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Abstract

We consider the two-dimensional differential operator

Aulxy, X2) = =a11 (X1, X2) Uy g (X1, X2) = G22(X1, X2) U, (X1, X2) + T U(x7, X) defined on
functions on the half-plane 2 =R* x R with the boundary conditions u(0,x,) =0,

x; € R, where a;(x1,x7), i = 1,2, are continuously differentiable and satisfy the uniform
ellipticity condition as, (x;, x2) + a3, (x1,x2) > 8 > 0,0 > 0. The structure of the
fractional spaces E, (A, CP(S2)) generated by the operator A is investigated. The
positivity of A in Holder spaces is established. In applications, theorems on
well-posedness in a Holder space of elliptic problems are obtained.

MSC: 35J25;47E05; 34B27
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1 Introduction
It is well known that (see, for example, [1-3] and the references therein) various classi-
cal and non-classical boundary value problems for partial differential equations can be
considered as an abstract boundary value problem for an ordinary differential equation
in a Banach space with a densely defined unbounded operator. The importance of the
positivity property of the differential operators in a Banach space in the study of various
properties for partial differential equations is well known (see, for example, [4—7] and the
references therein). Several authors have investigated the positivity of a wider class of dif-
ferential and difference operators in Banach spaces (see [8—18] and the references therein).

Let us give the definition of positive operators and introduce the fractional spaces and
preliminary facts that will be needed in the sequel.

The operator A is said to be positive in E if its spectrum o (A) lies inside of the sector
S of the angle ¢, 0 < 2¢ < 2, symmetric with respect to the real axis, and the following
estimate (see, for example, [6, 19])

_ M@)

a1
”(A_}“) ”E—)E— 1+ |7

holds on the edges S;(¢) = {pe? : 0 < p < 00}, Sa(¢)) = {pe ™ : 0 < p < 0o} of S, and outside
of the sector S. The infimum of all such angles ¢ is called the spectral angle of the positive
operator A and is denoted by ¢ (4, E). We say that A is a strongly positive operator in E if
¢(AE) <m/2.
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Throughout the article, M indicates positive constants which may differ from time to
time, and we are not interested to precise. If the constant depends only on «, 3, ..., then
we will write M(«, B,...).

With the help of the positive operator A, we introduce the fractional space Eg = Eg(E, A)

(0 < B <1), consisting of all elements v € E for which the norm
IVllg, = sup AP [AQ.+ A)7'| , + VIl
A>0

is finite.

Theorem 1 [20] Let 117 + %1 =1,p>1,andletf,g:R* — R be any two nonnegative inte-
grable functions such that 0 < fooofp(x) dx <ooand0 < fooo g1(y) dy < 0o. Then the following
Hilbert’s inequality holds:

[ [ 8 aen ) [ ([ o)

Danelich in [12] considered the positivity of a difference analog A}, of the 2mth-order
multi-dimensional elliptic operator A* with dependent coefficients on semi-spaces R* x
R™1,

The structure of fractional spaces generated by positive multi-dimensional differential
and difference operators on the space R” in Banach spaces has been well investigated (see
[21-23] and the references therein).

In papers [19, 24—27] the structure of fractional spaces generated by positive one-dimen-
sional differential and difference operators in Banach spaces was studied. Note that the
structure of fractional spaces generated by positive multi-dimensional differential and dif-
ference operators with local and nonlocal conditions on  C R” in Banach spaces C(2)
has not been well studied.

In the present paper, we study the structure of fractional spaces generated by the two-

dimensional differential operator

Aulxr,%2) = —a11 (%1, %) Uy xy (01, %2) — A2 (X1, 00 Uy (X1, %2) + O 1(%1, %), 1)
defined over the region R? = R* x R with the boundary condition %(0,x;) = 0, x; € R.
Here, the coefficients a;;(x1, %), i = 1,2, are continuously differentiable and satisfy the uni-
form ellipticity

ag (x1,%2) + any (%1, %) > 8 > 0,
and o > 0.

Following the paper [12], passing limit when /# — 0 in the special case m =1and n = 2,

we get that there exists the inverse operator (A +1)™! forall » > 0 and the following formula

(A+)\)‘1f(x1,x2)=/ / G(x1, %, p, 5, \)f (p, ) ds dp 2)
0 —00
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holds, where G(xy,x5,p,s, 1) is the Green function of differential operator (1). Moreover,
the following estimates

|G(x1:x2;[975:)\)|
< Cexp{—u(k + 1)1/2(|x1 —p|+ |x2 —sl)}

x (L4 Inf1+ ((h+ DY2 (e - pl + Iz = s1)) " }), ®)

and

|Gx1 (xl)xz‘!p)S) )") ze (x17x21py57)")|

)

< Cexp{—a(k + 1)1/2(|x1 —pl+ |xo —s|)}(|x1 —pl+ |xo —sl)_1 (4)

hold. Here a = a(o).

