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Abstract
The application of the sinc-Galerkin method to an approximate solution of
second-order singular Dirichlet-type boundary value problems were discussed in this
study. The method is based on approximating functions and their derivatives by
using the Whittaker cardinal function. The differential equation is reduced to a system
of algebraic equations via new accurate explicit approximations of the inner products
without any numerical integration which is needed to solve matrix system. This study
shows that the sinc-Galerkin method is a very effective and powerful tool in solving
such problems numerically. At the end of the paper, the method was tested on
several examples with second-order Dirichlet-type boundary value problems.
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1 Introduction
Sinc methods were introduced by Frank Stenger in [] and expanded upon by him in [].
Sinc functions were first analyzed in [] and []. An extensive research of sinc methods
for two-point boundary value problems can be found in [, ]. In [, ], parabolic and hy-
perbolic problems were discussed in detail. Some kind of singular elliptic problems were
solved in [], and the symmetric sinc-Galerkin method was introduced in []. Sinc do-
main decomposition was presented in [–] and []. Iterative methods for symmetric
sinc-Galerkin systems were discussed in [, ] and []. Sinc methods were discussed
thoroughly in []. Applications of sinc methods can also be found in [, ] and [].
The article [] summarizes the results obtained to date on sinc numerical methods of
computation. In [], a numerical solution of a Volterra integro-differential equation by
means of the sinc collocation method was considered. The paper [] illustrates the ap-
plication of a sinc-Galerkin method to an approximate solution of linear and nonlinear
second-order ordinary differential equations, and to an approximate solution of some lin-
ear elliptic and parabolic partial differential equations in the plane. The fully sinc-Galerkin
method was developed for a family of complex-valued partial differential equations with
time-dependent boundary conditions []. Some novel procedures of using sinc methods
to compute solutions to three types of medical problems were illustrated in [], and sinc-
based algorithm was used to solve a nonlinear set of partial differential equations in [].
A new sinc-Galerkin method was developed for approximating the solution of convec-
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tion diffusion equations with mixed boundary conditions on half-infinite intervals in [].
The work which was presented in [] deals with the sinc-Galerkin method for solving
nonlinear fourth-order differential equations with homogeneous and nonhomogeneous
boundary conditions. In [], sinc methods were used to solve second-order ordinary dif-
ferential equations with homogeneous Dirichlet-type boundary conditions.

2 Sinc functions preliminaries
Let C denote the set of all complex numbers, and for all z ∈ C, define the sine cardinal or
sinc function by

sin c(z) =

⎧⎨
⎩

sin(πz)
πz , y �= ,

, y = .
(.)

For h > , the translated sinc function with evenly spaced nodes is given by

sin c(k,h)(z) =

⎧⎨
⎩

sin(π z–kh
h )

π z–kh
h

, z �= kh,

, z = kh.
(.)

For various values of k, the sinc basis function S(k,π/)(x) on the whole real line –∞ <
x < ∞ is illustrated in Figure . For various values of h, the central function S(,h)(x) is
illustrated in Figure .
If a function f (x) is defined over the real line, then for h > , the series

C(f ,h)(x) =
∞∑

k=–∞
f (kh) sin c

(
x – kh
h

)
(.)

is called theWhittaker cardinal expansion of f whenever this series converges. The infinite
strip Ds of the complex w plane, where d > , is given by

Ds ≡
{
w = u + iv : |v| < d ≤ π



}
. (.)

Figure 1 The basis functions S(k,h)(x) for k = –1,0, 1 with h = π /4.
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Figure 2 Central sinc basis function S(0,h)(x) for h = π /2,π /4,π /8.

Figure 3 The relationship between the eye-shaped domain DE and the infinite strip DS .

In general, approximations can be constructed for infinite, semi-infinite and finite inter-
vals. Define the function

w = φ(z) = ln

(
z

 – z

)
(.)

which is a conformal mapping from DE , the eye-shaped domain in the z-plane, onto the
infinite strip DS , where

DE = z =
{
x + iy :

∣∣∣∣arg
(

z
 – z

)∣∣∣∣ < d ≤ π



}
. (.)

