Kocak and Celik Boundary Value Problems 2012, 2012:151 0 BOU nda ry Va I ue PrOblemS

http://www.boundaryvalueproblems.com/content/2012/1/151 a SpringerOpen Journal

RESEARCH Open Access

Optimal control problem for stationary
quasi-optic equations

Yusuf Kogak'™ and Ercan Celik?

"Correspondence:
ykocak27@hotmail.com
'Department of Mathematics, Agri
ibrahim Cecen University Faculty of
Science and Art, Agri, Turkey

Full list of author information is
available at the end of the article

@ Springer

Abstract

In this paper, an optimal control problem was taken up for a stationary equation of
quasi optic. For the stationary equation of quasi optic, at first judgment relating to the
existence and uniqueness of a boundary value problem was given. By using this
judgment, the existence and uniqueness of the optimal control problem solutions
were proved. Then we state a necessary condition to an optimal solution. We proved
differentiability of a functional and obtained a formula for its gradient. By using this
formula, the necessary condition for solvability of the problem is stated as the
variational principle.
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1 Introduction

Optimal control theory for the quantum mechanic systems described with the Schro-
dinger equation is one of the important areas of modern optimal control theory. Actually,
a stationary quasi-optics equation is a form of the Schrodinger equation with complex
potential. Such problems were investigated in [1-5]. Optimal control problem for nonsta-
tionary Schrodinger equation of quasi optics was investigated for the first time in [6].

2 Formulation of the problem
We are interested in finding the problem of the minimum of the functional

Jo®) = [ (L) =30 + V=l o)
in the set

0
V = {v=(v0,v1,90,@1), Vi € L2(0,0),11(2) = 0,¥z € (0,L),

1Vl L2000 < Bins @ € L2(0,1), | @mllLy0,) < dimrm = 0,1}

under the condition

2

i% + aOM +vo@)Y + i)Y =f(x,2), (x2) €, 2)
0z ox?

¥ (x,0) = o(x) = po(x) + ip1(x), x€(0,0), (3)

¥(0,2)=v(l,z) =0, ze€(0,L), (4)
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where i = /-1,a9>0,1>0,L>0,a>0,byg>0, b >0,dy >0, di >0 are numbers,
x€[0,1],z€[0,L], 2,=(0,) x (0,2), 2 = Qr, y(x), f(x,z) are complex valued measurable
functions and satisfy the conditions

f € Lz(Q), (5)
y € L»(0,1) (6)

respectively, w = (wo, w1, @o, 1) and H = (L1(0,1))? x (L5(0,L))?. L,(0,1) is a Hilbert space
that consists of all functions in (0, /), which are measurable and square-integrable. L,($2)
is the well-known Lebesgue space consisting of all functions in €2, which are measurable
and square-integrable.

The problem of finding a function ¥ = ¥ (x,z) = ¥ (x,2z;v) under the condition (2)-(4)
for each Vv € V, which is a boundary value problem, is a function for Eq. (2).

Generalized solution of this problem is a function ¥ = ¥ (x,z) = ¥ (x, z; v) belonging to
the C°([0, L], L»(0,1)), and it satisfies the integral identity

2=

on 0
fw i—n+a0—n+vo(z)n+iv1(z)n dxdz
2 0z 0x?

! l
=/fﬁdxdz—i/ lp(x,L)ﬁ(x,L)dx+/ ((po(x)+i<p1(x))ﬁ(x,0)dx (7)
Q 0 0
for ¥ € C°([0, L], L>(0,1)).

3 Existence and uniqueness of a solution of the optimal control problem
In this section, we prove the optimal control problem using the Galerkin method and the
existence and uniqueness of a solution of the problem (1)-(4).

Theorem 1 Suppose that a function f satisfies the condition (5). So, for each Yv € V, the
problem (2)-(4) has a unique solution, and for this solution, the estimate

2

v 21,00 < collleli,on + I1fIZ,w) ®)
is valid for ¥z € [0, L]. Here, the number cy > 0 is independent of z.
Proof Proof can be done by processes similar to those given in [7]. O

Theorem 2 Let us accept that the conditions of Theorem 1 hold and y € L,(0,1) is a given
function. Then there is such a set G dense in H = [L,(0,L)]? x [L(0,1)]? that the optimal
control problem (1)-(4) has a unique solution Vo € G and o > 0.