Next, to formulate our result, we need to introduce the Hélder space C# = C#(R?) of
all continuous bounded functions ¢ defined on R? satisfying a Holder condition with the
indicator B € [0,1] with the norm

x1,%2) — f (), %,
e
(31,%2), (] ) €R2 (V11 = %712 + |2 — x5]2)

(1,%2) (%) %)

Here, C(R?) denotes the Banach space of all continuous bounded functions ¢ defined on
R? with the norm

”W”c(]R%): sup |§0(x1:x2)|'

(x1,%2)eR?

Clearly, from estimates (3) and (4) it follows that A is a positive operator in C(R?). Namely,
we have the following.

Theorem 2 Let A > 0. Then the following estimate

M

”(A +2)7 ”C(R%)HC(R%) = 1+x

is valid.

Here, the structure of fractional spaces generated by the operator A is investigated. The
positivity of A in Holder spaces is studied. The organization of the present paper is as
follows. In Section 2, the positivity of A in Holder spaces is established. In Section 3, the
main theorem on the structure of fractional spaces E, (A, C#(R?)) generated by A is in-
vestigated. In Section 4, applications on theorems on well-posedness in a Holder space of
parabolic and elliptic problems are presented. Finally, the conclusion is given.

2 Positivity of A in Holder spaces C#(RR?)
Theorem 3 Let 8 € (0,1). For A > 0, we have the following estimate:

_ M(a)
A+ 27 o) o) = T+
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Proof Applying formula (2), the triangle inequality, the definition of C#-norm, estimate
(3), and Hilbert’s inequality, we get

(A +2) 7 (1, %)
< / / |G(x1,x2,p,s,k)| [f(p,s)| dsdp
<M|[f||cﬂ/ / ~a(1+1)"2(jx1-pl+xa—s))
x (1+In{1+ ((1+2)"*(jx1 - pl + %2 —s|))_1}) dsdp

<M||fllcs |:/ / a@+2)Y2(fxy—pl+1x2-s)) dsdp

+ / / e—a(1+k)1/2(\x17p|+|x275|)((1 + )\)1/2(|X1 _p| + |y — S|))_1 dep:|
0 —00

/
< M@ oy 2@ g / /oo ol
=T Ve (1+ )2 c p+s

3(61)

dsdp

||f||cﬁ for (x1,x,) € ]Rf.

Then from that it follows

sup (A +X) Y (x,a)| < (5)

(x1,x2)€R2

1 A

Without loss of generality, we can put 7, 4 > 0. Using formula (2) and the triangle inequal-
ity, we get

[ fGer + 7,20 + ) — (o1, x0)
‘(A+)»)][ - (.’:22+h2)ﬂ/2 1 2”

1 o0 o0
< W/o [W‘G(xl+r,x2+h,p,s;k)—G(xl,xz,p,s,k)|
X V(p,s){ dsdp (6)

for (x1,%2), (¥1 + 7,2 + h) € R%. Now, we will estimate the right-hand side of inequality (6).
Let us consider two cases 2 + h* < 1and t2 + h? > 1 separately. First, we consider the case
72 + h? < 1. Using the triangle inequality, estimate (4), the definition of C#-norm, Hilbert’s
inequality, and the Lagrange theorem, it follows that for some x} between x;, x; + 7, and
x5 between x3, x5 + /1,

[ fCer + 20 + B) — fx1,%2)
|(A+)»)l|: ' (1:22+h2)/3/2 - ZiH

T 00 oo
EM4|V||C[5|:W‘/O [m|Gx1(xf,x§,p,s;A)|dsdp

h o0 oo .
i, [ e (’Cvxz'mw)!dsdp}

< Myllfllce [/0 / |G, (1,5, p,5; 1) | dsdp
—00
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00 oo
+/ / |Gx2 (xiﬁ’x;’PfS;)»”dsdp]
0 —00

00 gma(l+h) 2 (| —p|+|x%5—s1) M (
6(a)
<M5|lf||cﬂ/ / dsdp = 1+A ‘ 7

%] — pl + x5 — 5]

Second, we consider the case T2 + h* > 1. Using formula (2), the triangle inequality, esti-

mate (3), the definition of C#-norm, and estimate (6), we get

[ fCer + %0 + B) — (1, %2)
’(A+)»)l[ - (T22+h2)ﬁ/2 1 2”

