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Abstract
An analysis is carried out to study the heat transfer characteristics of steady
two-dimensional stagnation-point flow of a copper (Cu)-water nanofluid over a
permeable stretching/shrinking sheet. The stretching/shrinking velocity and the
ambient fluid velocity are assumed to vary linearly with the distance from the
stagnation-point. Results for the skin friction coefficient, local Nusselt number,
velocity as well as the temperature profiles are presented for different values of the
governing parameters. It is found that dual solutions exist for the shrinking case, while
for the stretching case, the solution is unique. The results indicate that the inclusion of
nanoparticles into the base fluid produces an increase in the skin friction coefficient
and the heat transfer rate at the surface. Moreover, suction increases the surface shear
stress and in consequence increases the heat transfer rate at the fluid-solid interface.
MSC: 34B15; 76D10
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1 Introduction
Nanofluids are the suspension of metallic, nonmetallic or polymeric nano-sized powders
in base liquid which are employed to increase the heat transfer rate in various applica-
tions. The term nanofluid, first introduced by Choi [], refers to the fluids with suspended
nanoparticles. Most of the convectional heat transfer fluids such as water, ethylene gly-
col and mineral oils have low thermal conductivity and thus are inadequate to meet the
requirements of today’s cooling rate. An innovative way of improving the thermal conduc-
tivities of such fluids is to suspend small solid particles in the base fluids to form slurries.
An industrial application test was carried out by Liu et al. [] and Ahuja [], in which the
effect of particle volumetric loading, size and flow rate on the slurry pressure drop and heat
transfer behavior was investigated (Xuan and Li []). Experimental results by Eastman et
al. [] showed that an increase in thermal conductivity of approximately % is obtained
for the nanofluid consisting of water and % volume fraction of CuO nanoparticles. The
procedure for preparing a nanofluid is given in the paper by Xuan and Li [].
Many of the publications on nanofluids are about understanding of their behaviors

so that they can be utilized where straight heat transfer enhancement is paramount as
in many industrial applications, nuclear reactors, transportation, electronics as well as
biomedicine and food (see Ding et al. []). Nanofluid is a smart fluid, where the heat
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transfer capabilities can be reduced or enhanced at will. These fluids enhance thermal
conductivity of the base fluid enormously, which is beyond the explanation of any existing
theory. They are also very stable and have no additional problems, such as sedimenta-
tion, erosion, additional pressure drop and non-Newtonian behavior, due to the tiny size
of nanoelements and the low volume fraction of nanoelements required for conductivity
enhancement. Much attention has been paid in the past to this new type of composite ma-
terial because of its enhanced properties and behavior associated with heat transfer, mass
transfer, wetting and spreading as well as antimicrobial activities, and the number of pub-
lications related to nanofluids increases in an exponential manner. The enhanced thermal
behavior of nanofluids could provide a basis for an enormous innovation for heat transfer
intensification, which is of major importance to a number of industrial sectors includ-
ing transportation, power generation, micro-manufacturing, thermal therapy for cancer
treatment, chemical and metallurgical sectors, as well as heating, cooling, ventilation and
air-conditioning. Nanofluids are also important for the production of nanostructuredma-
terials, for the engineering of complex fluids, as well as for cleaning oil from surfaces due
to their excellent wetting and spreading behavior (Ding et al. []).
There are some nanofluid models available in the literature. Among the popular mod-

