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1 Introduction
In this paper, we consider the boundary value problem generated by the system of Dirac

equations on the finite interval 0 < x < 7:

By + Q(x)y = Ap(x)y @)

with boundary conditions

21(0) = y1() = 0, (2)

where

g0 1 , Q) = px)  qx) = () ,
-1 0 qx) —p(x) y2(x)
p(x), q(x) are real valued functions, p(x) € L,(0,7), g(x) € L,(0,7), A is a spectral param-

eter,

1, 0<x<aq,
px) =
o, a<x<m,

and 1+« > 0.
The inverse problem for the Dirac operator with separable boundary conditions was

completely solved by two spectra in [1, 2]. The reconstruction of the potential from one
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spectrum and norming constants was investigated in [3]. For the Dirac operator, the in-
verse periodic and antiperiodic boundary value problems were given in [4—6]. Using the
Weyl-Titschmarsh function, the direct and inverse problems for a Dirac type-system were
developed in [7, 8]. Uniqueness of the inverse problem for the Dirac operator with a dis-
continuous coefficient by the Weyl function was studied in [9] and discontinuity condi-
tions inside an interval were worked out in [10, 11]. The inverse problem for weighted
Dirac equations was obtained in [12]. The reconstruction of the potential by the spectral
function was given in [13]. For the Dirac operator with peculiarity, the inverse problem
was found in [14]. Inverse nodal problems for the Dirac operator were examined in [15,
16]. In the case of potentials that belong entrywise to L,(0,1), for some p € [1,00), the in-
verse spectral problem for the Dirac operator was studied in [17], and in this work, not
only the Gelfand-Levitan-Marchenko method but also the Krein method [18] was used.
In the positive half line, the inverse scattering problem for the Dirac operator with discon-
tinuous coefficient was analyzed in [19]. Besides, in a finite interval, for Sturm-Liouville
operator inverse problem has widely been developed (see [20—22]). The inverse problem
of the Sturm-Liouville operator with discontinuous coefficient was worked out in [23, 24]
and discontinuous conditions inside an interval were obtained in [25]. In the mathemat-
ical and physical literature, the direct and inverse problems for the Dirac operator are
widespread, so there are numerous investigations as regards the Dirac operator. There-
fore, we can mention the studies concerned with a discontinuity, which is close to our
topic, in the references list.

In this paper, our aim is to solve the inverse problem for the Dirac operator with a piece-
wise continuous coefficient on a finite interval. Let A, and «, (n € Z) be, respectively,
eigenvalues and normalizing numbers of the boundary value problem (1), (2). The quanti-
ties {A,, @, } (n € Z) are called spectral data. We can state the inverse problem for a system
of Dirac equations in the following way: knowing the spectral data {A,,a,} (1 € Z) to in-
dicate a method of determining the potential ©2(x) and to find necessary and sufficient
conditions for {A,,a,} (n € Z) to be the spectral data of a problem (1), (2). In this paper,
this problem is completely solved.

We give a brief account of the contents of this paper in the following section.

2 Preliminaries
Let S(x, 1) be solution of the system (1) satisfying the initial conditions

S](O,)\‘) =0, 52(0, }\.) =-1.

The solution S(x, A) has an integral representation [26] as follows:

(%) :
S(x, 1) = Sox, ) + f ' A(x,t)( sinAt ) dt, (3)
0

—COSAL

where

So(,) = ( sinAp(x) )} () = {x, 0<x<a,

—cosAu(x) ax—oa+a, a<x<m,
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A= (Aij)?,jzl is a quadratic matrix function A;(x,-) € L»(0,7) and A(x, t) is the solution of

the problem

BA(x,8) + p(x)A}(x, £)B = —Q(x)A(x, t),

Q(x) = p(x)A (%, u(x))B - BA(x, (%)), (4)

A(x,0)B = 0.

Equation (4) gives the relation between the kernel A(x, £) and the coefficient Q2(x) of (1).
Let ¥ (x, A) be solutions of the system (1) satisfying the initial conditions

WI(nr)‘)ZO: 'W2(7T,)M)=—]_.
The characteristic function A(1) of the problem (1), (2) is
A()“) = W[S(x! )‘)’ 1s”(xl )‘4)] = SZ(x’ )‘)WI("C! )‘) - Sl(x’ )»)1//2(%, )‘); (5)

where W[S(x, A), ¥ (x, A)] is the Wronskian of the solutions S(x, A) and ¥ (x, 1) and indepen-
dent of x € [0, ]. The zeros A, of the characteristic function coincide with the eigenvalues
of the boundary value problem (1), (2). The functions S(x, 1) and v (x, 1) are eigenfunctions
and there exists a sequence 8, such that

W(x! An) = ,3,,5(96, An)s Bn #0. (6)