/
= M7|[f||cﬂ [/ / a(L+ Y2 (I +T—pl+|xg +h-s])

x (1+In{1+ (A + D" (jay + 7 —pl + |z + 1 —s|))_1})dsdp

o o 1/2
N / / -2 (1 -pl eIy —s)
0 —00

x (L+In{L+ (A + D2 (Jxy = pl + |22 —s|))71}) dsdp]

Ms(ﬂ)

o fllcs- (8)

Estimates (7) and (8) yield that

sup A+ [f(xl +T,% +h) _f(xlxe):H _ Ms(@) il ©)
(w1 +7,x +h), (%1 ,%2) ERZ (tz + hZ);S/Z T l+a .
(r,h)#(0,0)
Combining estimates (5) and (9), we obtain
M(a)
-1
”(A +1) ”Cﬁ(]R%)eCﬁ(R%) = 1+
This finishes the proof of Theorem 3. 0

Note that from the commutativity of A and its resolvent (4 + A)~!, and Theorem 3, we

have the following theorem.

Theorem 4 Let A > 0. Then the following estimate holds:

J < 20
Ea(ACPRI)>Ea(ACPRD) = 74 3

|| (A+A)

3 The structure of fractional spaces E4 (A, ch (Rf))
Suppose B, 2a + f € (0,1). Consider the fractional space E, (A, C#(R?)) and the Hélder

space C?**F(R2). In this section, we prove the following structure theorem.

Theorem 5 The norms of the spaces E,(A, C#(R?)) and C***F(R?) are equivalent.

Page 5 of 17
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Proof Assume that f € C***#(R2). Let (x1,%,) € R? and A > 0 be fixed. From formula (2) it
follows that

AA + A)"lf(xl,x2)
f(xl,x2 +k/ / G(x1,%2,p, 8, A)(f x1,%2) — f(p,s )dsdp (10)
Using equation (10), the triangle inequality, the following inequalities

(a+b)”§2"(u”+bp), O<p<lab=>0, (11)

(at)le™ <M, a>0,0¢]0,1], (12)
estimates (10), (11), (12), and the definition of C2**#-norm, we obtain

|)L°‘A(A + A)_lj’(xl,xz)|

x2)| +k“+1/ f |G(w1, %2, 0,5, M) ||f (x1,%2) = f(0,5) | dsdp

<M9nf||cza+ﬂ[—+x’“ / / |Gler, 2,50

x (la1 = pI* + |xs — SIZ)KMN2 dsdp]

< Mo If | coass |:A 1 f / a@+2)Y2 (a1 -pl+|x2-s))

x (T+In{1+ ((1+2)"(jx1 - pl + %2 —s|))_1})(|x1 —pl*+ %2 —s|2)mﬁ/2 dsdp:|

o )»‘Hl

< Mu(@)[f llcanrs [ *

et e | < M@l e

for (x,%7) € R2. (13)
Thus, it follows from estimate (13) that
sup sup |A“A(A + A)’lf(xl,xz)i < Mp(@)||f | coars- (14)

2>0 (x1,x9)eR2

Let A > 0 and (x;,%;) € R? be fixed. Using equation (10), we can write

A“AQ4+AY4{f@1+tM&+h)_f@hxﬁ]

(-L—Z + h2)ﬂ/2
S [f(xl +T,% + h) —f(xl,xz)]
A+l

(12 + h2)B12

N , h) - f(p,
+Aa+1/ / G(xl+t,x2+h,P’5?)‘)|:f(x1+fx2+ L S)}dep

(12 + h2)B12

Aa”/ / G(x1, %0, p, 83 \) [f 9;1,2962 hzj);/(‘z S):| dsdp. (15)
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Now, we will estimate the right-hand side of equation (15). We consider two cases 72 +
h* <1and t2 + h? > 1, respectively. Let us first assume that 72 + 4% < 1. Furthermore, this
situation will be considered in two cases: (1 + A)(z2? + #%) > 1and (1 + A)(t? + %) <1. Let
(1 + A)(t? + K?) > 1. From equation (15), the triangle inequality, the definition of C2**#-

norm, the assumptions t2 + 4% <1 and (1 + A)(t? + k%) > 1, it follows that

a [ fer + T,x0 + B) — f(x1,%0)
AA(A+)»)1[ ' (t22+h2)’3/2 1 2]'

)\'Ol

< Ms|[f |l coars [W

)La+1
v, s ha)

X (|x1 +T—pP+|xa+h —slz)wﬁ/2 dsdp

)\-DHI 2 \a+p/2
O e T f / G122, 1) (11 = I + 12 — 512) dsdp]
= Muz||fll czars UL + J2 + J3]. (16)

We will estimate J;, i = 1,2, 3, separately.

