
Inc et al. Boundary Value Problems 2014, 2014:58
http://www.boundaryvalueproblems.com/content/2014/1/58

RESEARCH Open Access

An approximate solution of fractional cable
equation by homotopy analysis method
Mustafa Inc1, Ebru Cavlak1* and Mustafa Bayram2

*Correspondence:
ebrucavlak@hotmail.com.tr
1Department of Mathematics, Firat
University, Elazığ, 23119, Turkey
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Abstract
In this article, the homotopy analysis method (HAM) is applied to solve the fractional
cable equation by the Riemann-Liouville fractional partial derivative. This method
includes an auxiliary parameter h which provides a convenient way of adjusting and
controlling the convergence region of the series solution. In this study, approximate
solutions of the fractional cable equation are obtained by HAM. We also give a
convergence theorem for this equation. A suitable value for the auxiliary parameter h
is determined and results obtained are presented by tables and figures.
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1 Introduction
Fractional calculus has a very long history. However, this field lagged behind classic anal-
ysis. In fact, the basis of fractional calculus depended on classic analysis. Especially, in
recent years fractional differential equations were used in fluid mechanics, viscoelastic-
ity, biology, pharmacy, physics, chemistry and biochemistry, hydrology, medicine, finance,
and engineering. The fractional-order models are more useful than integer-order models
in many cases. Structures having fractional order are more useful in the studies that have
been done by developing technology.
However, the analytic solutions of most fractional differential equations generally can-

not be obtained. Thus, fractional differential equations have been solved by many approx-
imate methods. Examples are the homotopy perturbation method [, ], the method of
separating variables [], the iteration method [], the decomposition method [], and the
homotopy analysis method [].
In this study, we will consider the cable equation that has been used in modeling the

ion electro diffusion at the neurons. The cable equation occurred due to anomalous dif-
fusion and this equation is one of the most fundamental equations for modeling neuronal
dynamics []. The cable equation can be derived from the Nernst-Planck equation for
electrodiffusion in smooth homogeneous cylinders []. In recent years, studies were con-
ducted on various biological and physical systems. In this equation, the diffusion rate of
species cannot be characterized by the single parameter of the diffusion constant []. The
anomalous diffusion is characterized by a scaling parameter γ as well as the diffusion con-
stantD and themean square displacement of diffusing species 〈r(t)〉 scales as a nonlinear
power law in time, i.e., 〈r(t)〉 ∼ tγ [–]. Henry et al. derived a fractional cable equa-
tion from the fractional Nernst-Planck equations to model anomalous electrodiffusion of
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ions in spiny dentrites []. They subsequently found a fractional cable equation by treating
the neuron and its membrane as two separate materials governed by separate fractional
Nernst-Planck equations. As a result, the fractional cable equation includes two Riemann-
Liouville fractional derivatives.
Consider the following fractional cable equation:

∂u(x, t)
∂t

= D–γ
t

(
K

∂u(x, t)
∂x

)
–μ

D
–γ
t u(x, t) + f (x, t), (.)

u(x, ) = g(x),  ≤ x ≤ L, (.)

u(, t) = ϕ(t), u(L, t) = ψ(t),  ≤ t ≤ T , (.)

where  < γ,γ < , K >  and μ
 are constants, and D–γ

t u(x, t) is the Riemann-Liouville
fractional partial derivative of order  – γ [].
In the literature, there are few treatments of approximate solutions of the fractional cable

equation in terms of (.). Equation (.) has been solved by implicit numerical methods
(INM) [], the implicit compact difference scheme (ICFDS) [], and explicit numerical
methods [].
Here, we will use theHAM, which is an approximate solution to solve this equation. The

HAM method was developed in  by Liao in []. This method has been successfully
applied by many authors [–]. The HAM contains the auxiliary parameter h which
provides us with a simple way to adjust and control the convergence region of solution
series for large or small values of x and t.

2 Preliminaries and notations
We give some basic definitions and properties of the fractional calculus theory, which are
used further in this paper.

