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Abstract
In this paper, we study the fuzzy differential equations in the quotient space of fuzzy
numbers. We solve the initial value problem for fuzzy differential equations provided
that the involved mappings are continuous, of uniformly bounded variation, and are
bounded functions. Then we establish a variety of comparison results for the
solutions of fuzzy differential equations.
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1 Introduction
Fuzzy sets were introduced in  by Zadeh [] with a view to reconcile mathematical
modeling and human knowledge in the engineering science. Fuzzy set theory and its ap-
plications have been extensively developed since the s and the industrial interest in
fuzzy control has dramatically increased since then [–].
The fuzzy differential equationwas first introduced byKandel and Byatt []. Since then,

it has been extensively investigated on the metric space (En,D) of a normal fuzzy convex
set with the distanceD given by the maximum of the Hausdorff distance between the cor-
responding level sets. The fuzzy differential equation was studied by Kaleva [, , ] and
Wu and Song [–], for the fuzzy-valued function of a real variablewhose values are nor-
mal, convex, upper semicontinuous, and are compactly supported fuzzy sets in R

n. Many
authors studied the existence and uniqueness of solutions of the initial value problems for
fuzzy differential equations under various kinds of conditions and obtained many mean-
ingful results in [, –]. One found the local existence and uniqueness theorems for
the Cauchy problem when the fuzzy-valued function f satisfies the generalized Lipschitz
condition []. The existence theorems under compactness-type conditions were studied
in []. Based on these works, the global existence of solutions of the Cauchy problemwas
investigated in [].
The above results of the fuzzy differential equation were based on the well-known and

widely usedHukuhara difference, proposed by [], and the H-differentiability of Puri and
Ralescu [], which generalized the Hukuhara differentiability of a set-valuedmapping. In
[, ], Mareš presented a natural equivalence relation between fuzzy quantities. This
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equivalence relation can be used to partition the set of fuzzy quantities into equivalence
classes having the desired group properties under the addition operation [–]. Hong
and Do [] defined a more refined equivalence relation than Mareš [] and improved
Mareš’s results. In [], Qiu et al. showed that the method of finding the inverse operation
of fuzzy numbers in the sense of Mareš is very intuitive. The authors introduced a new
concept of convergence under which the quotient space in complete. As an application of
themain results, it is shown that if we identify every fuzzy number with the corresponding
equivalence class, there would be more differentiable fuzzy functions than what is found
in the literature. In [] Qiu et al. further investigated the differentiability and integrability
properties of such functions and gave an existence and uniqueness theorem for a solution
to a fuzzy differential equation in the quotient space of fuzzy numbers.
In this paper, we will study the basic theory of fuzzy differential equations in the quo-

tient space of fuzzy numbers. In Section , we recall some related concepts. In Section ,
we will solve the initial value problem for fuzzy differential equations. In Section , we will
establish a variety of comparison results for the solutions of fuzzy differential equations,
which form the essential tools for studying the fundamental theory of fuzzy differential
equations. The comparison discussion shows how one can develop the theory of differen-
tial inequalities with the minimum linear structure.

2 Preliminaries
We start this section by recalling some pertinent concepts and key lemmas from the func-
tions of bounded variation, fuzzy numbers, and fuzzy equivalence classes which we need
for the discussion below.

Definition . [] Let f : [a,b] → R. f is said be of bounded variation if there exists a
C >  such that

n∑
i=

∣∣f (xi–) – f (xi)
∣∣ ≤ C

for every partition a = x < x < x < · · · < xn = b on [a,b]. The set of all functions of
bounded variation on [a,b] is denoted by BV[a,b].

Definition . [] Let f : [a,b] → R be a function of bounded variation. The total vari-
ation of f on [a,b] is defined by

Vb
a (f ) = sup

p

n∑
i=

∣∣f (xi–) – f (xi)
∣∣,

where p represents all partitions of [a,b].

Lemma . [] For any constants c ∈R, if f ∈ BV[a,b], then so is cf and

Vb
a (cf ) = |c|Vb

a (f ).

Lemma . [] For any constants c,d ∈R, if f , g ∈ BV[a,b], then so is cf + dg and

Vb
a (cf + dg) ≤ |c|Vb

a (f ) + |d|Vb
a (g).
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Lemma . [] Let f be a function of bounded variation on [a,b], and let V be a function
defined by V (x) = Vb

x (f ). Then if f is continuous from the left (or right) at a point x∗, so is V .

Lemma . [] If a < b < c, then

Vc
a(f ) = Vb

a (f ) +Vc
b (f ).

Lemma . [] Every monotonic function f is of bounded variation, and Vb
a (f ) =

|f (a) – f (b)|.