First, let us estimate /;. Clearly, by the assumption (1 + A)(z? + h?) > 1, we have
<L (17)

From estimates (3), (11), (12), and the assumption (1 + A)(z? + /#2) > 1, it follows that

1/2
M14 a(1+1) = (|xy +T—p|+|x2 +h-s])
( 2 h2)ﬂ/2 /. /

x L+ {1+ (o + )P (Jx +7—pl+ o+ h—s])) '}

X (|x1 +T-ptHxy+h —5>‘|2)O[+ﬂ/2 dsdp
)Lowrl

§M15( )(1 A)1+“+‘3/2(t2 +h2)f3/2 =

< M5(a). (18)

Estimates (3), (11), (12), and the assumption (1 + A)(t2 + 42) > 1 yield that

12
I3 <M16 a(l+2)"= (Jx1-pl+x2—s])
= hz),s/z

X (1 + ln{l + ((A + 1)1/2(|x1 —p|+|x —sl))fl})(|x1 —pI* + |2 —s|2)'“’3/2 dsdp

My (@)r*!
1+A 1+a+pB/2 2 4 2 B2 —
T (@+A) ( )

<My (a). (19)

Combining estimates (17)-(19), we get

< Mig(@)||f |l c2a+s. (20)

AYA(A +)L)-1|:f(x1 +T,%9 + h) —f(xl,xz)]

(2 + h2)P12

Page 7 of 17
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Now, let us consider the case (1 + A)(t2 + 4%) < 1. Then, using equation (10), we can write

a [ fCen + 7,20 + B) — fx1,%0)
)»A(A+)»)1|: : (122+h2)f‘/2 1 2}

A |:f(x1+r,x2+h)—f(x1,x2)]
A+l (12 + K2)P/2

o0 o0
a+l . f(xl +T,% + h) —f(xl,xz)
+ A /0 /_Oo G(x1+r,x2+h,p,s,k)|: @2 1 1) dsdp

oo oo
+ A0t / / [G(x1 + 7, %2 + 1, p, ;1) — Gx1, %2, p, 83 1) |
0 —00

S &1,%2) = f(p, s)
X [W ds dp. (21)
From equation (21), the triangle inequality, the Lagrange theorem, the definition of C?**# -
norm, and the assumption t2 + 42 < 1, it follows that for some x} between x;, x, + 7, and

x5 between x3, x5 + /1,

o e+ T, + ) — f (o1, %2)
AYA(A + 1) [ ! (t22+h2)ﬂ/2 ! 2]'

o

< Mo [ llcaurs [At () 2 (1 )

o0 oo
xf / |G(x1+t,x2+h,p,s;k)‘dsdp

)\a+l
(12+lf12)ﬁ/2

)\aﬂh bl
hZ)f}/Zf / Gy (%525, 2,5 2) | (121 = pI* + 22 — s2) " dsdp:|

= Mo ||f |l czasp [L1 + Lo + L + Ly].

/ / Gy (5,55, 2,55 1) | (121 = pI? + s — s2)* 7 dsdp

We will estimate L;, i = 1,...,4, separately. Let us start with L. Clearly, we have
L <1 (22)

Using estimates (3), (4), (11), (12), we obtain

o0 poo
L, <M20k./ / e—u(1+k)1/2(\x1+z—p|+|x2+h—s|)
0 _

x (L+In{l+ (A +D)"2(lx + 7 —pl+ o + h - s|))_1}) dsdp < M. (23)
Note that by the triangle inequality and the fact that x} between x;, x; + T, we get

¥ —p| = a1 - pl - ] — 1| = v —pl - 7, (24)

|x§—s|Z|x2—5|—|x§—x2|zlxz—sl—h. (25)

Page 8 of 17
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By inequalities (11), (12), estimates (4), (24), (25), and Hilbert’s inequality, we have

)Loz+1 00 gma(l+h 1/z(lxl —pl+|x5—s]) 20+
Ls le / / [%1 = pl + |x — 5] dsdp
2)p/2 —pl+ x5 —s] ( )

)\a+1.[

0 poo
—a(L+ Y2 (|6 —pl+|xE=s]) (] oo * 200+p-1
§M22wf [ e 1 2 (|x1 —p|+|x2—s|) dsdp