This is shown in Figure .
For the sinc-Galerkinmethod, the basis functions are derived from the composite trans-

lated sinc functions

Sh(z) = S(k,h)(z) = sin c
(

φ(z) – kh
h

)
(.)
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Figure 4 Three adjacent members S(k,h) ◦ φ(x) when k = –1,0, 1 and h = π
8 of the mapped sinc basis

on the interval (0, 1).

Table 1 Conformal mappings and nodes for some subintervals of R

(a,b) φ(z) zk

a b ln( z–ab–z )
a+bekh

1+ekh

0 1 ln( z
1–z )

ekh

1+ekh

0 ∞ ln(z) ekh

0 ∞ ln(sinh(z)) ln(ekh +
√
e2kh + 1)

–∞ ∞ z kh
–∞ ∞ sinh–1(z) kh

for z ∈DE . These are shown in Figure  for real values x. The function z = φ–(w) = ew
+ew is

an inverse mapping of w = φ(z). We may define the range of φ– on the real line as

� =
{
φ–(u) ∈ DE : –∞ < u < ∞}

(.)

the evenly spaced nodes {kh}∞k=–∞ on the real line. The image which corresponds to these
nodes is denoted by

xk = φ–(kh) =
ekh

 + ekh
. (.)

A list of conformal mappings may be found in Table  [].

Definition . LetDE be a simply connected domain in the complex plane C, and let ∂DE

denote the boundary of DE . Let a, b be points on ∂DE and φ be a conformal map DE onto
DS such that φ(a) = –∞ and φ(b) = –∞. If the inverse map of φ is denoted by ϕ, define

� =
{
φ–(u) ∈ DE : –∞ < u < ∞}

(.)

and zk = ϕ(kh), k = ∓,∓, . . . .
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Definition . Let B(DE) be the class of functions F that are analytic in DE and satisfy

∫
ψ(L+u)

∣∣F(z)∣∣dz → , as u = ∓∞, (.)

where

L =
{
iy : |y| < d ≤ π



}
, (.)

and those on the boundary of DE satisfy

T(F) =
∫

∂DE

∣∣F(z)dz∣∣ <∞. (.)

The proof of following theorems can be found in [].

Theorem . Let � be (, ), F ∈ B(DE), then for h >  sufficiently small,

∫
�

F(z)dz – h
∞∑

j=–∞

F(zj)
φ′(zj)

=
i


∫
∂D

F(z)k(φ,h)(z)
sin(πφ(z)/h)

dz ≡ IF , (.)

where

∣∣k(φ,h)∣∣z∈∂D =
∣∣e[ iπφ(z)

h sgn(Imφ(z))]∣∣
z∈∂D = e

–πd
h . (.)

For the sinc-Galerkin method, the infinite quadrature rule must be truncated to a finite
sum. The following theorem indicates the conditions under which an exponential conver-
gence results.

Theorem . If there exist positive constants α, β and C such that

∣∣∣∣ F(x)φ′(x)

∣∣∣∣≤ C

⎧⎨
⎩
e–α|φ(x)|, x ∈ ψ((–∞,∞)),

e–β|φ(x)|, x ∈ ψ((,∞)),
(.)

then the error bound for the quadrature rule (.) is

∣∣∣∣∣
∫

�

F(x)dx – h
N∑

j=–N

F(xj)
φ′(xj)

∣∣∣∣∣≤ C
(
e–αNh

α
+
e–βNh

β

)
+ |IF |. (.)

The infinite sum in (.) is truncated with the use of (.) to arrive at the inequality (.).
Making the selections

h =
√

πd
αN

, (.)

N ≡
�

αN
β

+ 
�
, (.)
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where �·� is an integer part of the statement and N is the integer value which specifies the
grid size, then

∫
�

F(x)dx = h
N∑

j=–N

F(xj)
φ′(xj)

+O
(
e–(πα dN)/). (.)

We used Theorems . and . to approximate the integrals that arise in the formulation
of the discrete systems corresponding to a second-order boundary value problem.