Denote the normalizing numbers by

oy = / (1166, A)|* + |2 1) [*) p(x) .
0
The following relation is valid:
A()\n) = Py, (7)

where A()) = % A(L). In fact, since S(x, 1) and ¥ (x, 1) are solutions of the problem (1), (2),

we get

Yy (%, 1) + p) Y (x, 1) + () ¥ra(x, 1) = Ap(¥)yn (v, 1),

— 1 (%, 2) + gx) Y1 (x, 1) = px)Pa(x, 1) = Ao (x) Pa (, 1),
S5, ) + PRSI (X, D) + G(%)S2(%, ) = A0 (%)S1(x, A),
=81 (% ) + q(x)S1(%, 1) — P(*)S2 (%, ) = A 0 (%) S (%, 1)

Multiplying the equations by Sj(x, A,,), Sy (%, 1), = (%, 1), =5 (x, 1), respectively, adding
them together, integrating from 0 to 7 and using the condition (2),

(A) = A(ry)

/ (8106, 2091 5.2) + S50 2o 1) o) i = =0
0 —An
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is found. From (6) as A — A,;, we obtain
Bnotn = A()Ln)-
The following two theorems are obtained by Huseynov and Latifova in [27].

Theorem 1 (i) The boundary value problem (1), (2) has a countable set of simple eigenval-
ues A, (n € Z) where

nw
hp=——"——+¢€, ([e}€h. 8)
an —aa+a

(ii) The eigen vector-functions of problem (1), (2) can be represented in the form

sin nm pu(x) (¢9) X
S(x, A) = o |t S72)( ) )
—COS prp—— En (x)

Y HEPW +EP@ ) <G n) = {"

ax—oa+a, a<x=<T.

0<x<a,

n=-00

(iii) The normalizing numbers of problem (1), (2) have the form
a,=ar —aa+a+6,, {8,}€l. 9)

Theorem 2 (i) The system of eigen vector-functions {S(x, 1,)} (n € Z) of problem (1), (2) is
complete in space L ,(0,7; C?).

(ii) Let f (x) be an absolutely continuous vector-function on the segment [0, 7] and f(0) =
fi(mw) =0. Then

+00

@)=Y St hn), (10)

n=—00

1
Cn = O[_n(f(x)’ S(x: An));

moreover, the series converges uniformly with respect to x € [0, ].
(iii) For f(x) € Ly,,(0,7; C?) series (10) converges in L, ,(0,7; C*); moreover, the Parseval

equality holds:
WFIP =) anlenl® (11)

From [27], the following inequality holds:
AG)| = Gy exp(|Tm Alu(n)), (12)
where C; is a positive number and this inequality is valid in the domain

Gs={r: A=A =8,n=0,41,%2,...},

Page 4 of 20
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where 19 = #”(’;) (n € Z) are zeros of the function Ag(A) = sinAu(w) and § is a sufficiently

small number.

In Section 3, the fundamental equation

()
A(x,u(t))+F(x,t)+/0l A(x, E)Fy(E,0)dE =0, 0<t<x,

is derived by using the method by Gelfand-Levitan-Marchenko, where

F(xt)—i 1 sin A,x Zot.i) 1 sinkgx :S'(tko)
o @y \=cos i) 0T a0 \ —cosalx ) 7OV

n=-00 n

and

F(x,t) = Fy (/L(x), t).

In Section 4, we show that the fundamental equation has a unique solution A(x,¢) and
the boundary value problem (1), (2) can be uniquely determined from the spectral data.
In Section 5, the result is obtained from Lemma 6 that the function S(x, A) defined by (3)
satisfies the equation

BS'(x, 1) + Q(x)S(x, 1) = Ap(x)S(x, A),
where

Q(x) = p(x)A (%, n(x))B — BA(x, 1(x)),

where A(x, ) is the solution of the fundamental equation. In Lemma 7, using the funda-

mental equation, the Parseval equality

o]

T 1 T 2
/0 (@@ +gW)p@dr= Y a—( /0 S(t,kn)g(t)p(t)dt)

n=—o00 "

is found. We demonstrate by using Lemma 6, Lemma 9, and Lemma 10 that {A,, &} (n € Z)
are spectral data of the boundary value problem (1), (2). Then necessary and sufficient
conditions for the solvability of problem (1), (2) are obtained in Theorem 11. Finally, we
give an algorithm of the construction of the function Q(x) by the spectral data {A,,a,}
(ne?Z).

Note that throughout this paper, ¢ denotes the transposed matrix of ¢.

3 Fundamental equation
Theorem 3 For each fixed x € (0, 7] the kernel A(x,t) from the representation (3) satisfies
the following equation:

(%)
A(x, u(2)) + F(x,£) + /: Ax, E)Fo(£,0)dE =0, O<t<x, (13)
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where
nd 1 sin A,x 1 sin A%x
Fol(x, t) = — " So(t, An) — — ) So(t, 20 14
o) n;O |:a,, (—cosk,pc) o(6r2a) af (—coskgx) 0( ")i| ()
and
F(x) t) = FO(M(x)r t)’ (15)

where A2 and o are, respectively, eigenvalues and normalizing numbers of the boundary
value problem (1), (2) when Q(x) = 0.