)\uwl 1/2
a(l+2) 4 (| —pl+ x5 —s])
+M22( 2 +h2)/3/2/ / ! >

x (|t = p| + |« —s|) "' (x + h)***F dsdp

)»OH'I‘L' N )»GH'I‘L'(‘L’ +h)2a+ﬁ
(1 +A)1+a+ﬂ/2(12 +h2)ﬁ/2 (1 +)\)(1'2 + h2)f3/2

< Mzs(ﬂ)[ j| < Myu(a). (26)

Similarly, we get
Ly < Mra(a). (27)

Combining estimates (22), (23), (26), (27), we obtain that for 72 + k> <1, (1 + A)Y2(z? +
) <1,

< Maos(@)||f Il coa+s. (28)

AYAA + ) [f Wit tx+h)—f (xl;xz)]

(12 + h2)Bl2

It follows from estimates (20) and (28) that for 72 + #2 <1, A > 0,

o e+ T,00 + ) — f (o1, %2)
ACAA + 1) [ - (t22+h2)/3/2 A

]' < Mas(@)[f | cars. (29)

Next, let us assume that t2 + 42 > 1. By equation (10), we have

a [ fCer + 20 + B) — fx1,%0)
AA(A+?»)1|: 1 (.E22+h2)/3/2 1 2]

Y |:f(x1 +7T,% + h) —f(xl’xZ)]

Tl (12 + h2)B/2
o0 o0 h
+)»°‘”/ /_ G(x1+r,x2+h,p,s;)»)[f(xlJr(trzx2 ;Z)ﬂuf(lﬂ S):|a’
A“*lf / G(x1, %0, p, 85 A I:f(?,xz)hzj;ﬂ(z S)i| dsdp. (30)

Equation (30), estimates (3), (11), Hilbert’s inequality, the triangle inequality, the definition
of C?**f_norm, and the assumption 72 + 42 > 1 yield that for A > 0,

a [ fer + T,x0 + B) — f(x1,%0)
)LA(A+)L)1[ 1 (t22+h2)/3/2 1 2]'

o0 o0
< Moy ||f || c2asp [1+A°‘*1/ / |G + T, %2 + 1, p,s; )|
0 —00

x (lay+ 7 —pl* + |as + 1 —slz)‘“ﬂ/2 dsdp
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o0 o0
+ 0t f / |G(x1,x2,p,s; k)|(|x1 —pl* + 1% —s|2)m+ﬁ/2 dsdp
0 —00

ka+1 A'llfl ]

< Mzs(ﬂ)|lf||c2a+ﬂ |:1 + (1 N )»)1“’”/3/2 + (1 + )\)1+a¢+ﬁ/2

< May(@)||f |l c2as . (31)

From estimates (29) and (31) it follows that

sup sup
A>0 (x1+7,%2+h),(x1 ,xz)eRa
(r.1)#(0,0)

< Mzo(@)|[f Il c2asp. (32)

N [ G+ T x0 + ) — f(o01,%2)
)\A(A+A)l|: : (r22+h2)ﬁ/2 1 2]‘

Combining estimates (14) and (32), we obtain
CHh(B2) € E, (4, CF(R2).

Now, we will prove that E, = E,(A, C#(R?)) C C***#(R?). By Theorem 4, A is a positive
operator in the Banach space E,. Hence, for V € E,,, we have

V= /0 OOA(A +A)2Vda. (33)
Let f € E,. It follows from formula (2) and equation (33) that
S = [ AG A 5
= /(;00 /()*00 /;OO G(x1, %0, p,5; V)AL + A) 7 (p,s) dsdp d. (34)

Using the triangle inequality, equation (34), estimate (3), and the definition of E,-norm,

we obtain

FAT T L e 2 —plelxa—s))
f (e, %) | < Maillf lIE, ot
0 0 -0

x (L+In{1+ (L + 1) (Jxg = pl + %2 —sl))_l}) dsdp d)

o 1 M33(a)
<Ma@Wls, [ 5oy = sl
Thus,
M33(a)
) . 5
(xl,i;ER% If (1,0)| < ol —a) If Iz, (35)

Let (x1,%2) € R? be fixed. From equation (34) it follows that

S+ T, %0 + ) = f(x1,%2)
(12 + h2)+Bl2

o o o G 7 h, b ;)\‘
:/ / / Cr+ T2t WPSA) oy gy 5y
o o o (.L—Z + h2)a+ﬁ/2)\‘a

Page 10 of 17
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x (f(p,5) = f (%1, %2)) ds dp d

/ / f G(xl,xz,p, 52, T A% A(A + )7 (f(p,s) —f(xl,xz)) dsdpd). (36)