Definition . The Euler Gamma function �(z) is defined by the so-called Euler integral
of the second kind,

�(z) =
∫ ∞


tz–e–t dt

(
R(z) > 

)
, (.)

where tz– = e(z–) log t . This integral is convergent for all complex z /∈ C [].

Definition . The Riemann-Liouville fractional integral operator of order α ≥  of a
function f ∈ Cμ, μ ≥ –, is defined as

D–α
t u(x, t) =


�(α)

∫ t


(t – τ )α–u(x, τ )dτ , α > , t > , (.)

and properties of the operator D–α can be found in [, ]. Also, some of properties of
operator D–α are as follows:

(i) D–α
t f (t) = f (t),

(ii) D–α
x

(
xγ

)
=

�(γ + )
�(α + γ + )

xα+γ ,
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D–α
t

(
tγ

)
=

�(γ + )
�(α + γ + )

tα+γ ,

(iii) D–α
t D–β

t f (t) =D–(α+β)
t f (t),

(iv) D–α
t D–β

t f (t) =D–β
t D–α

t f (t).

3 Homotopy analysis method
We consider the following differential equation:

N
[
u(x, t)

]
= , (.)

where N is a nonlinear differential operator, x and t denote independent variable; u(x, t)
is an unknown function. By means of the HAM, one first constructs a zeroth-order defor-
mation equation

( – q)L
[
φ(x, t;q) – u(x, t)

]
= qhH(t)N

[
φ(x, t;q)

]
, (.)

where q ∈ [, ] is the embedding parameter, h 	=  is a non-zero auxiliary parameter,
H(t) 	=  is an auxiliary function, L is an auxiliary linear operator, u(x, t) is an initial guess
of u(x, t), and φ(x, t;q) is an unknown function. It is important that one has great freedom
to choose auxiliary things in the HAM. Obviously, when q =  and q = , we have

φ(x, t; ) = u(x, t), φ(x, t; ) = u(x, t), (.)

respectively. The solution φ(x, t;q) varies from the initial guess u(x, t) to the solution
u(x, t). Expanding φ(x, t;q) in a Taylor series about the embedding parameter, we have

φ(x, t;q) = u(x, t) +
∞∑
m=

um(x, t)qm, (.)

where

um(x, t) =

m!

∂mφ(x, t;q)
∂qm

∣∣∣
q=

, m = , , , . . . . (.)

The convergence of the series (.) depends upon the auxiliary parameter h. If it is con-
vergent at q = , one has

u(x, t) = u(x, t) +
∞∑
m=

um(x, t). (.)

According to (.), the governing equation can be deduced from the zeroth-order defor-
mation equation (.). Define the vector


un =
{
u(x, t),u(x, t),u(x, t), . . . ,un(x, t)

}
.

Differentiating (.) m times with respect to the embedding parameter q and then set-
ting q =  and finally dividing by m!, we have the so-called mth-order deformation equa-
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tion

L
[
um(x, t) – χmum–(x, t)

]
= hH(t)Rm(
um–,x; t), (.)

where

Rm(
um–,x; t) =


(m – )!
∂m–N[φ(x, t;q)]

∂qm–

∣∣∣
q=

, (.)

and

χm =

{
, m ≤ ,
, m > .

(.)

It should be emphasized that um(x, t) for m ≥  is governed by the nonlinear equation
(.) with the linear boundary conditions that come from the original problem, which can
easily be solved by symbolic computation software such as Maple and Mathematica.

4 Numerical applications and comparison
Consider the following initial and boundary problem of the fractional cable equation:

∂u(x, t)
∂t

= D–γ
t

∂u(x, t)
∂x

– D–γ
t u(x, t) + f (x, t), (.)

u(x, ) = ,  ≤ x≤ , (.)

u(, t) = , u(, t) = , ≤ t ≤ T , (.)

where f (x, t) = (t + πt+γ
�(+γ)

+ t+γ
�(+γ)

) sinπx. The exact solution of (.)-(.) is u(x, t) =
t sinπx [].
We choose the linear operator

L
[
φ(x, t;q)

]
=

∂

∂t
φ(x, t;q), (.)

with the property L[C] =  where C is a constant. We define a nonlinear operator by

N
[
φ(x, t,q)

]
=Dtφ(x, t,q) – D–γ

t
∂φ(x, t,q)

∂x
+ D–γ

t φ(x, t,q) – f (x, t). (.)