els are the model proposed by Buongiorno [] and Tiwari and Das []. Buongiorno []
noted that the nanoparticle absolute velocity can be viewed as the sum of the base fluid
velocity and a relative velocity (that he calls the slip velocity). He considered in turn seven
slip mechanisms: inertia, Brownian diffusion, thermophoresis, diffusiophoresis, Magnus
effect, fluid drainage and gravity settling (Nield and Kuznetsov []). The nanofluid mathe-
matical model proposed by Buongiorno [] was very recently used by several researchers
such as, among others, Nield and Kuznetsov [, ], Kuznetsov and Nield [, ], Khan
and Pop [], Khan and Aziz [], Makinde and Aziz [], Bachok et al. [, ], etc. On
the other hand, the Tiwari and Das model analyzes the behavior of nanofluids taking into
account the solid volume fraction of the nanofluid. In the present paper, we study the
flow and heat transfer characteristics near a stagnation region of a permeable stretch-
ing/shrinking sheet immersed in a Cu-water nanofluid using the Tiwari and Das model. It
is worth mentioning that this model was recently employed in Refs. [–], and the flow
over a shrinking sheet was considered in Refs. [–]. The velocity distribution of the
two-dimensional stagnation flowwas first analyzed by Hiemenz (seeWhite []) who dis-
covered that this flow can be analyzed exactly by the Navier-Stokes equations. Homann
(see White []) extended this problem to the axisymmetric stagnation flow and found
that the solution differs a little from the plane flow, where the displacement and bound-
ary layer thicknesses are slightly smaller and the wall shear stress is slightly larger. On the
other hand, the temperature distributions of the Hiemenz and Homann flows were given
by Goldstein [] and Sibulkin [], respectively. The governing partial differential equa-
tions are first transformed into a system of ordinary differential equations before being
solved numerically. We study the effects of suction and injection at the boundary. Suction
or injection of a fluid through the bounding surface, as, for example, inmass transfer cool-
ing, can significantly change the flow field and, as a consequence, affect the heat transfer
rate at the surface. In general, suction tends to increase the skin friction and heat transfer
coefficients, whereas injection acts in the opposite manner (Al-Sanea []). Injection of
fluid through a porous bounding heated or cooled wall is of general interest in practical
problems involving film cooling, control of boundary layer, etc. This can lead to enhance
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heating (or cooling) of the system and can help to delay the transition from laminar flow
(see Chaudhary and Merkin []). We mention to this end that studies of the boundary
layer flows of a Newtonian (or regular) fluid past a permeable static or moving flat plate
have been done by Merkin [], Weidman et al. [], Ishak et al. [], Zheng et al. []
and Zhu et al. [, ], while Bachok et al. [] have considered the boundary layers over
a permeable moving surface in a nanofluid.

2 Mathematical formulation
Consider a stagnation flow of an incompressible nanofluid over a stretching/shrinking
surface located at y =  with a fixed stagnation point at x = . The stretching/shrinking
velocity Uw(x) and the ambient fluid velocity U∞(x) are assumed to vary linearly from the
stagnation point, i.e., Uw(x) = ax and U∞(x) = bx, where a and b are constant with b > .
We note that a >  and a <  correspond to stretching and shrinking sheets, respectively.
The simplified two-dimensional equations governing the flow in the boundary layer of a
steady, laminar, and incompressible nanofluid are (see Ahmad et al. [])

∂u
∂x

+
∂v
∂y

= , ()

u
∂u
∂x

+ v
∂u
∂y

=U∞
dU∞
dx

+
μnf

ρnf

∂u
∂y

, ()

u
∂T
∂x

+ v
∂T
∂y

= αnf
∂T
∂y

()

subject to the boundary conditions

u =Uw, v = Vw, T = Tw at y = ,

u →U∞, T → T∞ as y→ ∞,
()

where u and v are the velocity components along the x- and y-axes, respectively, Vw is the
mass transfer velocity,T is the temperature of the nanofluid,Tw is the surface temperature,
T∞ is the ambient temperature, μnf is the viscosity of the nanofluid, αnf is the thermal
diffusivity of the nanofluid and ρnf is the density of the nanofluid, which are given by
(Oztop and Abu-Nada [])

αnf =
knf

(ρCp)nf
, ρnf = ( – ϕ)ρf + ϕρs, μnf =

μf

( – ϕ).
,

(ρCp)nf = ( – ϕ)(ρCp)f + ϕ(ρCp)s,
knf
kf

=
(ks + kf ) – ϕ(kf – ks)
(ks + kf ) + ϕ(kf – ks)

.
()

Here, ϕ is the nanoparticle volume fraction, (ρCp)nf is the heat capacity of the nanofluid,
knf is the thermal conductivity of the nanofluid, kf and ks are the thermal conductivities
of the fluid and of the solid fractions, respectively, and ρf and ρs are the densities of the
fluid and of the solid fractions, respectively. It should be mentioned that the use of the
above expression for knf is restricted to spherical nanoparticles where it does not account
for other shapes of nanoparticles (Abu-Nada []). Also, the viscosity of the nanofluid μnf

has been approximated by Brinkman [] as viscosity of a base fluid μf containing dilute
suspension of fine spherical particles.
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The governing Eqs. ()-() subject to the boundary conditions () can be expressed in a
simpler form by introducing the following transformation:

