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Abstract
In this paper, existence results of infinitely many solutions for a fourth-order
differential equation with nonlinear boundary conditions are established. The proof is
based on variational methods. Some recent results are improved and extended.

1 Introduction
In this paper, we consider a beam equation with nonlinear boundary conditions of the
type

⎧⎪⎨
⎪⎩
u() = f (x,u),  < x < ,
u() = u′() = ,
u′′() = , u′′′() = g(u()),

(.)

where f ∈ C([, ],R) and g ∈ C(R) are real functions. This kind of problem arises in the
study of deflections of elastic beams on nonlinear elastic foundations. The problem has
the following physical description: a thin flexible elastic beam of length  is clamped at its
left end x =  and resting on an elastic device at its right end x = , which is given by g .
Then, the problemmodels the static equilibriumof the beamunder a load, along its length,
characterized by f . The derivation of the model can be found in [, ].
Owing to the importance of fourth-order two-point boundary value problems in de-

scribing a large class of elastic deflection, there is a wide literature that deals with the
existence and multiplicity results for such a problem with different boundary conditions
(see, for instance, [–] and the references therein).
Motivated by the above works, in the present paper we study the existence of infinitely

many solutions for problem (.) when the nonlinear term f (x,u) satisfies the superlinear
condition and sublinear condition at the infinity on u, respectively. As far as we know, this
case has never before been considered.
Now we state our main results.

1.1 The superlinear case
We give the following assumptions.
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(H) g is odd and satisfies


∫ s


g(t)dt – g(s)s≥ ,

∫ s


g(t)dt ≥  for all s ∈R.

(H) There exist constants a,b≥  and γ ∈ [, ) such that

∣∣g(s)∣∣ ≤ a + b|s|γ for s ∈R.

(H) lim|u|→+∞ F(x,u)
u = +∞ uniformly for x ∈ [, ], where F(x,u) =

∫ u
 f (x, t)dt.

(H) F(x, )≡ ,  ≤ F(x,u) = o(|u|) as |u| →  uniformly for x ∈ [, ].
(H) There exist constants α > ,  < β <  + α–

α
, c, c >  and L >  such that for every

x ∈ [, ] and u ∈ R with |u| ≥ L,

f (x,u)u – F(x,u)≥ c|u|α , ∣∣f (x,u)∣∣ ≤ c|u|β .

Theorem . Assume that (H)-(H) hold and F is even in u. Then problem (.) has in-
finitely many solutions.

Remark . There exist some functions satisfying (H)-(H), but not satisfying the well-
known (AR)-condition,

 < θF(x,u)≤ f (x,u)u, ∀u > ,x ∈ [, ],

for some θ > .
For example, take f (x,u) = u ln( + u) + u

+u . Then F(x,u) = |u| ln( + |u|). Obvi-
ously, (H)-(H) are satisfied. Note that

f (x,u)u – F(x,u) = |u|(ln( + |u|)) |u|
 + |u| ≥ |u| ln, ∀|u| ≥ ,

and

∣∣f (x,u)∣∣ ≤ 
(
ln

(
 + |u|))|u| + |u|

 + |u| 
(
ln

(
 + |u|))|u| ≤ |u|  , ∀|u| ≥ L,

for L being large enough, which implies (H). However, it is easy to see that f does not
satisfy (AR)-condition.

1.2 The sublinear case
Wemake the following assumptions.

(S) g is odd and satisfies g(s)s≥  for any s ∈R.
(S) There exist constants b >  and γ ∈ [, ) such that

∣∣g(s)∣∣ ≤ b|s|γ for s ∈R.

(S) F(x, )≡  for any x ∈ [, ].
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(S) There are constants k >  and ζ ∈ [, ) with ζ < γ +  such that

F(x,u)≥ k|u|ζ for any (x,u) ∈ [, ]×R.

(S) There exist constants k >  and ζ ∈ [, ) such that

∣∣f (x,u)∣∣ ≤ k|u|ζ– for any (x,u) ∈ [, ]×R.

Theorem . Assume that (S)-(S) hold and F is even in u. Then problem (.) has in-
finitely many solutions.

Remark . The condition (S) implies that
∫ s
 g(t)dt ≥ .

The remainder of this paper is organized as follows. In Section , some preliminary
results are presented. In Section , we give the proofs of our main results.

2 Variational setting and preliminaries
In this section, the following two theorems will be needed in our argument. Let E be a
Banach space with the norm ‖ · ‖ and E =

⊕
j∈NXj with dimXj < ∞ for any j ∈N. Set Yk =⊕k

j=Xj, Zk =
⊕∞

j=k Xj and Bk = {u ∈ Yk : ‖u‖ ≤ ρk}, Nk = {u ∈ Zk : ‖u‖ = rk} for ρk > rk > .
Consider the C-functional �λ : E →R defined by

�λ(u) = A(u) – λB(u), λ ∈ [, ].