Therefore we establish the zeroth-order deformation equation

( – q)L
[
φ(x, t,q) – u(x, t)

]
= qhH(t)N

[
φ(x, t,q)

]
. (.)

In (.), q =  and q = , we can write

φ(x, t, ) = u(x, t), φ(x, t, ) = u(x, t). (.)

So we obtain themth-order deformation equation

L
[
um(x, t) – χmum–(x, t)

]
= hH(t)Rm

(
um–(x, t)
)
, (.)
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where

Rm
(
um–(x, t)

)
=

∂um–(x, t)
∂t

– D–γ
t

∂um–(x, t)
∂x

+ D–γ
t um–(x, t) – f (x, t) (.)

and

χm =

{
, m ≤ ,
, m > .

(.)

Now the solution of themth-order deformation equation (.) form ≥  becomes

um(x, t) = χmum–(x, t) + hH(t)L–
[
Rm

(
um–(x, t)
)]
. (.)

Instead of Rm(
um–),

um(x, t) = χmum–(x, t) + hH(t)
∫ t



(
∂um–(x, t)

∂t
– D–γ

t
∂um–(x, t)

∂x

+ D–γ
t um–(x, t) – f (x, t)

)
dt (.)

can be written. The auxiliary function H(t) can be chosen in the form H(t) = .
Rearrangement of (.) gives themth-order deformation equation

um(x, t) = χmum–(x, t) + h
∫ t



(
Rm

(–→u m–(x, t)
))
dt. (.)

Therefore, some of the symbolically computed components are found as

u(x, t) = ,

u(x, t) = ht sinπx
(
– –

πtγ
�( + γ)

–
tγ

�( + γ)

)
,

u(x, t) = u(x, t) + h
(
–
(
t sinπx

(

(
( + h)πtγ�( + γ)�( + γ)

× �( + γ + γ)�( + γ) + �( + γ)
(
hπtγ�( + γ)

× �( + γ + γ)�( + γ) + · · · ,

u(x, t) = u(x, t) + h
(
–t sinπx –



ht sinπx –

t+γ sinπx
�( + γ)

–
ht+γ sinπx

�( + γ)

–
hπt+γ+γ sinπx

�( + γ + γ)
–

hπt+γγ
�( + γ)( + γ)

+
( + γ)
( + γ)

πt+γ�(γ)
�( + γ)

sinπx

+
(
 + ht + ht + γ

)πt+γ sinπx
�( + γ)

+
t+γ sinπx

γ( + γ + γ 
 )

– · · · ,

...

and so on.
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As a result, themth-order approximation of u(x, t) is given by

∞∑
m=

um(x, t). (.)

Theorem. (ConvergenceTheorem) As long as the series u(x, t) = u(x, t)+
∑∞

m= um(x, t)
converges,where um(x, t) is governed by (.) under the definitions (.) and (.), it must
be a solution of the fractional cable equation (.).

Proof If the series

+∞∑
m=

um(x, t)

converges, then we can write

S(x, t) =
+∞∑
m=

um(x, t)

and we have

lim
n→∞un(x, t) = . (.)

Using definition (.), we get

h
∞∑
m=

Rm
(–→u m(x, t)

)
=

∞∑
m=

L
[
um(x, t) – χmum–(x, t)

]

= lim
n→∞

∞∑
m=

L
[
um(x, t) – χmum–(x, t)

]

= L

[
lim
n→∞

∞∑
m=

(
um(x, t) – χmum–(x, t)

)]

= L
[
lim
n→∞un(x, t)

]
= .