Theorem . Let φ be a conformal one-to-one map of the simply connected domain DE

onto DS . Then

δ
()
jk =

[
S(j,h) ◦ φ(x)

]∣∣
x=xk

=

⎧⎨
⎩
, k = j,

, k �= j,
(.)

δ
()
jk = h

d
dφ

[
S(j,h) ◦ φ(x)

]∣∣∣∣
x=xk

=

⎧⎨
⎩
, k = j,
(–)k–j
(k–j) , k �= j,

(.)

δ
()
jk = h

d

dφ

[
S(j,h) ◦ φ(x)

]∣∣∣∣
x=xk

=

⎧⎨
⎩

–π

 , k = j,
–(–)k–j
(k–j) , k �= j.

(.)

3 The sinc-Galerkin method for singular Dirichlet-type boundary value
problems

Consider the following problem:

y′′ + P(x)y′ +Q(x)y = F(x) (.)

with Dirichlet-type boundary condition

y(a) = , y(b) = , (.)

where P, Q and F are analytic on D. We consider sinc approximation by the formula

y(x) ≈ yN (x) =
N∑

k=–N

ckS(k,h) ◦ φ(x), (.)

S(k,h) =
sin[π

h (x – kh)]
π
h (x – kh)

. (.)

The unknown coefficients ck in Eq. (.) are determined by orthogonalizing the residual
with respect to the sinc basis functions. The Galerkin method enables us to determine the
ck coefficients by solving the linear system of equations

〈
LyN – F ,S(k,h) ◦ φ(x)

〉
= , k = –N , –N + , . . . ,N – ,N . (.)

Let f and f be analytic functions onD and the inner product in (.) be defined as follows:

〈f, f〉 =
∫

�

w(x)f(x)f(x)dx, (.)
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wherew is the weight function. For the second-order problems, it is convenient to take [].

w(x) =


φ′(x)
. (.)

For Eq. (.), we use the notations (.)-(.) together with the inner product that, given
(.) [], showed to get the following approximation formulas:

〈
F(x),S(k,h) ◦ φ(x)

〉
=
∫

�

w(x)F(x)S(k,h) ◦ φ(x)dx ∼= hwkFk
φ′
k

, (.)

〈
Q(x)y(x),S(k,h) ◦ φ(x)

〉
=
∫

�

w(x)Q(x)y(x)S(k,h) ◦ φ(x)dx ∼= h
(
wkFk
φ′
k

)
ck , (.)

〈
P(x)y′(x),S(k,h) ◦ φ(x)

〉
=
∫

�

w(x)P(x)y′(x)S(k,h) ◦ φ(x)dx∼= h
(
wkPk

φ′
k

)
c′k

∼= –h
N∑

j=–N

cj
[ (Pw)′j

φ′ δ
()
kj + (Pw)j

δ
()
kj

h

]
, (.)

〈
y′′(x),S(k,h) ◦ φ(x)

〉
=
∫

�

w(x)y′′(x)S(k,h) ◦ φ(x)dx∼= h
(
wk

φ′
k

)
c′′k

∼= –h
N∑

j=–N

cj
[w′′

j

φ′ δ
()
kj +

(
w′

j +
wjφ

′′
j

φ′
j

)
δ
()
kj

h
+wjφ

′
j
δ
()
kj

h

]
, (.)

where wk = w(xk). If we choose h = (πd/αN)/ and w(x) = /φ′(x) as given in [] the accu-
racy for each equation between (.)-(.) will be O(N /e–(πdαN)/ ).
Using (.), (.)-(.), we obtain a linear system of equations for N +  numbers ck .
The N +  linear system given in (.) can be expressed by means of matrices. Let m =

N + , and let Sm and cm be a column vector defined by

Sm(x) =

⎛
⎜⎜⎜⎜⎝

S–N
S–N+

...
SN

⎞
⎟⎟⎟⎟⎠ , cm =

⎛
⎜⎜⎜⎜⎝

c–N
c–N+
...
cN

⎞
⎟⎟⎟⎟⎠ . (.)