Assume that:

(C) �λ maps bounded sets to bounded sets uniformly for λ ∈ [, ]. Furthermore,
�λ(–u) = �λ(u) for all (λ,u) ∈ [, ]× E.

(C) B(u) ≥  for all u ∈ E; A(u) → ∞ or B(u) → ∞ as ‖u‖ → ∞; or
(C)′ B(u) ≤  for all u ∈ E; B(u) → –∞ as ‖u‖ → ∞.

For k ≥ , define 
k := {γ ∈ C(Bk ,E) : γ is odd;γ |∂Bk = id},
ck(λ) := infγ∈
k maxu∈Bk �λ(γ (u)),
bk(λ) := infu∈Zk ,‖u‖=rk �λ(u),
ak(λ) :=maxu∈Yk ,‖u‖=ρk �λ(u).

Theorem. ([, Theorem .]) Assume that (C) and (C) (or (C)′) hold. If bk(λ) > ak(λ)
for all λ ∈ [, ], then ck(λ)≥ bk(λ) for all λ ∈ [, ].Moreover, for a.e. λ ∈ [, ], there exists
a sequence {ukn(λ)}∞n= such that supn ‖ukn(λ)‖ < ∞, �′

λ(ukn(λ)) →  and �λ(ukn(λ)) → ck(λ)
as n→ ∞.

Theorem . ([, Theorem .]) Suppose that (C) holds. Furthermore, we assume that
the following conditions hold:

(D) B(u) ≥ ; B(u)→ ∞ as ‖u‖ → ∞ on any finite dimensional subspace of E.
(D) There exist ρk > rk >  such that ak(λ) := infu∈Zk ,‖u‖=ρk �λ(u) ≥  > bk(λ) :=

maxu∈Yk ,‖u‖=rk �λ(u) for all λ ∈ [, ] and dk(λ) := infu∈Zk ,‖u‖≤ρk �λ(u) →  as k → ∞
uniformly for λ ∈ [, ].
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Then there exist λn → , u(λn) ∈ Yn such that �′
λn |Yn (u(λn)) = , �λn (u(λn)) → ck ∈

[dk(),bk()] as n → ∞. In particular, if {u(λn)} has a convergent subsequence for every k,
then � has infinitely many nontrivial critical points {uk} ⊂ E \ {} satisfying �(uk)→ –

as k → ∞.

Now we begin describing the variational formulation of problem (.), which is based
on the function space

E =
{
u ∈H(, );u() = u′() = 

}
,

where H(, ) is the Sobolev space of all functions u : [, ] → R such that u and its dis-
tributional derivative u′ are absolutely continuous and u′′ belongs to L(, ). Then E is a
Hilbert space equipped with the inner product and the norm

〈u, v〉 =
∫ 


u′′(x)v′′(x)dx, ‖u‖ = ‖u‖, (.)

where ‖ · ‖p denotes the standard Lp norm. In addition, E is compactly embedded in the
spaces L(, ) and C[, ], and therefore, there exist immersion constants S, S̄ >  such
that

‖u‖ ≤ S‖u‖, and ‖u‖∞ ≤ S̄‖u‖. (.)

Next, we consider the functional J : E →R defined by

J(u) =


‖u‖ –

∫ 


F
(
x,u(x)

)
dx +G

(
u()

)
, (.)

where F , G are the primitives

F(x,u) =
∫ u


f (x, t)dt, and G(u) =

∫ u


g(t)dt. (.)

Since f , g are continuous, we deduce that J is of class C and its derivative is given by

〈
J ′(u),ϕ

〉
=

∫ 


u′′(x)ϕ′′(x)dx –

∫ 


f
(
x,u(x)

)
ϕ(x)dx + g

(
u()

)
ϕ() (.)

for all u,ϕ ∈ E. Then we can infer that u ∈ E is a critical point of J if and only if it is a
(classical) solution of problem (.).
Now we define a class of functionals on E by

Jλ(u) =


‖u‖ +G

(
u()

)
– λ

∫ 


F
(
x,u(x)

)
dx

= A(u) – λB(u), λ ∈ [, ]. (.)