Since h 	= ,
∑∞

m= Rm(–→u m(x, t)) = .
From (.), we have

∞∑
m=

Rm
(–→u m(x, t)

)
=

∞∑
m=

[
Dtum–(x, t) – D–γ

t um–(x, t)xx + D–γ
t um–(x, t) – F(x, t)

]

=
∞∑
m=

Dtum(x, t) –
∞∑
m=

D–γ
t um(x, t)xx +

∞∑
m=

D–γ
t um(x, t) – F(x, t)

= Dt

∞∑
m=

um(x, t) – D–γ
t

∞∑
m=

um(x, t)xx + D–γ
t

∞∑
m=

um(x, t) – F(x, t)

= DtS(x, t) – D–γ
t S(x, t)xx + D–γ

t S(x, t) – F(x, t)

= .
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Table 1 Absolute errors obtained when γ1 = γ2 = 0.5, x = 10–4, and h = 1/108

t INM [9] ICFDS [10] HAM

0.1 4.7796× 10–5 3.4436× 10–6 3.14159× 10–8

0.2 2.1914× 10–4 6.8604× 10–6 6.28319× 10–8

0.3 5.2286× 10–4 9.8036× 10–6 9.42478× 10–8

0.4 9.6227× 10–4 1.2163× 10–5 1.25664× 10–7

0.5 1.5392× 10–3 1.3893× 10–5 1.5708× 10–7

0.6 2.2552× 10–3 1.4974× 10–5 1.88496× 10–7

0.7 3.1110× 10–3 1.5394× 10–5 2.19911× 10–7

0.8 4.1015× 10–3 1.5141× 10–5 2.51327× 10–7

0.9 5.2452× 10–3 1.4211× 10–5 2.82743× 10–7

1.0 6.5246× 10–3 1.2596× 10–5 3.14159× 10–7

Table 2 Comparison of the HPM, HAM, exact solution (ES) and absolute errors results of u(x, t)
when γ1 = γ2 = 0.5, t = 0.1, and h = –0.0395 for 5th-order approximation

x HPM HAM ES Error (HPM) Error (HAM)

0.1 –0.340367 0.00309062 0.00309017 0.343458 4.53322× 10–7

0.2 –0.647417 0.00587871 0.00587785 0.653295 8.6227× 10–7

0.3 –0.891093 0.00809136 0.00809017 0.899184 1.18681× 10–6

0.4 –1.04754 0.00951196 0.00951057 1.05705 1.39518× 10–6

0.5 –1.10145 0.0100015 0.01 1.11145 1.46698× 10–6

0.6 –1.04754 0.00951196 0.00951057 1.05705 1.39518× 10–6

0.7 –0.891093 0.00809136 0.00809017 0.899184 1.18681× 10–6

0.8 –0.647417 0.00587871 0.00587785 0.653295 8.6227× 10–7

0.9 –0.340367 0.00309062 0.00309017 0.343458 4.53322× 10–7

Table 3 Comparison of the HPM, HAM, exact solution (ES) and absolute errors results of u(x, t)
when γ1 = γ2 = 0.25, t = 0.1, and h = –0.004 for 10th-order approximation

x HPM HAM ES Error (HPM) Error (HAM)

0.1 –8614.19 0.00302986 0.00309017 8614.2 6.0306× 10–5

0.2 –16385.2 0.00576314 0.00587785 16385.2 1.14709× 10–5

0.3 –22552.2 0.00793229 0.00809017 22552.3 1.57883× 10–4

0.4 –26511.8 0.00932496 0.00951057 26511.8 1.85603× 10–4

0.5 –27876.1 0.00980485 0.01 27876.1 1.95154× 10–4

0.6 –26511.8 0.00932496 0.00951057 26511.8 1.85603× 10–4

0.7 –22552.2 0.00793229 0.00809017 22552.3 1.57883× 10–4

0.8 –16385.2 0.00576314 0.00587785 16385.2 1.14709× 10–5

0.9 –8614.19 0.00302986 0.00309017 8614.2 6.0306× 10–5

From the initial u(x, ) =  and um(x, ) = , we have

S(x, ) =
∞∑
m=

um(x, ) = u(x, t) +
∞∑
m=

um–(x, ) = . (.)

Therefore, according to the above expressions, S(x, t) must be the exact solution of (.)
and (.). �

We get the following tables and figures by using a series solution obtained with HAM
of (.).