LetAm(y) denote a diagonalmatrix whose diagonal elements are y(x–N ), y(x–N+), . . . , y(xN )
and non-diagonal elements are zero, and also let I()m , I()m and I()m denote the matrices

I()m =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

   · · · 
   · · · 
   · · · 
...

...
...

. . .
...

   · · · 

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
=
[
δ
()
jk
]
, (.)

I()m =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

 – 
 · · · 

N
  – · · · – 

N–
– 

   · · · 
N–

...
...

...
. . .

...
– 

N


N–


N– · · · 

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
=
[
δ
()
jk
]
, (.)
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I()m =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

–π



 – 

 · · · – 
(N)


 –π



 · · · 

(N–)

– 



 –π

 · · · – 
(N–)

...
...

...
. . .

...
– 

(N)


(N–) – 
(N–) · · · –π



⎤
⎥⎥⎥⎥⎥⎥⎥⎦
=
[
δ
()
jk
]
. (.)

With these notations, the discrete system of equations in (.) takes the form:

〈
LyN – F ,Sm(k,h) ◦ φ(x)

〉

= h
[
I()m Am

(
w′′

φ′

)
+

h
I()m Am

(
w′ +wφ′′/φ′′) + 

h
I()m Am

(
wφ′)]cm

– h
[
I()m Am

(
(Pw)′′

φ′

)
+

h
I()m Am(Pw)

]
cm

+ h
[
I()m Am

(
Qw
φ′

)]
cm

– hAm
Fw
φ′ . (.)

Theorem . Let c be an m-vector whose jth component is cj. Then the system (.) yields
the following matrix system, the dimensions of which are (N + )× (N + ):

� · c = Am
Fw
φ′ . (.)

Now we have a linear system of (N + ) equations of the (N + ) unknown coefficients. If
we solve (.) by using LU or QR decomposition methods, we can obtain cj coefficients for
the approximate sinc-Galerkin solution

y(x) ≈ yN (x) =
N∑

k=–N

ckS(k,h) ◦ φ(x). (.)

4 Examples
Three examples were given in order to illustrate the performance of the sinc-Galerkin
method to solve a singular Dirichlet-type boundary value problem in this section. The dis-
crete sinc system defined by (.) was used to compute the coefficients cj; j = –N , . . . ,N
for each example. All of the computations were done by an algorithm which we have de-
veloped for the sinc-Galerkin method. The algorithm automatically compares the sinc-
method with the exact solutions. It is shown in Tables - and Figures - that the sinc-
Galerkin method is a very efficient and powerful tool to solve singular Dirichlet-type
boundary value problems.

Example . Consider the following singular Dirichlet-type boundary value problem on
the interval [, ]:

d

dx
y(x) +

y(x)
x(x – )

= –


,
x +


,

x +



x + /x,

y() = , y() = .
(.)

http://www.boundaryvalueproblems.com/content/2012/1/126
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Table 2 The numerical results for the approximate solutions obtained by sinc-Galerkin in
comparison with the exact solutions of Eq. (4.1) for N = 100

x Exact solution Sinc-Galerkin Absolute error

0.2 0.000450466988174113 0.000450466929764516 5.8409597E–11
0.4 0.000893654763766436 0.000893654689218907 7.4547529E–11
0.6 0.001096474957106920 0.001096474871619300 8.5487620E–11
0.8 0.000797109647979786 0.000797109574773798 7.3205988E–11

Table 3 The numerical results for the approximate solutions obtained by sinc-Galerkin in
comparison with the exact solutions of Eq. (4.2) for N = 100

x Exact solution Sinc-Galerkin Absolute error

0.2 0.00314134396980435 0.00314134378138869 1.88415721000000E–10
0.4 0.01128904694197050 0.01128904622846880 7.13501861405898E–10
0.6 0.02049668664764170 0.02049668582683820 8.20803253396388E–10
0.8 0.02205723725961330 0.02205723670616530 5.53448662985227E–10