It is easy to know that Jλ ∈ C(E;R) for all λ ∈ [, ] and the critical points of J = J corre-
spond to the weak solutions of problem (.). We choose a completely orthonormal basis
{ej} of E and define Xj := Rej. Then Zk , Yk can be defined as that at the beginning of Sec-
tion .

http://www.boundaryvalueproblems.com/content/2013/1/258
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3 Proofs of Theorems 1.1 and 1.2
Wewill prove Theorem . by using Theorem.. Firstly, we give the following three useful
lemmas.

Lemma . Under the assumptions of Theorem ., there exists ρk >  large enough such
that ak(λ) :=maxu∈Yk ,‖u‖=ρk Jλ(u) ≤  for all λ ∈ [, ].

Proof Let u ∈ Yk , then there exists ε >  such that

meas
{
x ∈ [, ] :

∣∣u(x)∣∣ ≥ ε‖u‖} ≥ ε, ∀u ∈ Yk \ {}. (.)

Otherwise, for any positive integer n, there exists un ∈ Yk \ {} such that

meas

{
x ∈ [, ] :

∣∣un(x)∣∣ ≥ 
n

‖un‖
}
<

n

for all k. Set vn(x) := un(x)
‖un‖ ∈ Yk \ {}, then ‖vn‖ =  and

meas

{
x ∈ [, ] :

∣∣vn(x)∣∣ ≥ 
n

}
<

n

(.)

for all k. Since dimYk < ∞, it follows from the compactness of the unit sphere of Yk that
there exists a subsequence, say {vn}, such that vn converges to some v in Yk . Hence, we
have ‖v‖ = . By the equivalence of the norms on the finite-dimensional space Yk , we have
vn → v in L[, ], i.e.,

∫ 


|vn – v| dx→  as n→ ∞. (.)

Thus there exist ξ, ξ >  such that

meas
{
x ∈ [, ] :

∣∣v(x)∣∣ ≥ ξ
} ≥ ξ. (.)

In fact, if not, we have

meas

{
x ∈ [, ] :

∣∣v(x)∣∣ ≥ 
n

}
= , i.e., meas

{
x ∈ [, ] :

∣∣v(x)∣∣ < 
n

}
= ,

for all positive integer n. This implies that

 <
∫ 



∣∣v(x)∣∣ dx < 
n

→ 

as n→ ∞, which gives a contradiction. Therefore, (.) holds.
Now let

� =
{
x ∈ [, ] :

∣∣v(x)∣∣ ≥ ξ
}
, �n =

{
x ∈ [, ] :

∣∣vn(x)∣∣ < 
n

}
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and �⊥
n = [, ] \ �n. By (.) and (.), we have

meas(�n ∩ �) = meas
(
� \ (

�⊥
n ∩ �

))
≥ meas(�) –meas

(
�⊥

n ∩ �
)

≥ ξ –

n

for all positive integer n. Let n be large enough such that ξ – 
n ≥ 

ξ and ξ – 
n ≥ 

ξ.
Then we have

∣∣vn(x) – v(x)
∣∣ ≥

(
ξ –


n

)

≥ 


ξ 
 , ∀x ∈ �n ∩ �.

This implies that

∫ 


|vn – v| dx ≥

∫
�n∩�

|vn – v| dx

≥ 


ξ 
 meas(�n ∩ �)

≥ 


ξ 


(
ξ –


n

)
≥ 


ξ 
 ξ > 

for all large n, which is a contradiction with (.). Therefore, (.) holds.
For any u ∈ Yk , let �u = {x ∈ [, ] : |u(x)| ≥ ε‖u‖}. By condition (H), for M = 

λε
≥


ε

> , there exists L >  such that

F(x,u)≥M|u|, ∀|u| ≥ L,∀x ∈ [, ].

Hence one has

F(x,u)≥M|u| ≥Mε ‖u‖, ∀x ∈ �u,

for all u ∈ Yk with ‖u‖ ≥ L
ε
. It follows from (H)-(H) and (.) that

Jλ(u) =


‖u‖ +

∫ u()


g(x)dx – λ

∫ 


F(x,u)dx

≤ 

‖u‖ + aS̄‖u‖ + bS̄γ+‖u‖γ+ – λ

∫
�u

F(x,u)dx

≤ 

‖u‖ + aS̄‖u‖ + bS̄γ+‖u‖γ+ – λMε ‖u‖

= –


‖u‖ + aS̄‖u‖ + bS̄γ+‖u‖γ+,

for all u ∈ Yk with ‖u‖ ≥ L
ε
. Since γ < , for ‖u‖ = ρk large enough, we have Jλ(u) ≤ .