Proof According to (3) we have

H(x) ;
S, 1) = S(x, 1) — / A(x,t)( sin At ) dt. (16)
0 —COS AL
It follows from (3) and (16) that
Mo Noq
D =SS0t ) = Y —So( kn)So(ts An)
oy oy
n=—N n=—N
R N1 sina £\
Alx, — "> N So(t, 1) | d
+/0 (x s)(gan (_Coskng ot 1) |
and
N 1 B N 1 _
D =SS0t ) = Y — S ) An)
Uy Ay
n=—N n=—N

N ®
-y alS(x,)\,,)/OM (sin A€, —cos A,E)A(t, &) dE.

n==N "

Using the last two equalities, we obtain

— n

T - 1 .
n;v[a—nS(x, ISt ) = —5 (@ 13) (6 12)}

N
= Z |:l50(x, )‘-n)go(t,)‘-n) - aiOS()(x,)\g)So(t, )\.2)]

n
n=-N n

#e Yo fsinnle L,
+/0 A(x,&)ng[a—g <—cos,\gg So(t, %) | dt

#e Y1 sinng ) - 1 ( sin2% \. .
+f0 Ax8) Y. [a—n (—coskné So(t,xn)—a—g cos 0% So(£,10) | dt
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or
Oy, 1) = Int(%, £) + Ina (%, £) + In3 (. 1) + Ina(x, 8), (17)
where
N o )
D (1) =n§[a5(x, WSt ) — ” (x,kO)S(t,Ag)],
| 1 8
INl(x: t) = Z_N|:Ol (x: n)SO(t }‘n) - _n ( :}»2)50(5,)»2)}
1) N 1 sin\,&
o= [amn 3| 5 (0 )| e
s f) = M(x)A( ) NI sinA,& Solt )
N3, —/0 xré n;\[ C(_n —COS)»,,%' o\b Ay
1 10
= (f:;skog)w e
N
Ina(x,t) = Z —S (x, ,,) (smk,,é coskné)A(t &) dEt.
n=-N n
It is easily found by using (14) and (15) that
00 1 .
Fxt)= ) [—So(x, S0t ) — —So(x, )So(t,kg)]. (18)

Let f(x) € AC[0, 7r]. Then according to the expansion formula (10) in Theorem 2, we obtain

uniformly on x € [0, 7]

Jim_ Oﬂ O (x, 1) () p(t) dt = i nS(%, An) — i 2S(x,19) =0. (19)
From (18), we find
Jim [ o eyopar
= A}Lnio Z[ So(, kn)So(t, Au) — a—gso(x,,\g)So(t,xg)}/(t)p(t)dt
- /O " Fe tf 00 dt (20)

It follows from (3) that

( sin A& ) _ {SO(Sé JA), ¢<a, (1)
—COSAE So(z+a-2,1), é>a
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Taking into account (21) and expansion formula (10) in Theorem 2, we get

g

lim Ino (x, )f (8) p(2) dt
N—ox Jo

[ # sinA, & 0
_/0 [/0 AwE) Z [ao (—cos,\gg) So(t, )} dé}f(t)p(t)dt

n=-N

:/o [/ Ab8) Z _SO (&, 47)So0 (. 1 )d§i|,/(t)p(t)dt

noo”‘

g ax—aa+a g
L0 (e e

n=—o00 "

- f A £)f(E)dE + / - A(x,sy(5+a—5)ds.
0 a o o

Substituting % +a— 2 — &', we obtain

Jim [ hatwor@podr
=/0 A(x,f)f(é)d%‘+a/ A(x, 0t —aa+a)f (&) dg’
:/aA(x,t)f(t) dt+a/xA(x,ozt—om+a)f(t)dt
0 a
:fo A(x, 1 (@))f () p(t) dt.

Now, we calculate

g

lim Ins(x, )f () p(2) dt
N—o Jo

. Tk N1 sinA,€ \
- [ A(x,s>nZN[a—n <_CowS So(6, 1)

1 [ sinAl&
o) (—Cos Agée) So(t: )]J(t)p(t) dt dt

T ()
- /0 [ /O A(x,sm,(s,t)ds]/(t>p(t>dt.

Using (7) and the residue theorem, we get
lim / I Of©)p(0) de
N—o0 Jo

T N
= lim [Z o Swh) | " (5 1n8, - cos ,E)A() 5}/(t)p(t)dt
0

N—o0
N ay

w N )
= Jim | [Z Ao / (sin %€, cos 2, A, S)dé}j() (0t

n=—N

(22)

(23)

Page 8 of 20
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[ N »y () ~
- Jim_| _;{555 ‘/’A(’(‘A)) fo (sinxg,-cosxg)A(t,s)dg}/(t)p(t)dt
. T 1 Yn) (10 ~
:A}H)I})o \ _% L AG) /0 (Sin A&, —cosAE)A(L, &) dE d)\}/(t)p(t)dt
caim [T [ SR i
N—oo Jo _27Ti I'n A(}\.)
u(t) -
x e 1TmAn) / (sin A&, —cos AE)A(L, €) dE dx]/(t)p(t) dt, (24)
0

where Iy = {L 1 |A| = A% + %} is oriented counter-clockwise, N is a sufficiently large
number. Taking into account the asymptotic formulas as |1| = oo