Table 4 The numerical results for the approximate solutions obtained by sinc-Galerkin in
comparison with the exact solutions of Eq. (4.3) for N = 100

x Exact solution Sinc-Galerkin Absolute error

–0.8 –0.768735600700030 –0.768735573640717 2.7059313E–8
–0.6 –1.494977232326020 –1.494977256431750 2.4105730E–8
–0.4 –2.178172723246240 –2.178172789883010 6.6636770E–8
–0.2 –2.817647649506660 –2.817647724013040 7.4506380E–8
0.0 –3.412578267829700 –3.412578329155590 6.1325890E–8
0.2 –3.961958455904090 –3.961958531301040 7.5396950E–8
0.4 –4.464559333163800 –4.464559424139430 9.0975630E–8
0.6 –4.918879941496040 –4.918880051407700 1.0991166E–7
0.8 –5.323087006521950 –5.323087129044260 1.2252231E–7
1.0 –5.674941361858750 –5.674941494327020 1.3246827E–7
1.2 –5.971708083510550 –5.971708201060930 1.1755038E–7
1.4 –6.210046727765300 –6.210046817516560 8.9751260E–8
1.6 –6.385877267459800 –6.385877325019590 5.7559790E–8
1.8 –6.494216346163350 –6.494216361246050 1.5082700E–8
2.0 –6.528977278586750 –6.528977261410670 1.7176080E–8

The exact solution of (.) is

y(x) =
,,

,,
x +

,
,,

x +
,

,,
x –

,
, ,

x

+
,

,,
x +


,

x +



x.

We choose the weight function according to [], φ(x) = ln( 
–x ), w(x) =


φ′(x) , and by taking

d = π/, h = √
N , xk =

ekh
+ekh for N = , , , , the solutions in Figure  and Table  are

achieved.

Example . Let us have the following form of a singular Dirichlet-type boundary value
problem on the interval [, ]:

d

dx
y(x) –


x
d
dx

y(x) +
y(x)

x(x + )
= –x,

y() = , y() = .
(.)
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Figure 5 Approximation to the exact solution: the red colored curve displays the exact solution and
the green one is the approximate solution of Eq. (4.1).

Figure 6 Approximation to the exact solution: the red colored curve displays the exact solution and
the green one is the approximate solution of Eq. (4.2).

Figure 7 Approximation to the exact solution: the red colored curve displays the exact solution and
the green one is the approximate solution of Eq. (4.3).

The problem has an exact solution like

y(x) =



· ( ln(x + )x +  ln(x + ) – x + x – x ln()

– x + x ln() + x – x ln() + x – x ln()
)
/
(
– +  ln()

)
,

whereφ(x) = ln( 
–x ),w(x) =


φ′(x) . By taking d = π/, h = √

N , xk =
ekh

+ekh forN = , , , ,
we get the solutions in Figure  and Table .

Example . The following problem is given on the interval [–, ]:

d

dx
y(x) –

d
dx

y(x) = –(x – ),

y(–) = , y() = ,
(.)

where the exact solution of (.) is y(x) = xe–xe–+ex–xe+xe––e–e–
(e–e–)

.

http://www.boundaryvalueproblems.com/content/2012/1/126
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In this case, φ(x) = ln( x+–x ), w(x) =


φ′(x) , and by taking d = π/, h = √
N , xk =

–+ekh
+ekh for

N = , , , , we get results in Figure  and Table  .

5 Conclusion
The sinc-Galerkin method was employed to find the solutions of second-order Dirichlet-
type boundary value problems on some closed real interval. Themain purpose was to find
the solution of boundary value problems which arise from the singular problems. The ex-
amples show that the accuracy improves with increasing number of sinc grid pointsN .We
have also developed a very efficient and rapid algorithm to solve second-order Dirichlet-
type BVPs with the sinc-Galerkin method on the Maple computer algebra system. All of
the above computations and graphical representations were prepared by using Maple.
We give the Maple code in the Appendix section.