Lemma . [] If f , g ∈ BV[a,b], then so is fg and

Vb
a (fg) ≤ cVb

a (f ) + dVb
a (g),

where c = sup |g(x)| <∞, d = sup |f (x)| < ∞.

A fuzzy set x̃ of R is characterized by a membership function μx̃ : R → [, ]. An α-
level set of x̃ is [x̃]α = {x ∈ R : μx̃(x) ≥ α} for each α ∈ (, ]. We define the set [x̃] by
[x̃] = {x ∈ R : μx̃(x) > }, where A denotes the closure of a crisp set A. A fuzzy set x̃ is said
to be a fuzzy number if it satisfies the following conditions []:
() x̃ is normal, i.e., there exists an x ∈R such that μx̃(x) = ;
() x̃ is convex, i.e., μx̃(λx + ( – λ)x)≥min{μx̃(x),μx̃(x)}, for all x,x ∈R and

λ ∈ [, ];
() x̃ is upper semicontinuous;
() [x̃] is compact.
Equivalently, a fuzzy number x̃ is a fuzzy set with nonempty bounded level sets [x̃]α =

[x̃L(α), x̃R(α)] for all α ∈ [, ], where [x̃L(α), x̃R(α)] denotes a closed interval with the left
end point x̃L(α) and the right end point x̃R(α).We denote the class of fuzzy numbers byF .
Notice that the real numbers R can be embedded in F by defining a fuzzy number ã
as

μã(x) =

{
, if x = a,
, otherwise

for each a ∈ R. Thus we will represent the singleton {a} by ã for any real number a ∈ R

and in particular ̃ is just the usual zero.
For any x̃, ỹ ∈ F and a ∈R, owing to Zadeh’s extension principle [–], addition and

scalar multiplication are defined for any x ∈R by

μx̃+ỹ(x) = sup
x·x:x+x=x

min
{
μx̃(x),μỹ(x)

}
and

μa×x̃(x) = μax̃(x) =

{
μ( xa ), if a �= ,
̃, if a = .

http://www.advancesindifferenceequations.com/content/2014/1/303


Qiu et al. Advances in Difference Equations 2014, 2014:303 Page 4 of 22
http://www.advancesindifferenceequations.com/content/2014/1/303

For any x̃ ∈ F , we define the fuzzy number –x̃ ∈ F by –x̃ = (–)× x̃, i.e., μ–x̃(x) = μx̃(–x),
for all x ∈R. It is well known that

[x̃ + ỹ]α = [x̃]α + [ỹ]α =
[
x̃L(α) + ỹL(α), x̃R(α) + ỹR(α)

]
and

[ax̃]α = a[x̃]α =

⎧⎪⎨⎪⎩
[ax̃L(α),ax̃R(α)], if a > ,
{}, if a = ,
[ax̃R(α),ax̃L(α)], if a < 

for all x̃, ỹ ∈ F and a ∈ R. In particular, [–x̃]α = –[x̃]α = –[x̃L(α), x̃R(α)] = [–x̃R(α), –x̃L(α)].
By the level set representations of the fuzzy numbers x̃, ỹ, z̃, we can get

(
[x̃]α + [ỹ]α

)
+ [z̃]α = [x̃]α +

(
[ỹ]α + [z̃]α

)
=

[
x̃L(α) + ỹL(α) + z̃L(α), x̃R(α) + ỹR(α) + z̃R(α)

]
,

[x̃]α + [ỹ]α = [ỹ]α + [x̃]α =
[
x̃L(α) + ỹL(α), x̃R(α) + ỹR(α)

]
,

which impliesF is a commutative semigroup under addition.We say that a fuzzy number
s̃ ∈ F is symmetric [], if

μs̃(x) = μs̃(–x)

for all x ∈R, i.e., s̃ = –s̃. The set of all symmetric fuzzy numbers will be denoted by S .

Definition . [] Let x̃, ỹ ∈ F . We say that x̃ is equivalent to ỹ and write x̃ ∼ ỹ if and
only if there exist symmetric fuzzy numbers s̃, s̃ ∈ S such that

x̃ + s̃ = ỹ + s̃.

The equivalence relation defined above is reflexive, symmetric, and transitive []. Let
〈x̃〉 denote the equivalence class containing the element x̃ and denote the set of equivalence
classes by F /S .

Definition . [] For a fuzzy number x̃, we define a function x̃M : [, ] →R by assign-
ing the midpoint of each α-level set to x̃M(α) for all α ∈ [, ], i.e.,

x̃M(α) =
x̃L(α) + x̃R(α)


.

Then the function x̃M : [, ] → R will be called the midpoint function of the fuzzy num-
ber x̃.