Y, 4) = —Sink(,u,(n) - M(x)) + O(ﬁeum)»l(ﬂ(ﬂ)—u(x)))’

Ya(x, 1) = —cos A (u(m) — pu(x)) + O(ﬁe' Im““(”)‘“(’c)))

and the relations ([20], Lemma 1.3.1)

lim max e /MA@

[A|—00 0<t<rm

u(t)
/ Aur(6,8) sin ds‘ _o,
0

lim max e /mA @)
|A| =00 0<t<m

o)
/ Aio(t,E)cos A& dé‘ =0, i=12,
0

it follows from (12) and (24) that

]\}i—1>noo /0 Ina(x, t)f () p(t) dt = 0. (25)

Thus, using (17), (19), (20), (22) (23), and (25), we find

/o Al 1 O)f(0)p(e)dt + /0 Flx, 0 (0)p(0) dt

” plx)

Since f(x) can be chosen arbitrarily,

(%)
A(x,u,(t))+F(x,t)+/0M A, E)Fy(E,1)dE =0, O<t<wx

is obtained. O

4 Uniqueness
Lemma 4 For each fixed x € (0, 7], (13) has a unique solution A(x,-) € L,(0, u(x)).

Proof When a < x, (13) can be rewritten as

L.A(x,-) + K,A(x, ) = —F(x,-),

Page 9 of 20
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where

f@), t<a<x,

26
flat—aa+a), a<t<wx, (26)

(LJ)(t)={
(Kof) = /0 T ORE nds, 0<t<n

Now, we shall prove that L, is invertible, i.e. has a bounded inverse in L, (0, ).
Consider the equation (L.f)(t) = ¢(t), ¢(£) € L,(0,7;C?). From this and (24),

o(t), t<a,
p(Heet) ac<t.

f@® = (Lle) @) = {
We show that

Iz, = [Lte] < Cllglir,-

In fact,

[ thor +or)a

- /0 (0] + |2 0)) dt
<t+om —a)
Q| ———
o

b4 2
t —
[ (55 )

=/(|¢1(t)|2+|¢2(t)|2)dt+af (o + oa)]) de

a
0

2
+

- C/o (e + |p2(0)]) d.

Thus, the operator L, is invertible in L,(0, 7). Therefore the fundamental equation (13) is

equivalent to
Ax,) + L' KA, ) = =L F(x, )

and L;'K, is completely continuous in L,(0, 7). Then it is sufficient to prove that the equa-

tion
H(x)
guo) + [ e@Fole0ds =0 27)
0
has only the trivial solution g(£) = 0. Let g(¢) be a non-trivial solution of (27). Then
| (@ 00) + & wi0)) ooy
0

x pp)
+ / / (g(&)Fo(&,1),g(1(0))) p(2) dE dt = 0.
0 0
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It follows from (14) that

/0 (@ (1) + & (1®)) p(2) dt

[o¢]

* wlx) 1 [ sini,€ \ -
+/0 g(u(t))p(t)/0 g(é)( Z;a_n (—coskng) So(t, 2

n=—

: 0
! ( sink, & )So(t,xﬁ)) dg dt = 0.

T 0 0
a, \—cosA,é

Using (21), we get

[ (@ 000) + o))t

x~ a 00 1 -
. fo #10)p® /0 56) 3 S Ak d e

x~ a o0 1 B
) /0 (1)) /0 €60 3 a6 A)ofe ) de

¢}

R /0 (1®)p® fo TS iso@+a—§,xn)éo(t,xn>dsdt

o
n=-00

oo

o

- [(etwoyo [ g(f)n;oa%50<§+a—§,k2)§o(t,kg)d§dt=0.

Substituting 5 +a— 2 — £ into the last two integrals, we obtain

[ @ 00) + dueewa

x~ a 00 1 .
+ /0 1) 0 /0 86) 3 o Sole ol

x~ a o0 1 .
_ /0 Z(u(®))p(0) /0 g&) Y —550(6:47)S0 (£, ) dé dt

n=—o0 M

‘o /0 (1) f g(as—aam);_:;:—nso(s,xn)so(t,xn)dwt

x~ X [e¢] 1 5
—o [ 2(u®)o0) [ elat —aara) 3 oo(e,10)30(005) de dr

n=—oco M

= /0 (& (1®) + g5 (u(0))) p(t) dt

x~ x o 1 -
+/0 g(u(t))p(t)/o g(M(E))p(S)n;o aSo(S,kn)So(t,kn)dédt

- [ 200 [ elule)o©) Y- Zosolendo(e.) dede=o.

n=-oco "

(28)

Page 11 of 20
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Using the Parseval equality,
00 1 x _
gn@®) =y (@ f g(u(t))so(t,xﬁ)p(t)dt)so(t,xﬁ),
0

n=—00 n

it follows from (28) that
x _ x o 1 -
/0 Z(1(®)p(®) /0 (R©)(E) Y —So(&.1)S0(t,1,) d dt =0.