Proof Firstly, let us show that

JO(V) = ” W("L) —)/”iz(oyl) (9)

is continuous on the set V. Let us take an arbitrary € V, and let v + Av be an incre-
ment of the v for the Av € H. Then the solution v (x, z; v) of the problem (1)-(4) will have
an increment Ay = AV (x,z) = ¥(x,z;v + Av) — ¥ (x,z;v). Here, the function 5 (x,z) =
¥ (x,z;v + Av) is the solution of (2)-(4). On the basis of the assumptions and conditions
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(2)-(4), it can be shown that the function Ay (x,z) is a solution of the following boundary
value problem:

2
iaﬁzl/f + ao% +(10(2) + Avp(@)) A +i(ni(2) + Avi(2)) Ay

=-Avo(2)¥ —in(2)y, (x,2) € Q, (10)
AY(x,0) = Ago(x) + iAgi(x), x€(0,0), (11)
AY(0,2) = Ay (l,z) =0, ze(0,L). (12)

Because the problem (10)-(12) and the problem (2)-(4) are the same type problems, we
can write the following estimate the same as (8):

2 .
|AY (4 2)|” < call AY 17,00 + | AVOY +iAn Y], Yz €[0,L]. (13)
If we use estimate (13) then we can write the following estimate:
2
Ay (- 2) ||L2(0J) <cllAv||Z, Vze[o,L] (14)

¢s > 0 is constant that does not depend on Av.
Now, let us evaluate the increment of the functional Jo(v) on v € V. Using formula (9)
we can write the equality as

AJo(w) =Jo(v + Av) = Jo(v)

l
:2/0 Re(¥(x,L) — y(x) A (x, L) dx + ||A¢(-,L)||i2(0’l). 5)

Using the Cauchy-Bunyakowski inequality and estimates (8) and (14), we write the in-
equality as

|AJo(W)| < cellAvIg, VveV, (16)

where ¢¢ > 0 is a constant that does not depend on Av. This inequality shows that the
functional Jy(v) is continuous on the set V. On the other hand, Jy(z) > 0 for Vz € V; there-
fore, Jo(v) is bounded on V. The set V is closed, bounded on a Hilbert space H. According
to Theorem (Goebel) in [8], there is such a set G dense in H that optimalcontrol problem
(1)-(4) has a unique solution for & > 0 and Yo € G. Theorem 2 is proven. O

3.1 Fréchet diffrentiability of the functional
In this section, we prove the Fréchet differentiability of a given functional. For this purpose,
we consider the following adjoint boundary value problem:

2
i 4002 @ - i@ =0, (x2)e, (17)
0z 0x2
o, L) = -2i(Y(x L) - y(x), x€(0,D), (18)

0(0,2) =¢(l,z) =0, ze€(0,L). (19)
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Here, the function ¥ = ¥ (x,z) = ¥ (x,z; v) is a solution of (2)-(4) for v € V. The solution
of the boundary value problem (17)-(19) corresponding to v € V' is a function ¢ = ¢(x,z)
that belongs to the space C°([0, L], L»(0,L)) and satisfies the integral identity

an 027
/ [0 —iﬂ + aoi +vo(2)i — v (2)7 ) dxdz
Q z 0x2
i 1
-2 [ (WD) 5@ L)dx+i [ o0, 0)
0 0
021
for Vi € W5 (). (20)
As seen, the problem (17)-(19) is an initial boundary value problem. This can easily be

obtained by a transform 6 = L — z. Actually, if we do a variable transform 6 = L — z, we
obtain the boundary problem as

3G 8%
i% + aoa—xf +70(0)G —i1(0)§ =0, V(x,0) €, (21)
¢(x: 0) = —2l(¢(x, L) —J’(x)), X € (Orl)’ (22)
70,0) = ¢(1,0) =0, ze(0,L), (23)
where

o, v) =@, L-T) = ¢(x,2), V9(0) = vo(L —6) = vy(2)
9(0) = vo(L - 6) = vo(2).

If we write the complex conjugate of this boundary value problem, we obtain the following
boundary value problem:

oF 9%F

i— +ag— +(O)F —in(0)F =0, V(x2) €L, (24)
a0 ox?
F(x,0) = h(x), x€(0,0), (25)
F(0,v)=F(,0)=0, 6¢€(0,L), (26)
where

F(x,0) = ¢(x,0), h(x) = =2i(y (x,L) - y(%)).