η =
(
U∞
νf x

)/

y, ψ = (νf xU∞)/f (η), θ (η) =
T – T∞
Tw – T∞

, ()

where η is the similarity variable and ψ is the stream function defined as u = ∂ψ/∂y and
v = –∂ψ/∂x, which identically satisfies Eq. (). Employing the similarity variables (), Eqs.
() and () reduce to the following ordinary differential equations:


( – ϕ).( – ϕ + ϕρs/ρf )

f ′′′ + ff ′′ – f ′ +  = , ()


Pr

knf /kf
[ – ϕ + ϕ(ρCp)s/(ρCp)f ]

θ ′′ + f θ ′ =  ()

subjected to the boundary conditions () which become

f () = S, f ′() = ε, θ () = ,

f ′(η) → , θ (η)→  as η → ∞.
()

In the above equations, primes denote differentiation with respect to η, Pr is the Prandtl
number, S is the suction/injection parameter and ε is the stretching/shrinking parameter
defined respectively as

Pr = νf /αf , S = –Vw/(νf b)/, ε =
a
b

()

with ε >  for stretching and ε <  for shrinking.
The physical quantities of interest are the skin friction coefficient Cf and the local Nus-

selt number Nux, which are defined as

Cf =
τw

ρf U∞
, Nux =

xqw
kf (Tw – T∞)

, ()

where the surface shear stress τw and the surface heat flux qw are given by

τw = μnf

(
∂u
∂y

)
y=

, qw = –knf
(

∂T
∂y

)
y=

, ()

with μnf and knf being the dynamic viscosity and thermal conductivity of the nanofluids,
respectively. Using the similarity variables (), we obtain

CfRe/x =


( – ϕ).
f ′′(), ()

Nux/Re/x = –
knf
kf

θ ′(), ()

where Rex =U∞x/νf is the local Reynolds number.
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3 Numerical scheme
The nonlinear differential equations () and () along with the boundary conditions ()
form a two-point boundary value problem (BVP) and are solved using a shooting method,
by converting them into an initial value problem (IVP). This method is very well described
in the recent papers by Bhattacharyya and Layek [] and Bhattacharyya et al. []. In this
method, we choose suitable finite values of η, say η∞, which depend on the values of the
parameters considered. First, the system of equations () and () is reduced to a first-order
system (by introducing new variables) as follows:

f ′ = p, p′ = q,


( – ϕ).( – ϕ + ϕρs/ρf )
q′ + fq – p +  = , ()

θ ′ = r,

Pr

knf /kf
[ – ϕ + ϕ(ρCp)s/(ρCp)f ]

r′ + fr =  ()

with the boundary conditions

f () = S, p() = ε, θ () = ,

p(η∞) = , θ (η∞) = .
()

Now we have a set of ‘partial’ initial conditions

f () = S, p() = ε, q() =?, θ () = , r() =?. ()

As we notice, we do not have the values of q() and r(). To solve Eqs. () and () as
an IVP, we need the values of q() and r(), i.e., f ′′() and θ ′(). We guess these values
and apply the Runge-Kutta-Fehlberg method, then see if this guess matches the boundary
conditions at the very end. Varying the initial slopes gives rise to a set of profiles which
suggest the trajectory of a projectile ‘shot’ from the initial point. That initial slope is sought
which results in the trajectory ‘hitting’ the target, that is, the final value (Bailey et al. []).
To determine either the solution obtained is valid or not, it is necessary to check the

velocity and the temperature profiles. The correct profiles must satisfy the boundary con-
ditions at η = η∞ asymptotically. This procedure is repeated for other guessing values of
q() and r() for the same values of parameters. If a different solution is obtained and the
profiles satisfy the far field boundary conditions asymptotically but with different bound-
ary layer thickness, then this solution is also a solution to the boundary-value problem
(second solution).

4 Results and discussion
We have considered one type of nanoparticle, namely, copper (Cu), with water as the base
fluid. The effects of the solid volume fraction of nanoparticles ϕ, the stretching/shrinking
parameter ε and the suction/injection parameter S are analyzed. Following Oztop and
Abu-Nada [], Abu-Nada andOztop [] andKhanafer et al. [], the value of the Prandtl
number Pr is taken as . (for water) and the volume fraction of nanoparticles is from  to
. ( ≤ ϕ ≤ .) in which ϕ =  corresponds to the regular (Newtonian) fluid. The ther-
mophysical properties of the base fluid (water) and the nanoparticles are given in Table .
The numerical results are presented in Figures -.
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Table 1 Thermophysical properties of fluid and nanoparticles (Oztop and Abu-Nada [28])

Physical properties Fluid phase (water) Cu

Cp (J/kg K) 4,179 385
ρ (kg/m3) 997.1 8,933
k (W/mK) 0.613 400

Figure 1 Variation of f ′′(0) with ε for different values of Swhen ϕ = 0.1.