Since the system {So(t, 1,,)} (n € Z) is complete in Ly ,(0,7;C?), we have g(u(£)) =0, i.e.
(Lxg)(¢t) = 0. For L, invertible in L,(0,7), A(x,-) = 0 is obtained. O

Theorem 5 Let L(Q(x)) and L($(x)) be two boundary value problems and
Ao = Aoy a,=a, meZ).

Then
Qx) =Qx) ae on(0,7).

Proof According to (14) and (15), Fy(x,t) = Fo(x,t) and F(x,t) = F(x,t). Then, from the
fundamental equation (13), we have A(x,t) = A(x, £). It follows from (4) that Q(x) = Q(x)
a.e.on (0,7). O

5 Reconstruction by spectral data
Let the real numbers {1, &} (n € Z) of the form (8) and (9) be given. Using these numbers,
we construct the functions Fy(x, £) and F(x, ) by (14) and (15) and determine A(x, ) from
the fundamental equation (13).

Now, let us construct the function S(x,1) by (3) and the function Q(x) by (4). From
[2], Fo(x,t) and F(x,t) have a derivative in both variables and these derivatives belong to
Ly ,(0,7).

Lemma 6 The following relations hold:

BS'(x, 1) + Q(x)S(x, 1) = Ap(x)S(x, A), (29)
$1(0,1) =0, S»(0,A) = 1. (30)

Proof Differentiating to x and y, (13), respectively, we get
JZ2€)
Al (%, 10(2)) + Fyx, £) + A, 1)) Fo (1(x), £) + /0 Al (x,&)Fo(&, 1) dE =0, (31)
()
p(t)A;(x,,u,(t)) +Fy(x, ) + /0 A(x,E)F[)t (&,8)dE = 0. (32)

It follows from (14) and (15) that

] )
—Fy(x,t)B + p(t)B—Fy(x,t) = 0, (33)
ot ox
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ad ]
p(x) —F(x,£)B + p(£)B—F(x,7) = 0, (34)
ot ox
and using the fundamental equation (13), we obtain
A(x,0)B=0. (35)
Multiplying (31) on the left by B and p(t) we get
p(0)BE,(x,t) + p(£)BA),(x, 1(2)) + p(£)BA(x, n(x)) Fo (1e(x), 2)

(x)
+p(0) /0 BA!(x,)Fo(£, £)d% = 0 (36)

and multiplying (32) on the right by B and p(x) we have

u(x)
p(X)F,(x,t)B + p(x) p()A, (%, iu(£)) B + p(x) /0 A(x,£)Fy, (§,t)BdE = 0. (37)

Adding (36) and (37) and using (34), we find

ulx)
P(O)BAL (%, 11(8)) + p(DBA(x, 11(x))Fo (1(x), ) + p(2) fo BA(x,£)Fo(&, 1) dE
w(x)
= —p) p() A} (x, 11(8)) B ~ p(&) /O A, £)F) (5,)Bdg = 1(x,1). (38)

From (33), we get

wix)
I(x, £) = —p(x) p(£) A} (%, 11(£)) B + p(x) p(2) /0 A(x,§)BF,,(§,1)dE. (39)
Integrating by parts and from (35)
I(x,t) = —p(x) p(£) A, (%, 11(2)) B + p(£) p(%)A (i, (%)) BFo (11(x), 2)
w(x)
o)) fo AL (6, £)BFo (6,0 d (40)
is obtained. Substituting (40) into (38) and dividing by p(£) # 0, we have

BA!,(x, 11(2)) + BA(x, (%)) Fo (11(x), ) + p(x)A} (%, 1u(£)) B

— p(R)A (2, 11(x)) BFo (11(x), 2)
+ /0 " [BA,(x,&) + p(x)AL (x,&)B]Fo (&, 1) d& = 0. (41)
Multiplying (13) on the left by ©(x) in the form of (4) and adding to (41)
BA!(x, 11(x)) + p(x) A} (%, 1 (£)) B + QUx)A (i, 11(2))

wix)
+ /0 [BA,(x,&) + p(x)AL(x,&)B + Qx)A(x, §)|Fo (&, £) dt = 0 (42)
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is obtained. Setting
J(x,8) := BAL(x,£) + p(x)A}(x, £)B + Q(x)A(x, £),
we can rewrite (42) as follows:
()
J) + [ s, 0de <o (43)
According to Lemma 4, the homogeneous equation (43) has only the trivial solution, i.e.
BA/(x,8) + p(x)A}(x, £)B + Qx)A(x,8) =0, 0<t<ax. (44)

Differentiating (3) and multiplying on the left by B, we have

sin A (x) —cos Au(x)