This problem is a type of (2)-(4) boundary value problem. As the right-hand side is equal
to zero, and initial function /(x) belongs to the space L,(0,/) for ¥ € C°([0,L],L5(0,1)),
y € Ly(0,1). By using Theorem 2, it follows that the solution of the bounded value problem
(24)-(26) existing in the space C°([0, L], L,(0,1)) is unique, and the following estimate is
obtained:

2
IECO, 0, = crlhllZ 00, V6 €10,L]. (27)

If we use the problem (24)-(26) as a type of the conjugate problem (17)-(19), we obtain
the initial bounded value problem (17)-(19) has a unique solution belonging to the space
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C°([0,L], L,(0,1)), and the following estimate is obtained:

||‘/’("Z) “22(0,1) =¢s ”\”("L) _3’”2(0,1)’ vze[0,L].

Here, the number cg > 0 is independent of ¢ and y. Now, using estimate (8) in this in-
equality, we easily write the following estimate:

2
leC 21,00 = o011z 00 + 112,00 + 1011Z,), ¥z €[0,L]. (28)
Here, the number co > 0 is constant.

Theorem 3 Let us accept that the conditions of Theorem 2 hold and w € H is given. Then
the functional ], (v) can be Frechet differentiable in the set V and the formula below for a
gradient of the functional is valid:

](; (V) = (](;VO (V)r](;yl (V)’]f;WO (V)’](;(pl (V))x where
i
][;VO (v) = /o Re(v @) dx + 2 (vo(z) —wy (z)),

1
mphiLMW@M+mmw—mwy (29)

Jirgo @) = Im(@(x,0)) + 20 (0 (x) — @0 (),

ooy V) = Re(@(x,0)) + 2a (g1 (x) — @1 (%)).

Proof Let us evaluate the increment of the functional J,(v) for the element Vv € V. We
can write the following equation for the increment of the functional:

A]u(V) = ]a(V + AV) _]Ot(v)

i i
= 2/0 Re[ (¥ (x,L) —y(x))Ai/_/(x,L)] dx + 20 /0 (po(x) — @o(x)) Ago (x) dx

i T

+2a / (<p1 (x) —an (x))Awl(x) dx +2a / (Vo (2) — wo (z))Avo(z) dz

0 0

T 2

+ 2 /0 (r1(2) - w1(2)) Avi(2) dz + || Aw(-,L)”LZ(OJ) +allAv|Z. (30)

The last formula can be written as follows:

A]a (V) = ]a(V + AV) _]at(V)

Ly pl
= / (/ Re(y @) dx + 2 (vo(z) — wy (z))Avo (2)dz — /
o \Jo 0

I

Im(l/r,@)dxAvl(z)>
L 1
+/ (—/ Im(y @) dx + 2a (v1(2) —a)l(z))) Avi(z)dz
0 0
!
+ /o [Im(@(x, 0)) + 20 (0o (x) — @0 (%)) | Ago (x) dix

!
+ / [Re(@(x,0)) + 20 (1 (%) — @1 (%)) | Ay (%) dx + R(A),
0
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where R(Av) is defined as the formula
2 2
R(AV) = ” Al/f(‘, L) HLQ(O,[) +a ” AV||]~[
+ / Re(AY@)Avy(z) dxdz
Q
- / Im(AY @)Avi(2z) dx dz. (31)
Q
Applying the Cauchy-Bunyakowski inequality, we obtain:

RV < | Ay (D)7 + I AVIE

+ (1Al z50,7) + | AVoll1y(0,7)) max | Avr(+, L) HLZ(OJ)”§0||L2(O,L)~
If we use estimates (13) and (28) in this inequality, we obtain
[R(AV)| < croll AV (32)
Here, c1o > 0 is a constant that does not depend on Av. Hence, we write
R(AV) = o(||AVI1). (33)

By using equality (33), the increment of the functional can be written as

1

T / pl
f (/ Re(¥¢)dx + 2 (Vo (2) — wo (z)) Avy(2)dz - / Im(yr, @) dxAvl(z)>
0 0 0

T !
+/0 (—/0 Im(W(ZJ)dx+2a(v1(z)—a)l(z))Avl(z)dz
!
+/0 [Im(@(x, 0)) + 20 (o (%) — @0 (%)) | Ao () dax
!
+/o [Re(@(x,O))+2a(g01(x)—cbl(x))]A(pl(x)dx+0(||Av||H). (34)

Considering this equality (34), and by using the definition of Fréchet differentiable, we can
easily obtain the validity of the rule. Theorem 3 is proved. O

3.2 A necessary condition for an optimal solution
In this section, we prove the continuity of a gradient and state a necessary condition to an
optimal solution in the variational inequality form using the gradient.