Figure 2 Variation of –θ ′(0) with ε for different values of Swhen ϕ = 0.1 and Pr = 6.2.

Figure 3 Variation of the skin friction coefficient with ϕ for different values of Swhen ε = 0.5.
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Figure 4 Variation of the local Nusselt number with ϕ for different values of Swhen ε = 0.5 and
Pr = 6.2.

Figure 5 Velocity profiles for different values of φ when ε = –1.3 and S = 0.3.

Figure 6 Temperature profiles for different values of φ when ε = –1.3, S = 0.3 and Pr = 6.2. Solid line
for first solution and dash line for second solution.
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Solving Eqs. () and () subject to the boundary conditions (), it was found that dual so-
lutions exist, which were obtained by setting different initial guesses for themissing values
of f ′′() and θ ′(), where all profiles satisfy the far fields boundary conditions () asymp-
totically but with different shapes. The variations of f ′′() and –θ ′() with ε are shown in
Figures  and  for some values of the suction/injection parameter S. These figures show
that there are regions of unique solutions for ε ≥ –, dual (upper and lower branches) so-
lutions for εc ≤ ε < – and no solutions for ε < εc < , where εc is the critical value of ε

(< εc < ) beyond which Eqs. () and () have no solutions. Based on our computation, the
critical values of ε, say εc, are –., –. and –. for S = –., S =  and S = .,
respectively. Thus, from this observation, the value of |εc| increases as S increases. Hence,
suction widens the range of ε for which the solution exists, while injection acts in the op-
posite manner. Further, it should be mentioned that similar to other studies where dual
solutions exist, we postulate that upper branch (the first) solutions of Eqs. () and () are
stable and physically realizable, while the lower branch (the second) solutions are not. The
procedure for showing this has been described by Merkin [], Weidman et al. [] and
very recently by Postelnicu and Pop [], so that we will not repeat it here.
Figures  and  illustrate the variations of the skin friction coefficient CfRe/x and the

local Nusselt number NuxRe–/x given by Eqs. () and () with the nanoparticle vol-
ume fraction parameter ϕ for three different values of S with ε = . (stretching sheet).
These figures show that these quantities increase almost linearly with ϕ. The presence of
the nanoparticles in the fluids increases appreciably the effective thermal conductivity of
the fluid and consequently enhances the heat transfer characteristics, as seen in Figure .
Nanofluids have a distinctive characteristics, which is quite different from those of tra-
ditional solid-liquid mixtures in which millimeter and/or micrometer-sized particles are
involved. Such particles can clot equipment and can increase pressure drop due to settling
effects. Moreover, they settle rapidly, creating substantial additional pressure (Khanafer et
al. []). Figure  also shows that the effect of suction (S > ) is to increase the skin fric-
tion coefficient, and in consequence it increases the local Nusselt number, as presented in
Figure .
The samples of velocity and temperature profiles for some values of parameters are pre-

sented in Figures  and . These profiles have essentially the same form as in the case
of regular fluid (ϕ = ). The terms first solution and second solution refer to the curves
shown in Figures  and , where the first solution has larger values of f ′′() and –θ ′()
compared to the second solution. Figures  and  show that the far field boundary con-
ditions () are satisfied asymptotically, thus support the validity of the numerical results,
besides supporting the existence of the dual solutions presented in Figures  and .

5 Conclusions
We have numerically studied the existence of dual similarity solutions in boundary layer
flow over a stretching/shrinking sheet immersed in a nanofluid with suction and injec-
tion effects. Discussions were carried out for the effects of suction/injection parameter S,
the nanoparticle volume fraction ϕ and the stretching/shrinking parameter ε on the skin
friction coefficient and the local Nusselt number. It was found that dual solutions exist
for the shrinking case, while for the stretching case, the solution is unique. The results
indicate that the inclusion of nanoparticles into the base fluid produced an increase in the
skin friction coefficient and the local Nusselt number. Moreover, these quantities increase
with suction but decrease with injection.
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