H(x) inAf
' f BA;(x,t)( S )dt. (45)
0 —COSAL

On the other hand, multiplying (3) on the left by Ap(x) and then integrating by parts and

BS'(x,1) = Ap(x)B (COS Au(x)) +BA(x, (%)) ( sin A (x) )

using (35), we find

—cos Au(x) —cos Au(x)

(x) in At
~ o(x) / A, t)B( st ) dt. (46)
0 —COS AL

It follows from (4:5) and (46) that

Ap(x)S(x, 1) = —/\p(x)< SinAu(x) ) +p(x)A(x,u(x))B< sin A () )

Ao (x)S(x, A) = BS(x, 1) — [BA (x, ,u(x)) - px)A (x, /,L(?C))B] (_ii:f::l))

—COS AL

(%) ;
" a0 + pAl 0B8] [ S .
[ s (.08]

Taking into account (4) and (44),
BS'(x, 1) + Q(x)S(x, A) = Lo (x)S(x, 1)
is obtained. For x = 0, from (3) we get (30). a

Lemma 7 For each function g(x) € L ,(0,7; C?), the following relation holds:

[e¢]

T T 2
/0 (@0 + EW)owdr= Y i( /O S(t,xn)gmp(t)dt). (7)

n=-00 n
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Proof 1t follows from (3) and (21) that

S, A) =Solx, 1) + / A(x, 11(2))So (8, 1) p(2) dt. (48)
0
Using the expression

F(x,t), x<a,
F(Z+a-2,t), x>a,

Fo(x,t) = {

the fundamental equation (13) is transformed into the following form:

Al u(0) + Fs.) + [ Al 1n©)FE00(€) de 0. (49)
From (48), we get
Sol, 1) = S(x,A) + / xH(x,u(t))S(x,x)p(t) dt (50)
0

and for the kernel H(x, j£(¢)) we have the identity

I:[(x, ,u(t)) =F(x,t) + /0 A(x,pu(é))F(S, HpE)dE, O0<t<wx (51)
Denote
QU= [ 36 g0
0

and using (48) it is transformed into the following form:

Q) - / So(t, MA(D) dt,

0

where

ho =0+ [ Als u0)e)o)ds. (52)
Similarly, in view of (50), we have

g0 =)+ [ (s n)h)o0)ds (53)
According to (52),

[ " e 0h(0)p(0)de = [ " Fet) [g(t) o " A5 n0)g9)0() ds]pm dt

= /0 [F(x, t) +/0 F(x, S);l(t,u(s))p(s) ds]g(t),o(t) dt
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:/(; |:F(x,t)+/0 F(x,s);l(t,M(s)),o(s)ds]g(t)p(t)dt

+/‘7T |:F(x,t)+/ F(x,s);l(t,M(s)),o(s)ds]g(t)p(t) dt.
x 0

It follows from (49) and (51) that

| Fesomop©dr = [ s n@)etp@de - [ A@rw)ewnod

From (18) and the Parseval equality we obtain

/ (hf(t) + h%(t))p(t) dt + / h(x)E(x, t)h(t) p(t) p(x) dx dt

0 0

oo

g T 2
= /0 (73 (e) + I3(8) p(e)dt + Y i( /o So(t,kn)h(t)p(t)dt)

o
n=—co "

1 T 0 2

> o?( /0 SO(t’ln)h(t)p(t)dt>
L ([ 2 Q)
:}12;0“—”(/0 SO(tr)\n)h(t)p(t)dt) = Z =

n=-00 n
Taking into account (54), we have

o0

Z = / (73 () + I3(2)) p(2) dt
s d d
. /0 (x)( f (5, 1(0)g(D)p(0) t) (x) dx

f (x)( / (6, @) g®p(e)d )p(x)dx
0

=/0 (R} (t) + B3 () p(t) dt

o [ Feomts upoe s )eont e
- [ [ At nenepwar) s

whence, by (52) and (53),

00 2 T
3 Q) _ f (F2(t) + () p (1) it

n=—00 &n 0

+ /0 (&(0) - () g (£)p(e) dt - / h(@) (h(x) - g(x)) p(x) dx

0

= /0 (g1(6) + g3 () p(t) dt

is obtained, i.e., (47) is valid.

