f;1 (M1 (Sn)) AS,,,

1-p
Yn

m

v

(
V)\n G(U(Sn)’sn)qn(sn)(ﬂtoo _E)MI(SVI)ASH

[
1
[
1-p
>y, / G(0/(52), ) @n(5) D50 oo — ) 11|
m

= |lm |l = H.
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It follows in a similar manner from Lemma 2.4 and the choice of ¢, for 0 <s,_, <1,
1 1
)"n—l / G(sn—2: sn—l)qn—l (Sn—l)f;'fz—l ()‘n / G(Sn—h Sn)qn (Sn) n (ul (Sn)) AS;«) Asn—l
0 0
1-p
> )/)\n—l / G(O (Sn—l)r Sn—l)qn—l(Sn—l)Asn—l(ﬁq—l,oo - G)HZ
"
1-n
> Vz)»n-l/ G (0 ($1-1)s $5-1) gn-1(Sn-1) A1 (fr-1,00 — €)Ha
In
> H,.
Again, using a bootstrapping argument, we have
1 1
n [ Gt <)Lz | 6saa) i o) 5, As2> As
0 0
= H2)
so that
Tuy(t) = Ho = |u1]|.
Hence, || Tuy|| > ||u1]]. So if we set
Q = {u e Blllu] < Hp},
then
I Teer || = |lug]]  for uy; € P NOK2,. (3.5)
Applying Theorem 2.1 to (3.4) and (3.5), we see that T has a fixed point u; € P N (2 \ Q1)

Therefore, setting u,,,1 = u1, we obtain a positive solution (i3, #, . .., u,) of (1.1)-(1.2) given
iteratively by

1
ui(t) = A /0 G(t, ) qr(s)fi (wrs1(8)) As + A (e (Wi (mrn (1)) ) (b + at)
+ B(Mgk Ve (i (D)) (d + A -1)), k=nn-1,...,1L
The proof is completed. O

For our next result, we define the positive numbers M3 and M, by

1-p -1
M3 = max { |:y2/ G(U(S)rs)qi(S)Asz’o] }
"

1<i<mn

and

1 -1
M, = min { [(-/0 G(cr(s),s)qi(s)As +A(qi(~))(b +a)+ B(qi(~))(d + c)>fioo] }

1<i<n

Page 12 of 17
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Theorem 3.2 Suppose conditions (C1)-(C7) are satisfied. Then, for each ri, 1, ..., 1, sat-
isfying

Mz <di<M,y, 1<i<mn, (36)

there exists an n-tuple (u1, Uy, ..., u,) satisfying (1.1)-(1.2) such that u;(t) > 0,1 <i<n, on
[01 I]T

Proof Let Ak, 1 <k <mn,beasin (3.6). Now, let € > 0 be chosen such that

1-p -1
max { |:y2/ G(a(s),s)qi(s)As(fio - e)] } < min At
I

1<i<n 1<k<n

and

-1
max Ax < min { [(/01 G(U(s),s)qi(s)As+A(qi(-))(b + a)B(qi(-))(d+ c)) (fioo +E)] }

1<k<n 1<i<m

Let T be the cone preserving, completely continuous operator that was defined by (3.1).
From the definition of fjy, 1 <i < n, there exists Hs > 0 such that, for each 1 <i < #,

fi(x) = (fo—€)x, 0<x<Hs.

Also, from the definition of fj, it follows that f3(0) = 0, 1 <i < n, and so there exist 0 <
K, <K, 1< <Ky < H; such that

Kia
= : 0,KilT,3<i<
J(t) = f()l G(G(S)’S)qi(S)As te [ ]'JT <i1<nmn
and
Hs
’ ) 0, K] .
S0 = fol G(o (s),5)ga(s)As t € [0,Kz]r

Choose u; € P with ||y = K,,. Then we have
1
)Wl/ G(Sn—l:Sn)qn(sn)fn(ul(sn))Asn
0