Appendix: Maple code which we developed for the sinc-Galerkin
approximation

> restart:
> with(linalg):
> with(LinearAlgebra):
> N:=:

> P(x):=-();

P(x) := –

> Q(x):=;

Q(x) := 

> F(x):=-(x-);

F(x) := –x + 

> Boundaries:=z(-)=,z()=;

Boundaries := z(–) = , z() = 

> Example:=diff(z(x),x$)+P(x)*diff(z(x),x$)+Q(x)*z(x)=F(x);

Example  :=
(

d

dx
z(x)

)
–
(

d
dx

z(x)
)
= –x + 

> Exact_sol:=unapply(simplify(rhs(dsolve({Example,Boundaries},z(x)))),x);

Exact_sol := x→ 

xe – xe(–) + ex – xe + xe(–) – e – e(–)

e – e(–)

> delta[]:=unapply(piecewise(j=k,,j<>k,),j,k):

http://www.boundaryvalueproblems.com/content/2012/1/126
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> delta[]:=unapply(piecewise(j=k,,j<>k,((-)^(k-j))/(k-
j)),j,k):

> delta[]:=unapply(piecewise(j=k,(-Pi^)/,j<>k,-*(-)^(k-
j)/(k-j)^),j,k):

> d:=Pi/:
> h:=/sqrt(N):
> xk:=unapply((-+*exp(k*h))/(+exp(k*h)),k);

xk := k → – + e(/k)

 + e(/k)

> phi:=unapply(log((x+)/(-x)),x);

φ := x → ln

(
x + 
–x + 

)

> Dphi:=unapply(simplify(diff(phi(x),x)),x):
> Dphi:=unapply(simplify(diff(phi(x),x$)),x):
> g:=unapply(/Dphi(x),x):
> Dg:=unapply(simplify(diff(g(x),x$)),x):
> Dg:=unapply(simplify(diff(g(x),x$)),x):

> sys:=[]:
> for p from -N to N do
sys:=[op(sys), h*(sum(y[j]*((/h^)*delta[](p,j)*

(Dphi(xk(j))*g(xk(j)))+
(/h^)*delta[](p,j)*
((Dphi(xk(j))/Dphi(xk(j)))*
g(xk(j))+*Dg(xk(j)))+
(/h^)*delta[](p,j)*
((Dg(xk(j))/Dphi(xk(j))))),
j=-N..N)

-sum(y[j]*((/h^)*delta[](p,j)*
(subs(x=xk(j),P(x)*g(x)))+
(/h^)*delta[](p,j)*

(subs(x=xk(j),diff(P(x)*g(x),x)))/Dphi(xk(j))
),j=-N..N)

+y[p]*subs(x=xk(p),g(x)*Q(x))/Dphi(xk(p))
-subs(x=xk(p),g(x)*F(x))/Dphi(xk(p)))=]:

od:

> evalf(sys):
> vars:=seq(y[i],i=-N..N):

http://www.boundaryvalueproblems.com/content/2012/1/126
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> A,b:=LinearAlgebra[GenerateMatrix](evalf(sys),[vars]):

> c:=linsolve(A,b):
> ApproximateSol:=unapply(sum(c[j+N+]*sin(Pi*(phi(x)-

j*h)/h)/(Pi*(phi(x)-j*h)/h),j=-N..N),x):

> plot([Exact_sol(x),ApproximateSol(x)],x=-.., title ="Sinc-
Galerkin Approximation",labels=["x","y"], legend = ["Exact
Solution","Sinc-Galerkin"],);

> Digits := ;

Digits := 

> Exact:=[]:Apprx:=[]:Err:=[]:

for s from -. by . to 
do

Exact:=[op(Exact),evalf(Exact_sol(s))]:
Apprx:=[op(Apprx),evalf(ApproximateSol(s))]:
Err:=[op(Err),evalf(abs(evalf(ApproximateSol(s))-
evalf(Exact_sol(s))))]:

od:

> latex(Exact);latex(Apprx);latex(Err);

[–.,–.,–.,

– .,–.,–.,

– .,–.,–.,

– .,–.,–.,

– .,–.,–.]

[–.,–.,–.,

– .,–.,–.,

– .,–.,–.,

– .,–.,–.,

– .,–.,–.]

[., ., .,

., ., .,

., .,.,

., ., .,

., .,.]
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