5 Conclusion
In this paper, we have achieved approximate solutions of the fractional cable equation that
involve two Riemann-Liouville fractional derivatives by means of the homotopy analysis

http://www.boundaryvalueproblems.com/content/2014/1/58
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Table 4 Comparison of the HPM, HAM, exact solution (ES) and absolute errors results of u(x, t)
when γ1 = 0.25, γ2 = 0.75, t = 0.1, and h = –0.0043 for 10th-order approximation

x HPM HAM ES Error (HPM) Error (HAM)

0.1 –5022.62 0.00305436 0.00309017 5022.62 3.58117× 10–5

0.2 –9553.59 0.00580973 0.00587785 9553.6 6.8118× 10–5

0.3 –13149.4 0.00799641 0.00809017 13149.4 9.37564× 10–5

0.4 –15458.0 0.00940035 0.00951057 15458.0 1.10217× 10–4

0.5 –16253.5 0.00988411 0.01 16253.6 1.15889× 10–4

0.6 –15458.0 0.00940035 0.00951057 15458.0 1.10217× 10–4

0.7 –13149.4 0.00799641 0.00809017 13149.4 9.37564× 10–5

0.8 –9553.59 0.00580973 0.00587785 9553.6 6.8118× 10–5

0.9 –5022.62 0.00305436 0.00309017 5022.62 3.58117× 10–5

Figure 1 The h curves of 5th-order and
10th-order approximate solutions obtained by
the HAM for γ1 = γ2 = 0.5, respectively.

Figure 2 The 10th-order approximate solution of
u(x, t) with different values of h for γ1 = γ2 = 0.5
and t = 0.1.

method. We tried to find an approximate solution of this equation by HAM, which is
a semi-analytical method. It is not possible to find the analytical solutions of fractional
partial differential equations in most cases. In addition, there is an approximate solution
of the fractional cable equation that we have considered just with the finite difference
method. The HAM results were given by Tables - and Figures -.
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Figure 3 The 10th-order approximate solution of
u(x, t) with different values of h for γ1 = 0.8,
γ2 = 0.3 and t = 0.5.

Figure 4 Comparison of the HPM, HAM and Exact
solution for 5th-order approximate when t = 0.1,
h = –0.0395 and γ1 = γ2 = 0.5.

Figure 5 Comparison of the HPM, HAM and Exact
solution for 10th-order approximate when
t = 0.1, h = –0.004 and γ1 = γ2 = 0.25.

The range of convergence control parameter h was determined by taking a different
number of terms of the series solution in Figure . We showed that convergent results can
be obtained by selecting the appropriate values of x and t of the convergence parameter
h 	= .
An approximate solution that was obtained for different values of the parameter h, the

fractional-order derivatives γ, γ of the analytical solution and some comparisons for
some values of t were presented in Figures -.
A comparison between HPM, HAM, and the analytical solution, when t = . for some

values of the auxiliary parameter h 	=  and partial-order derivatives  < γ,γ ≤ , was
made in Figures -. As can be seen from the figures, HAM and the analytical solution
coincided and the HPM solution diverged from the analytical solution.
The absolute errors that were obtained by the implicit numerical method [], implicit

compact finite difference method [], and HAM can be seen in Table . In this table γ =
γ = . and . ≤ t ≤ .. As can be seen from this table when the convergent control
parameter h takes a value close to zero, this method gave better results than the other two
methods.

http://www.boundaryvalueproblems.com/content/2014/1/58
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A comparison between HPM, HAM, and the analytical solution for γ, γ and some
values of the auxiliary parameter h 	=  were presented in Tables -. As can be seen from
the tables, the HPM solution diverged from the analytical solution but the HAM solution
approached the analytical solution.
Although convergent results for almost every value of the independent variables and

convergent control parameter h have been obtained in HAM; the approximate solution
diverged at some small and large values of independent variables in HPM. Namely, it is
possible to find results that converge rapidly to the analytical solution by HAM.
Consequently HAM is a recommended method for obtaining an approximate solution

of the fractional cable equation with γ and γ Riemann-Liouville derivatives.
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