(54)
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Corollary 8 For any function f (x) and g(x) € L,,,(0,7; C?), the following relation holds:

oo

m B 1 m B m
fo FWf ) d Zooa—( fo g(t)S(t,kn)p(t)dt) ( [0 s<t,xn>f<t>p<t>dr). (55)

Lemma9 The relation

| Snsterptede - { 0 n#k (56)
0 o, n=k
is valid.
Proof (1) Let f(x) € W3[0, ]. Consider the series
F1@ =Y cuSlxhn), (57)
where
1 T
eni=— | 802 (Wp@) dx. (58)
n JO

Using Lemma 6 and integrating by parts, we get

Cy = 1 /ﬂ[ iS'(x, AH)B+§(x,An)Q(x)],/(x) dx
0

AnQly Cox
1

nan

{36, An)Bf () - 5(0, 1) Bf (0))

/ S(x, )»,,)[Bf(x) + Q(x)f(x)] dx.

n%n Jo

Applying the asymptotic formulas in Theorem 1, {c,} € [, is found. Consequently the series
(57) converges absolutely and uniformly on [0, 7]. According to (55) and (58), we have

o0

g 1 b g T[N
g dx = — g s A d s A d
[ awr@oma- Y ([ awserpwa)( [ Serrome)

o
n=—oo0 "

oo

=y c,,( /0 ﬂg(t)S(t, An)p(t) dt)

n=-—00

_ /0 0 Y st ip@d

n=-—00

= / g)f*(¢)dr.

0

Since g(x) is arbitrary, f(x) = f*(x) is obtained, i.e.

f@) =" cuSl, An). (59)

Page 17 of 20
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(2) Fix k € Z and assume f(x) = S(x, A¢). Then, by virtue of (59),

S@ ) = D cuSE ),

n=-00

where
1 T
R f 86, 1)S(, A0) .
Uy Jo

The system So(x,A,) is minimal in L, ,(0,7;C?) and consequently by (3), the system
S(x,A,,) is minimal in Ly ,(0, 7r; C?). Hence ¢, = §,x and we obtain (56). O

Lemma 10 For all n € Z the equality

Si(m, 1) =0
is valid.
Proof 1t is easily found that

Ay =) /On [0 20)S1 (%, ) = Sa(, A) Sa %, M) | 0 (%) dx

= [Sz(x, An)S1(%, X)) — Sl(x,kn)Sg(x,)Lm)] |g

According to (56), we get

So (7, 1) S1(7, M) = Si(7w, Ap)Sa (w5 A) = 0. (60)
We shall prove that for any #n, Sy(7, A,) # 0. Assume the contrary, i.e. there exists m such

that Sy(7r,A,,) = 0. Then for n # m, it follows from (60) that S,(;r,A,,) = 0. On the other
hand, since as # — 00

Sa(w, ) = (1) + O<l>,
n

Sy(, Ay) # 0. This contradicts the condition S, (7, A,,) = 0, n # m. Hence, S, (7, A,) # 0 for
any #n. From (60), we have

Sl(n!)\n) _ Sl(nr)\m) _
52(77::)\;'1) - 52(7'[;)\-m) -

Thus, we get S1(m, 1,,) = HS2(7, 1,,), for any #. Since
1
Sl(n:)‘n):()(_), asn — oo,
n

we find H = 0, and then S;(r, A,) = 0 is obtained. O
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Theorem 11 For the sequences {A,, &} (n € Z) to be the spectral data for a certain bound-
ary value problem L(Q2(x)) of the form (1), (2) with Q(x) € Ly(0, ), it is necessary and suf-
ficient that the relations (8) and (9) hold.

Proof Necessity of the problem is proved in [27]. Let us prove the sufficiency. Let the
real numbers {A,,«,} (n € Z) of the form (8) and (9) be given. It follows from Lemma 6,
Lemma 9, and Lemma 10 that the numbers {A,, ,,} (n € Z) are spectral data for the con-

structed boundary value problem L(S2(x)). The theorem is proved. O

The algorithm of the construction of the function €(x) by the spectral data {X,,, «,,} (n €
7) follows from the proof of the theorem:
(1) By the given numbers {X,,«,} (n € Z) the functions Fy(x,t) and F(x, t) are
constructed, respectively, by (14) and (15).
(2) The function A(x, ) is found from (13).
(3) Q(x) is calculated by (4).

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Acknowledgements _
This work is supported by The Scientific and Technological Research Council of Turkey (TUBITAK).

Received: 30 November 2013 Accepted: 25 April 2014 Published: 13 May 2014

References

1. Gasymov, MG, Levitan, BM: The inverse problem for the Dirac system. Dokl. Akad. Nauk SSSR 167, 967-970 (1966)

2. Gasymov, MG, Dzabiev, TT: Solution of the inverse problem by two spectra for the Dirac equation on a finite interval.
Dokl. Akad. Nauk Azerb. SSR 22(7), 3-6 (1966)

3. Dzabiev, TT: The inverse problem for the Dirac equation with a singularity. Dokl. Akad. Nauk Azerb. SSR 22(11), 8-12
(1966)

4. Misyura, TV: Characteristics of spectrums of periodical and antiperiodical boundary value problems generated by
Dirac operation. In: II. Teoriya funktsiy, funk. analiz i ikh prilozheiniya, vol. 31, pp. 102-109. Institute for Low
Temperature Physics and Engineering of the National Academy of Sciences of Ukraine, Kharkov (1979)

5. Nabiev, IM: Solution of a class of inverse problems for the Dirac operator. Trans. Natl. Acad. Sci. Azerb. 21(1), 146-157
(2001)