+ h2 a+ﬁ/2)\a

Now, we will estimate the right-hand side of equation (36). We consider two cases 72 + 2 <
land 72 + k% > 1. Let us first assume that 72 + 42 < 1. By equation (36), the triangle inequal-
ity, the Lagrange theorem, the definition of E,-norm, and the assumption t2 + h? <1, we

have, for some x; between x;, x; + 7, and x5 between x,, x; + 4, that

S+ 7,20 + 1) — f (%1, 0)
('(2 + h2)a¢+)3/2

|G(x1 + T,%0 + B, p, 85 A) — G(x1, %02, p, 53 A)|
= Mzallf Iz, |:/ / / [ (2 + B2)o+Bl2 )

X (|x1 —pI* + |x2 —s|2)ﬂ/ dsdpdi

/1/(’2”‘2) /"O /°° |G(x1 + T,%0 + B, p, 53 1) — G(x1, %2, p, S5 A) |
+
1 0 o (-[2 +h2)o¢+ﬁ/2ko¢

x (la1 = pl* + |x2 _S|2),3/2 dsdp dx

/‘X’ /‘X’/‘X’ |G(x + T,%0 + B, p, 55 1) — G(x1, %2, p, S5 1)
+
w2y Jo  Joxo (T2 + h2)a+pl2 )

X (|x1 —pl* + %, —S|2)ﬁ/2 dsdpdk]

= Msallfllg, [l + I + 13].

We will estimate [;, i = 1,2, 3, separately. Using the triangle inequality, estimates (4), (11),
(25), (24), (12), the Lagrange theorem, and the assumption 72 + /42 < 1, we obtain

I <M /I/OO/OC T|Gy, (55, %5, P, 8; M) | + h| Gy, (5T, %5, p, 5 1)
1 =435 o Jo Jo (2 + h2)x+Bi2 \a

X (|x1 —pl* + %, —s|2)ﬁ/2 dsdpdk}

a(1+A) 1/2 \xl—p\ﬂxz—s‘)
/ _/ / (|x1 —pI* + % —S|2)ﬁ/2 dsdp d
(Ixf = pl + x5 — s])Ae

[} —a(l+k)”2 (| —pl+1x5—s]) x T |xt — B
< Msg // / (ot =Pl 1% =57 o g a,
A (lx} = pl + |x3 = sl)

00 —a (L+2)Y2 (|t —pl+|x5—s]) h
/ / / TR by dsdpdk:|
A (|xf = pl + |5 = s))
1 |
< M37(a) A W””‘* ) A2 d.

< M3g(a).
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From the triangle inequality, estimates (4), (11), (12), (24), (25), the Lagrange theorem, and
the assumption 72 + 42 < 1, it follows that

2 2
I < My [ / v / x /“[r|c;xl(x;zx;p,s;x>| . h|Gx2<xr,xz,p,s;x)|]
1 0 —00

(1-2 + h2)oz+/3/2)\a

X (|x1 —pl* + %2 —s|2)ﬂ/2 dsdpd)»]

1/(z2+h2) —a(1+A) Y2 (| —pl+|x3—s]) B
(t +h)e 1 2750 (lag — p| + |xp —8])
= Mo [/ / / @

dsdp d
IR ([t — pl + |6 — 1) P }
1/(r2+h2) 00 (‘L’ + h)e—zz 1+A)1/2(\x1—p\+\x2—s\ (|x _
pl+ x5 —s))P
<M dsdp d)
‘“[/ / / + )PP (el — pl + | —5]) P

(@2 +h?) (¢ 4+ 4 —a<1+x>1/2<|x*—p|+|x*—s|> h)p
/ / f (r2+ Je 1P =0(r + h) dsdpd)»:|

oo (T2 4+ I2)* P23 (|} — p| + |5 — s)

1/(z2+h%) (2 + h2)1/2 1/(z2+h2) (2 +h2)1/2+ﬂ/2
= Mula )[/ ( s }
1 1

T2 4 h2)a+ﬁ/2ka+ﬁ/2+l/2 72 +h2)a+ﬂ/2ka+1/2
< Mys(a).

Using the triangle inequality, estimates (3), (24), (25), (12), (11), the assumption 2 + 2 <1
and the following estimate

¥ —pl=lxi—-p+Tt—-1|<|¥1—-p+T|+T,

%2 =S| =|wy —s+h—h| <|xy—s+h|+h,

we obtain

0 —u 1+ 1/2(|x1+z—p|+|x2+h s|)
I <M
ol [ [ s

x (1+ ln{l +((+ 1)1/2(|x1 +T—pl+lxa+h —S|))_1})

X (le—p+r|+|x2—s+h|+r+h)ﬁdsdpdk

[o¢] o0 oo
. / / / (e—ﬂ(1+)»)”2(le—PHIxz—SI)
1/(z2+h2) JoO —00

x (L InfL+ (0o D) (jx1 = pl + 1w = 1)) /(22 + 1) 22)

x (loy = pI* + |2 —s|2)ﬁ/2 dsdpd)\]

< Mas(a) / h ! dn / h Tk
a +
=45 V2 ey (T2 + H2)atBl2pa+pi2el

U(c24h2) (T2 + h2)u+ﬁ/2)\a+l
< Mye(a).