�

Lemma . Under the assumptions of Theorem ., there exist rk > , b̃k → ∞ such that
bk(λ) := infu∈Zk ,‖u‖=rk Jλ(u)≥ b̃k for all λ ∈ [, ].

http://www.boundaryvalueproblems.com/content/2013/1/258


Wang Boundary Value Problems 2013, 2013:258 Page 7 of 10
http://www.boundaryvalueproblems.com/content/2013/1/258

Proof Set γk := supu∈Zk ,‖u‖= ‖u‖∞. Then γk →  as k → ∞. Indeed, it is clear that  <
γk+ ≤ γk , so that γk → γ̄ ≥ , as k → ∞. For every k ≥ , there exists uk ∈ Zk such that
‖uk‖ =  and ‖uk‖∞ > γk/. By the definition ofZk ,uk ⇀  inE. Then it implies that uk → 
in C[, ]. Thus we have proved that γ̄ = . By (H), we have

F(x,u)≤ c + c|u|β+, (x,u) ∈ [, ]×R.

By (H), for any ε > , there exists δ >  such that

F(x,u)≤ ε|u|, ∀x ∈ [, ], |u| ≤ δ.

Therefore, there exists C = C(ε) >  such that

F(x,u)≤ ε|u| +C|u|β+, (x,u) ∈ [, ]×R. (.)

Hence, for any u ∈ Zk , choose ε = (λp)–, by (H) and (.), we have

Jλ(u) =


‖u‖ +

∫ u()


g(x)dx – λ

∫ 


F(x,u)dx

≥ 

‖u‖ – λ

∫ 



(
ε|u| +C|u|β+)dx

≥ 

‖u‖ – λεS‖u‖ – λC‖u‖β+

∞

≥ 


‖u‖ – λCγ
β+
k ‖u‖β+.

Let rk := (λCγ
β+
k )


–β . Then, for any u ∈ Zk with ‖u‖ = rk , we have

Jλ(u) ≥ 

(
λCTγ

β+
k

) 
–β := b̃k → ∞

uniformly for λ as k → ∞. �

Lemma . Under the assumptions of Theorem ., there exist λn →  as n → ∞,
{un(k)}∞n= ⊂ E such that J ′λn (un(k)) → , Jλn (un(k)) ∈ [b̃k , c̃k], where c̃k = supu∈Bk �(u).

Proof It is easy to verify that (C) and (C) of Theorem . hold. By Lemmas ., . and
Theorem ., we can obtain the result. �

Proof of Theorem . For the sake of notational simplicity, in what follows we always set
un = un(k) for all n ∈N. By Lemma ., it suffices to prove that {un}∞n= is bounded and pos-
sesses a strong convergent subsequence in E. If not, passing to a subsequence if necessary,
we assume that ‖un‖ → ∞ as n→ ∞. In view of (H), there exists c >  such that

f (x,u)u – F(x,u)≥ c|u|α – c for all (x,u) ∈ [, ]×R,

http://www.boundaryvalueproblems.com/content/2013/1/258
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and combining (H), we have

Jλn (un) – J ′λn (un)un = 
∫ un()


g(x)dx – g

(
un()

)
un()

+ λn

∫ 



[
f (x,un)un – F(x,un)

]
dx

≥ λn

∫ 



(
c|un|α – c

)
dx

= cλn

∫ 


|un|α dx – λnc.

This implies that

∫ 
 |un|α dx

‖un‖ →  as n→ ∞. (.)

Note that from (H),  < β <  + α–
α
. Let η = α–

α(β–) , then

η > , ηβ –  = η –

α
. (.)

By (H), there exists c >  such that

∣∣f (x,u)∣∣η ≤ cη|u|ηβ + c, ∀(x,u) ∈ [, ]×R. (.)

By (.), (H) and the Hölder inequality, one has

J ′λn (un)un = ‖un‖ + g
(
un()

)
un() – λn

∫ 


f (x,un)un dx

≥ ‖un‖ –
(
a + b

∣∣un()∣∣γ )∣∣un()∣∣ – λn

(∫ 



∣∣f (x,un)∣∣η dx
) 

η

Cη‖un‖

≥ ‖un‖ – aS̄‖un‖ – bS̄γ+‖un‖γ+ – λn

(∫ 



∣∣f (x,un)∣∣η dx)

η

Cη‖un‖, (.)

where Cη >  is a constant independent of n. By (.) we obtain

∫ 



∣∣f (x,un)∣∣η dx ≤
∫ 



(
cη|un|ηβ + c

)
dx

≤ c
(∫ 


|un|α dx

)/α(∫ 


|un| α(ηβ–)