Theorem 4 Accept that the conditions of Theorem 3 hold and v’ € V is an optimal solution
of the problem (1)-(4). Then the following inequality is valid for Vv e V:

Lr pl
/0 |:/(; Re(t/f*(x, 2)¢ (x,2)dx + 2 (vg(z) - wo(z)))] (Vo (z) - vf) (z)) dz

L ! _L . . )
+ / [—/ Im (¥ (x,2)¢ (%, 2) dx + 2a (v, (2) — w1 (z)))} (v1(2) - v, (2)) dz
0 0


http://www.boundaryvalueproblems.com/content/2012/1/151

Kogak and Celik Boundary Value Problems 2012, 2012:151 Page 7 of 9
http://www.boundaryvalueproblems.com/content/2012/1/151

l
. /0 [1m (3" (6, 0)) + 20y (@) — G0 ()] (0 @) - 05 (2)) dx
l
. / [Re(#(x,0)) + 26 (9 () — ()] (01 (®) - () i = 0. (35)
0

Here, the functions ¥ (x,z) = ¥ (x,z;V"), ¢ (x,2) = (%, z; V') are solutions of the problems
(2)-(4) and a conjugate problem corresponding to v’ € V, respectively.

Proof Now, we prove that the gradient J/,(v) is continuous at V. For this we show

Vo + AV) = Jeao 0| 1) = O (36)
Vi, &+ A9) = Jean )] 0.1y = O 37)
Voo @+ AV = Tage 0|, 0. = O (38)
Vg, @+ A) = Jap )|, 0, = © (39)

for |Av||y — O.
In order to show (36), using the formula]g”,0 v) = fol Re(y @) dx+2a(vo(z) —wo(2)) in (29),
we can write the following equation:

]4;1’0 (V + AV) _]ozvo (V)

- /0 Re(Vada)dx + 2 (vo(2) + Avo(2) — w0 (2))
- /0 Re(@)dx-+ 20 (ro(2) - 0(2)
- Re(Vaga — Y9)dx + 20
= /0 lRe(t/f(x, v+ AV)@(x,zv + Av) — (%, 2 v)@(x, 2 v)) dx + 20 Av(z)
= /0 lRe(wA (x,2) A@(x,2) — AY (x,2)@(x,2)) dx + 20 Av(2). (40)

Here, Ay = Ay (x,z) is the solution of the problem (9)-(11) and Ag = Ap(x, z) is the solu-
tion of the following problem:

2
i% + ao% +(v0(2) — Avg(2)) Ap — i(v1(2) - Avi(2)) Ag

=—Av(2)g + iAvi(2)p, (x,2) €, (41)
Ap(x, L) = =2iAy(x,L), x€(0,]), (42)
Ap(0,2) = Ap(l,z) =0, z€(0,L). (43)

This bounded value problem is a type of a conjugate problem. For this solution, the

following estimate is valid:

leC: D)7, 0 < en(lAveg + iAvopliF, o) + [ AV (L) o) V2 € (O,L). (44)


http://www.boundaryvalueproblems.com/content/2012/1/151

Kogak and Celik Boundary Value Problems 2012, 2012:151 Page 8 of 9
http://www.boundaryvalueproblems.com/content/2012/1/151

Here, the number ¢;; is constant.
Using (13) and (28), we write

|2}, 0 < c(lAvid), Vze(o,L). (45)

Here, the number c¢;5 is constant. Using (13) and (45) and applying the Cauchy-
Bunyakovski inequality, we obtain

|/(;vo(V +Av) _](;Vo (V)| = H vals Z)”LZ(O,I) ||A9"(" 2) “LZ(O,I)

+]Ay(.2) HLZ(OJ) le(-2) ||L2(OJ) +2a|Av(2)|, Vze(0,1),

and then

ey @ + AV) = T, (V) Hizw,z)