1
= )Lnfo G(G(Sn)rSn)Qn(Sn)fn(ul(sn))ASn

< fO1 G(G(sn)’ Sn)qn(sn)]<n_1ASn
B f()1 G(U(Sn)’sn)qn(sn)Asn

=K1.
Continuing with this bootstrapping argument, we get

1 1
Ao / G(Sl,S2)qz(Sz)fz<)\3 f G(SZ:SB)('IS(SS)"'fn(ul(sn))ASn"'ASS)ASZ
0 0

S]zlg.
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Then

1

1
Tuy(£) > My / G(t,sl)ql(sl)ﬁ<kz / G(SI:SZ)('IZ(SZ)"'fn(ul(sn))ASn'"ASZ)ASI
0 0

>y*M /1—# G(o(s1),1)q1(s1)(fio — €)llar | Asy
"
= [lul.
So, | Tup || = ||luz||. If we put
Qs = {ueB||ull <K},
then
[ Turll = llaa ]l for uy € P N 0<Qs. (3.7)
Since each f» is assumed to be a positive real number, it follows that f;, 1 <i <, is

unbounded at oco.
Foreachl <i<un,set

S () = sup fi(s).

0<s<x

Then, for each 1 <i <, f* is a nondecreasing real-valued function, f; <f*, and

fim £ )

x—>00 X

:ﬁoo,
Next, by definition of fi, 1 < i < n, there exists H, such that, for each 1 <i < #,
[ ®) < (fio + €)%, x> Hy.
It follows that there exists Hy > max{2Hs, H;} such that, for each 1 <i < ,
i) <f(Hs), 0<x<H,.
Choose u; € P with ||u;|| = Hs. Then, using the bootstrapping argument, we have
1
)»1/ G(t,s1)qi(s1)fi(hz -+ ) Asy
0
1
< [ Glos)nsf o)
0
1
< )»1/ G (0 (s1),51)q1(s1)fy"(Ha) Asy
0

1
<h / G0 (51),1) (1) As1 (fioo + € H
0
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So we have
1
Tuy(t) <M (/ G (0 (s1),1)q1(s1) As1(fioo + €)Ha
0
+ A1 () i) | (B + @) + B(qa () | fi(2) | (d + C))
1
<M (/ G (0 (s1),1)q1(s1) As1(fioo + €)Ha
0
+ A1) | @) | (B + @) + B(qa () | () || (d + C))

1
<M (/ G(o(s1),81)q1(s1) 281 + A1 () (b + @) + B(qa (1)) (d + C))
0

X (fioo + €)Hy

< Hy = |u]l.

Hence, || Tu || < |lu1]]. So, if we set

Q4= {u e B||lu| < H4},
then

[ Turll < llmll foru € P NOQy. (3.8)
Applying Theorem 2.1 to (3.7) and (3.8), we see that T has a fixed point z; € P N (24 \ 23),
which in turn with u,,; = u;, we obtain an n-tuple (43, uy, ..., u,) satisfying (1.1)-(1.2) for
the chosen values of A;, 1 <i < n. The proof is completed. O
4 An example

Example 4.1 In BVP (1.1)-(1.2), suppose that T =[0,1], n = m =3, q1(£) = q2(¢) = q3(¢) = 1,

a:c:Z,b:d:LfEl:%,,u:%,oq:%and,Bl:Si.e,,

u (6) + Afiuin(®) =0, te[0,1,1<i<3, @)

us(t) =m(t), t€[0,1], '
satisfying the following boundary conditions:

20 - (0= Jul) ws)

2u;(1) + u(1) = 3ui(3), 1=<i<3,

where

filug) = uy (1,000 - 9996"”2) (520 _ 5126—2'42),
folus) = u3(700 - 698¢723) (1,500 — 1,498¢2),

(1) = u1 (800 — 796¢71) (400 — 396¢7°1).
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It is easy to see that (C1)-(C7) are satisfied. By simple calculation, we get p = 8, 6(¢) = 1+ 2t,
p()=3-2t,A=-8,y=1,A1)=9,B(1) =3 and

Gt )_1 1+2s)(3-2t), s<t,
VI8 a+206-2s), t=<s

We obtain

S0 =8, fo =4, Jf30 =16,
fico =520,000, free =1,050,000, 300 = 320,000,

M; = max{0.0000039279869,0.00000194528875,0.000006382978723}
and
M; =min{0.00355450236,0.007109004739,0.001777251184}.

Applying Theorem 3.1, we get the optimal eigenvalue interval 0.000006382978723 < A; <
0.001777251184, i = 1,2, 3, for which the boundary value problem (4.1)-(4.2) has a positive

solution.
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