6. Nabiev, IM: Characteristic of spectral data of Dirac operators. Trans. Natl. Acad. Sci. Azerb. 24(7), 161-166 (2004)

7. Sakhnovich, A: Skew-self-adjoint discrete and continuous Dirac-type systems: inverse problems and Borg-Marchenko
theorems. Inverse Probl. 22(6), 2083-2101 (2006)

8. Fritzsche, B, Kirstein, B, Roitberg, IY, Sakhnovich, A: Skew-self-adjoint Dirac system with a rectangular matrix potential:
Weyl theory, direct and inverse problems. Integral Equ. Oper. Theory 74(2), 163-187 (2012)

9. Latifova, AR: The inverse problem of one class of Dirac operators with discontinuous coefficients by the Weyl
function. Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb. 22(30), 65-70 (2005)

10. Amirov, RK: On system of Dirac differential equations with discontinuity conditions inside an interval. Ukr. Math. J.
57(5), 712-727 (2005)

11. Huseynov, HM, Latifova, AR: The main equation for the system of Dirac equation with discontinuity conditions
interior to interval. Trans. Natl. Acad. Sci. Azerb. 28(1), 63-76 (2008)

12. Watson, BA: Inverse spectral problems for weighted Dirac systems. Inverse Probl. 15(3), 793-805 (1999)

13. Mamedov, SG: The inverse boundary value problem on a finite interval for Dirac’s system of equations. Azerb. Gos.
Univ. Ucen. Zap. Ser. Fiz-Mat. Nauk 5, 61-67 (1975)

14. Panakhov, ES: Some aspects inverse problem for Dirac operator with peculiarity. Trans. Natl. Acad. Sci. Azerb. 3, 39-44
(1995)

15. Yang, CF, Huang, ZY: Reconstruction of the Dirac operator from nodal data. Integral Equ. Oper. Theory 66, 539-551
(2010)

16. Yang, CF, Pivovarchik, VN: Inverse nodal problem for Dirac system with spectral parameter in boundary conditions.
Complex Anal. Oper. Theory 7, 1211-1230 (2013)

17. Albeverio, S, Hryniv, R, Mykytyuk, Y: Inverse spectral problems for Dirac operators with summable potentials. Russ.
J.Math. Phys. 12(14), 406-423 (2005)

18. Krein, MG: On integral equations generating differential equations of the second order. Dokl. Akad. Nauk SSSR 97,
21-24(1954)


http://www.boundaryvalueproblems.com/content/2014/1/110

Mamedov and Akcay Boundary Value Problems 2014, 2014:110
http://www.boundaryvalueproblems.com/content/2014/1/110

20.
21

22.

23.

24.

25.

26.

27.

. Mamedov, KR, C6l, A: On an inverse scattering problem for a class Dirac operator with discontinuous coefficient and

nonlinear dependence on the spectral parameter in the boundary condition. Math. Methods Appl. Sci. 35(14),
1712-1720(2012)

Marchenko, VA: Sturm-Liouville Operators and Applications. Am. Math. Soc., Providence (2011)

Freiling, G, Yurko, V: Inverse Sturm-Liouville Problems and Their Applications. Nova Science Publishers, New York
(2008)

Guliyev, NJ: Inverse eigenvalue problems for Sturm-Liouville equations with spectral parameter linearly contained in
one of the boundary conditions. Inverse Probl. 21, 1315-1330 (2005)

Mamedov, KR, Cetinkaya, FA: Inverse problem for a class of Sturm-Liouville operator with spectral parameter in
boundary condition. Bound. Value Probl. (2013). doi:10.1186/1687-2770-2013-183

Akhmedova, EN, Huseynov, HM: On solution of the inverse Sturm-Liouville problem with discontinuous coefficients.
Trans. Natl. Acad. Sci. Azerb. 27(7), 33-44 (2007)

Yang, CF, Yang, XP: An interior inverse problem for the Sturm Liouville operator with discontinuous conditions. Appl.
Math. Lett. 22, 1315-1319 (2009)

Latifova, AR: On the representation of solution with initial conditions for Dirac equations system with discontinuous
coefficients. Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb. 16(24), 64-68 (2002)

Huseynov, HM, Latifova, AR: On eigenvalues and eigenfunctions of one class of Dirac operators with discontinuous
coefficients. Trans. Natl. Acad. Sci. Azerb. 24(1), 103-112 (2004)

10.1186/1687-2770-2014-110
Cite this article as: Mamedov and Akcay: Inverse eigenvalue problem for a class of Dirac operators with
discontinuous coefficient. Boundary Value Problems 2014, 2014:110

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Immediate publication on acceptance

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com

Page 20 of 20


http://www.boundaryvalueproblems.com/content/2014/1/110
http://dx.doi.org/10.1186/1687-2770-2013-183

	Inverse eigenvalue problem for a class of Dirac operators with discontinuous coefﬁcient
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries
	Fundamental equation
	Uniqueness
	Reconstruction by spectral data
	Competing interests
	Authors' contributions
	Acknowledgements
	References