α– dx
)– 

α

+ c

≤ c
(∫ 


|un|α dx

)/α

‖un‖(ηβ–) + c,

combining this inequality with (.) and (.) yields that

(
∫ 
 |f (x,un)|η dx) η

‖un‖ ≤
[c(∫ 

 |un|α dx)/α
‖un‖/α

‖un‖(ηβ–)
‖un‖η– 

α

+
c

‖un‖η

] 
η

→ 

http://www.boundaryvalueproblems.com/content/2013/1/258
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as n→ ∞. Combining this with (.), we have

 =
‖un‖
‖un‖ ≤ J ′λn (un)un

‖un‖ +
aS̄

‖un‖ +
bS̄γ+

‖un‖–γ

+
λn(

∫ 
 |f (x,un)|η dx) η Cη

‖un‖ →  as n→ ∞,

since  ≤ γ < . This is a contradiction. Therefore, {un}∞n= is bounded in E. Without loss
of generality, we may assume un ⇀ wk in E. Then un → wk in C[, ]. Note that

‖un –wk‖ =
(
J ′λn (un) – J ′λn (wk)

)
(un –wk) –

(
g
(
un()

)
– g

(
wk()

))(
un() –wk()

)
+ λn

∫ 



(
f (x,un) – f (x,wk)

)
(un –wk)dx.

Taking n → ∞, we have limn→∞ ‖un – wk‖ = , which means that un → wk in E and
J ′(wk) = . Hence, J has a critical point wk with J(wk) ∈ [b̃k , c̃k]. Consequently, we obtain
infinitely many solutions since b̃k → ∞. �

Lemma . Under the assumptions of Theorem ., there exists ρk small enough such that
ak(λ) := infu∈Zk ,‖u‖=ρk Jλ(u) ≥  and dk(λ) := infu∈Zk ,‖u‖≤ρk Jλ(u) →  as k → ∞ uniformly
for λ ∈ [, ].

Proof For any u ∈ Zk , by using γk := supu∈Zk ,‖u‖= ‖u‖∞ defined in Lemma ., together
with (S) and (S), we have

Jλ(u) =


‖u‖ +

∫ u()


g(x)dx – λ

∫ 


F(x,u)dx

≥ 

‖u‖ – λk

∫ 


|u|ζ dx ≥ 


‖u‖ – λk‖u‖ζ∞

≥ 

‖u‖ – λkγ ζ

k ‖u‖ζ =



ρ
k ≥ 

for all u ∈ Zk with ‖u‖ = ρk := (λkγ ζ
k )/(–ζ). Obviously, ρk →  as k → ∞. So ak(λ) :=

infu∈Zk ,‖u‖=ρk Jλ(u) ≥  and dk(λ) := infu∈Zk ,‖u‖≤ρk Jλ(u) →  as k → ∞ uniformly for λ ∈
[, ]. �

Lemma . Under the assumptions of Theorem ., there exists rk small enough such that
bk(λ) :=maxu∈Yk ,‖u‖=rk Jλ(u) <  for all λ ∈ [, ].

Proof For any u ∈ Yk , by (S)-(S) and the equivalence of the norms on the finite-
dimensional space Yk , we have

Jλ(u) =


‖u‖ +

∫ u()


g(x)dx – λ

∫ 


F(x,u)dx

≤ 

‖u‖ + bS̄γ+‖u‖γ+ – λk

∫ 


|u|ζ dx

≤ 

‖u‖ + bS̄γ+‖u‖γ+ – λkc‖u‖ζ .

http://www.boundaryvalueproblems.com/content/2013/1/258
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Since ζ < γ +  < , for ‖u‖ = rk < ρk small enough, we can get Jλ(u) <  for all λ ∈
[, ]. �

Proof of Theorem . It is easy to verify that (C) and (D) hold under the assumptions of
Theorem .. By Lemmas . and ., the condition (D) is also satisfied. Therefore, by
Theorem . there exist λn → , u(λn) := un ∈ Yn such that J ′λn |Yn (un) = , Jλn (un) → ck ∈
[dk(),bk()] as n → ∞. In the following we show that {un}∞n= is bounded. Indeed, note
that

‖un‖ = Jλn (un) – 
∫ un()


g(x)dx + λn

∫ 


F(x,un)dx

≤ M + bS̄γ+‖un‖γ+ + k
∫ 


|un|ζ dx

≤ M + bS̄γ+‖un‖γ+ + kS̄ζ‖un‖ζ , ∀n ∈N, (.)

for some M > . Since  < γ +  < , (.) yields that {un} is bounded in E. By a standard
argument, this yields a critical point uk of J such that J(uk) ∈ [dk(), ck()]. Since dk()→
– as k → ∞, we can obtain infinitely many critical points. �
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