<3 [ vatsall op |80} 0
+3 /OL |av( Z)||iz<o,z> le(-2) ”Z(o,l) dz +3]| Avoll7, 0,1)- (46)

If we use estimate (8), we can write the following inequality:

|22}, 0 <3 Vze€[0,LI. (47)
Using this inequality and estimates (13), (28), and (45), we obtain

Vo @+ AV) =T D), 0y < 1l AVl (48)

Here, the number of ¢y4 is constant. Similarly, we can prove the following inequality:

o 0+ AV) = o, D 1, 0.1y = 15[l AVIE- (49)
If we use inequalities (48) and (49), we see that the correlations limit (36) and (37) is valid.
Now, we prove (38). To prove this using the formula J,, (v) = Re(¢(x,0)) + 2a (g1 (%) -

@1(x)) in (29), we can write the following inequality:

J v+ Av)-]

avoy avy

) = Ln(Ag(x,0)) + 20 Agy. (50)

Here, Ag(x, z) is a solution of the problem (41). Estimate (45) is valid for Vz € [0, L]. There-
fore, the following estimate can be written at z = 0:

|00}, 0 < cr2(I1AVIE).

If this inequality is used in (49), we easily can write

||](;(/70 vV + AV) = Joy (V) ||L2(0,l) <cs(lAvin). (51)
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Similarly, if we use (39), we obtain

Vo, 0+ 29) =T )| 0 = 7 (1 AVILE). (52)

We can see that (38) and (39) are valid by inequalities (51) and (52). That is, J, € C}(V).
On the other hand, V is a convex set according to the definition. So, the functional J, (v)
holds by the condition of Theorem (Goebel) in [8] at V. Therefore, considering Theorem 3,
we obtain

Velv)iv=v))y 20

for Vz € V. Here, using (29), it is seen that the statement of Theorem 4 is valid. O

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

YK carried out the optimal control problem studies, participated in the sequence alignment and drafted the manuscript.
EC conceived of the study and, participated in its design and coordination. All authors read and approved the final
manuscript.

Author details )
'Department of Mathematics, Agn ibrahim Cecen University Faculty of Science and Art, Agri, Turkey. ?Department of
Mathematics, Atatlrk University Faculty of Science, Erzurum, Turkey.

Received: 1 October 2012 Accepted: 30 November 2012 Published: 28 December 2012

References

1. iskenderov, AD, Yagubov, GY: Optimal control of non-linear quantum-mechanical systems. Autom. Remote Control
50, 1631-1641 (1989)

2. Iskenderov, AD, Yagubov, GY: A variational method for solving the inverse problem of determining the
quantumnmechanical potential. Sov. Math. Doklady (Engl. Trans.) Am. Math. Soc. 38, 637-641 (1989)

3. Yagubov, GY, Musayeva, MA: About the problem of identification for nonlinear Schrédinger equation. J. Differ. Equ.
33(12), 1691-1698 (1997)

4. Yagubov, GY: Optimal control by coefficient of quasilinear Schrédinger equation. Abstract of these doctors sciences,
Kiev, p. 25 (1994)

5. Yetiskin, H, Subasi, M: On the optimal control problem for Schrodinger equation with complex potential. Appl. Math.
Comput. 216, 1896-1902 (2010)

6. Yildiz, B, Yagubov, G: On the optimal control problem. J. Comput. Appl. Math. 88, 275-287 (1997)

7. Ladyzhenskaya, OA, Solonnikov, VA, Uralsteva, NN: Linear and Quasi-Linear Equations of Parabolic Type. Translation of
Mathematical Monograps. Am. Math. Soc., Providence (1968)

8. Goebel, M: On existence of optimal control. Math. Nachr. 93, 67-73 (1979)

doi:10.1186/1687-2770-2012-151
Cite this article as: Kocak and Celik: Optimal control problem for stationary quasi-optic equations. Boundary Value
Problems 2012 2012:151.



http://www.boundaryvalueproblems.com/content/2012/1/151

	Optimal control problem for stationary quasi-optic equations
	Abstract
	Keywords

	Introduction
	Formulation of the problem
	Existence and uniqueness of a solution of the optimal control problem
	Fréchet diffrentiability of the functional
	A necessary condition for an optimal solution

	Competing interests
	Authors' contributions
	Author details
	References