Thus, for t2 + k% < 1, we have

’f(xl +T,%0 + h) = f(x1,%2)

(22 + H2)a+h12 <My @)|flE,-

(37)
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Next, let us assume that 72 + #? > 1. Using formula (36), estimate (3), the triangle inequal-

ity, Hilbert’s inequality, and the assumption 72 + 42 > 1, we get

S+ 7,000 + H) — fo1,%2)
(12 + h2)a+B12

> * > G ’ h’ y ;)\.
5/ / / | (xl + 7T »X;foj‘ p N )l |)\'C(A(A+)\'),1—f(p,s)|dsdpd)\’
0 o0

o o o G ) ’ ’ ;)\'
+ / / / |(9¢19;2+)| |A°‘A(A + )»)_lf(p,s)| dsdp d
0 0 —00

o0 o0 o0
< M48 |V||Ea [/ / / )Liae—u(l+)»)1/2(\x1+T—p\+\x2+h—s\)
0 0 —00

x (L+In{l+ (@ +2)" (I +7-pl+lw+h —s|))_1}) dsdpd

/ / / —a(1+1)V2 (11 ~pl 412 -s])

x (L+In{L+ ((L+2)"2(Jx1 - pl + |22 —sl))_l}) dsdpd)»]

1 < M5o(ﬂ)

A“(1+ 1) ”f”

< Mao@|f Iz, /0

Hence, for 72 + 2 > 1, we obtain

fx1+ %0 + ) — f(t, %)
(12 + h2)e+Bl2

Mso(ﬂ)
w— |lf||Ea (38)

Combining estimates (37) and (38), we get

X1+ T,%0 + h) — fxg, 2 Msi(a
sup sup NG 22 ! l+;;2( 1,%2) < 51(a) e (39)
A>0 (x1+r,x2+h),(x1,x2)eR% (T +h ) Ol( )
(t,h)#(0,0)

Estimates (35) and (39) yield that
E. - E.(A,CF(R2)) C C'# (R2)
This is the end of the proof of Theorem 5. g

4 Applications
In this section, we consider some applications of Theorem 5. First, we consider the bound-

ary value problem for the elliptic equation

_ %u(yx9)
8y2
=f(y,x1,%2), O0<y< T,x1 e R*,x, €R,

9 M(;Vxl %2) 9? u(;vxl %2)

— ay (%1, %) — dga (%1, %7) +ou(y,x1, %)

(40)
u(0,x1,%) = @(x1,%2), u(T,x1,%2) = Y (x1, %), x1 €R*x €RR,

u(y,0,%)=0, 0<y<T,x;cR.
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Here, an (x1,%2), a2z (%1, %2), ¢ (1, %2), ¥ (x1,%2), and f(y,x1, ;) are given smooth functions

and they satisfy every compatibility condition and
afl(xl,xz) + a%z(xl,xg) >8>0, (41)
and o > 0, which guarantees that problem (40) has a smooth solution u(y, x, x5).

Theorem 6 For the solution of boundary value problem (40), we have the following esti-
mate:

lyyll cicrevn m2)) + Nty | cicevs ®2)) + 1 Uagns | c(c2evs (m2))
= M(O{, ﬂ)[”‘ﬁxwl ”CZOHB(R%) + ”(pxzxz ||C206+/5(]R3) + |Wx1x1 ||C20(+/3(]R3_)

Wyl s w2y + Wf lgqczepazy )
where M(w, B) is independent of ¢, W, and f.

Proof We introduce the Banach space C([0, T'], E) of all continuous abstract functions u(y)
defined on [0, T'] with values in E, equipped with the norm

lulleqo.re) = max [lu0) |

Note that problem (40) can be written in the form of the abstract boundary value problem

du(y)

e +Au(y)=f(y), 0<y<T, u(0) = ¢, wT) =y (42)

in a Banach space E = C(R?) with a positive operator A defined by (1). Here f(y) =
f(,%1,%,) is the given abstract function defined on [0, T] with values in E, ¢ = ¢(x1,x2),
¥ = ¥ (%1, x7) are elements of D(A). Therefore, the proof of Theorem 6 is based on Theo-
rem 5 on the structure of the fractional spaces E, (4, C#(R?)), Theorem 4 on the positivity
of the operator A, on the following theorems on coercive stability of elliptic problems,
nonlocal boundary value for the abstract elliptic equation and on the structure of the frac-
tional space E/, = E,(A"Y?,E). This is the end of the proof of Theorem 6. O

Theorem 7 Under assumption (41) for the solution of elliptic problem

3% u(x1,x)
Bx%

82u(x,
—an (%1, %) - ﬂzz(x1,x2)lg+1%m +ouxy, %) = gx1,%2),

x1 € RY,xy e R,

u(0,x,) =0, xp €R,

the following coercive inequality holds:

where M(w) (0 < < 1) does not depend on g.

0%u
0x3

9%u

3_96% EM(M)”g”cu(Rz);

CH(R2)

+ ‘
CH(R?)
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The proof of Theorem 7 uses the techniques introduced in [5, Chapter 5] and it is based
on estimates (3) and (4).

Theorem 8 ([5, Theorem 5.2.48]) The spaces Ey(A,E) and E,,(AY?,E) coincide for any
O<acx %, and their norms are equivalent.

Theorem 9 ([28, Theorem 3.1]) Let A be a positive operator in a Banach space E and
feC(0,T],E)) (0 < a <1). Then, for the solution of nonlocal boundary value problem
(42), the coercive inequality

“””||C([0,T],Eg,) + Il Aullcqo,1.8,)
M
<M|A¢llg, + 1AV g, + ——IIf lcqo,11,£,)
ol —a)

holds, where M does not depend on o, ¢, ¥, and f.

Second, we consider the nonlocal boundary value problem for the elliptic equation un-
der assumption (41)

_ Bzu(y,xl,xz) E)zu(y,m ,%2) Bzu(y,xl X2)

92 _ﬂll(xl’xZ)T _422(x1rx2)T +ou(y, x1,%2)
=f(y,x1,%2), O0<y<T,x eRY xR, (43)
u(o»xl»xZ) = M(Trxl»xZ)) uy(oyxlyxZ) = My(T, xl;xZ)r X1 € R+;x2 S R;

u(y,0,2)=0, 0<y<T,xeR.

Here, a1 (x1,x2), aza(x1,%2), and f(y, %1, x;) are given smooth functions and they satisfy ev-
ery compatibility condition and (41), which guarantees that problem (43) has a smooth
solution u(y, x1,x3).

Theorem 10 For the solution of initial boundary value problem (43), we have the following
estimate:

”uyy”c(chﬁ(R%)) + [ty ||c(c2a+ﬁ(R%)) + [ty ”C(CZD‘*/f(R%))

<M(e, BIf C(C2+B(R2))
where M(w, B) is independent of f.

The proof of Theorem 10 is based on Theorem 5 on the structure of the fractional spaces
E,(A,CP(R?)), Theorem 4 on the positivity of the operator A, Theorem 7 on coercive
stability of the elliptic problem, Theorem 8 on the structure of the fractional space E], =
E,(AY2,E), and the following theorem on coercive stability of the nonlocal boundary value
for the abstract elliptic equation.

Theorem 11 ([28, Theorem 3.1]) Let A be a positive operator in a Banach space E and
feC(0,T],E,) (0 < < 1). Then, for the solution of nonlocal boundary value problem (40)

—u"(y) + Auy) =f(y), 0<y<T,
u(0) =u(T), u'(0)=u'(T)
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in a Banach space E with a positive operator A, the coercive inequality

M
"
||| oz + 1A co,mEy < al_) W Nl o, 7,22

holds, where M does not depend on o and f .

5 Conclusion

In the present article, the structure of the fractional spaces E, (A, C#(R?)) generated by
the two-dimensional elliptic differential operator A is investigated. The positivity of this
operator A in a Holder space is established. Of course, the Banach fixed point theorem
and the method of the present paper enable us to establish the existence and uniqueness
results which hold under some sufficient conditions on the nonlinear term for the solution
of the mixed problem

_ 2ulyx1,%)

ulyx1,x2)
a2 4u (1, %2) @72

o + o u(y, x1,%2)

82 u(y,x1,%2)
— agy(x1, %) 02
2

= f (0, %1, %0, Uy Uy, Uy Uhy), 0 <y < T, € RY, x5 €R,
u(0,%1,%) = (%1, %2), u(T,x1,%) = Y(x1,%), x1€R% ) eRR,

u(y,0,2)=0, O0<y<T,xeR.
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