Lemma . [] For any x̃ ∈ F , the midpoint function x̃M is continuous from the right at
 and continuous from the left on [, ]. Furthermore it is a function of bounded variation
on [, ].
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It is interesting to note that the midpoint function x̃M is actually a gradual number and
all of the gradual numbers form a group structure under addition [, ]. Among appli-
cations of the decomposition of a fuzzy interval using a symmetric fuzzy number and a
midpoint function is the study of the fuzzy variance of a fuzzy interval [, ].

Definition . [] Let x̃ ∈ F and let x̂ be a fuzzy number such that x̃ = x̂ + s̃ for some
s̃ ∈ S , if x̂ = ỹ + s̃ for some ỹ ∈ F and s̃ ∈ S , then s̃ = ̃. Then the fuzzy number x̂ will
be called the Mareš core of the fuzzy number x̃.

In [], Qiu et al. not only pointed out that x̃ is equivalent to ỹ if and only if they have the
samemidpoint function, which implies that each equivalence class corresponding to each
midpoint function, but they also pointed out that for each fuzzy number x̃ has only one
Mareš core, and x̃ is equivalent to ỹ if and only if they have the same Mareš core, which
implies that all elements of an equivalence class 〈x̃〉 have the same Mareš core x̂. Hence,
theMareš core x̂ of x̃ is also called theMareš core of the equivalence class 〈x̃〉 that contains
the fuzzy number x̃. It is natural to define the midpoint function for an equivalence class
as follows.

Definition . [] For an equivalence class 〈x̃〉 ∈ F /S , we define a midpoint function
M〈x̃〉 : [, ]→R by

M〈x̃〉(α) = x̂M(α)

for all α ∈ [, ], where x̂ is the Mareš core of 〈x̃〉.

Definition . [] For any 〈x̃〉, 〈ỹ〉 ∈ F /S , we define 〈x̃〉 + 〈ỹ〉 by

〈x̃〉 + 〈ỹ〉 = 〈x̃ + ỹ〉.

It is obvious thatM〈x̃〉+〈ỹ〉(α) =M〈x̃+ỹ〉(α) =M〈x̃〉(α) +M〈ỹ〉(α), for all α ∈ [, ]. Moreover,
it follows from Definitions . and . that

〈x̃〉 + 〈ỹ〉 ⊇ {
z̃ = x̃ + ỹ : x̃ ∈ 〈x̃〉, ỹ ∈ 〈ỹ〉}

for any 〈x̃〉, 〈ỹ〉 ∈ F /S . In [] Qiu et al. have given an example to show that the above
inclusion can become strict.

Remark . The addition operation defined by Definition . is a group operation over
the set of equivalence classes F /S up to the equivalence relation in Definition .. It
means that

〈x̃〉 + 〈ỹ〉 = 〈ỹ〉 + 〈x̃〉,(〈x̃〉 + 〈ỹ〉) + 〈z̃〉 = 〈x̃〉 + (〈ỹ〉 + 〈z̃〉),
〈x̃〉 + 〈ỹ〉 = 〈x̃〉 if and only if 〈ỹ〉 = 〈̃〉,
〈x̃〉 + 〈ỹ〉 = 〈̃〉 if and only if 〈ỹ〉 = 〈–x̃〉 = –〈x̃〉

for any 〈x̃〉, 〈ỹ〉, 〈z̃〉 ∈ F /S . For the details of the discussion, please see [, ].
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Lemma . [, ] (F /S , +) is a group.

For any 〈x̃〉, 〈ỹ〉 ∈ F /S , the midpoint functions M〈x̃〉 andM〈ỹ〉 are continuous from the
right at  and continuous from the left on [, ], and they are functions of bounded varia-
tion on [, ] []. Then the function M〈x̃〉M〈ỹ〉 is also continuous from the right at  and
continuous from the left on [, ]. In addition, by Lemma ., we know that M〈x̃〉M〈ỹ〉 is
a function of bounded variation on [, ]. Hence, M〈x̃〉M〈ỹ〉 is the midpoint function for
some fuzzy number equivalence class.

Definition . [] Let 〈x̃〉, 〈ỹ〉, 〈z̃〉 ∈ F /S . If

M〈z̃〉(α) =M〈x̃〉(α) ·M〈ỹ〉(α)

for all α ∈ [, ], then what we called 〈z̃〉 is the product of 〈x̃〉 and 〈ỹ〉, i.e., 〈z̃〉 = 〈x̃〉 · 〈ỹ〉.

Definition . For any 〈x̃〉 ∈ F /S and λ ∈R, we define λ · 〈x̃〉 = λ〈x̃〉 by

λ〈x̃〉 = 〈λx̃〉.

It is obvious that Mλ〈x̃〉(α) =M〈λx̃〉(α) = λM〈x̃〉(α), for all α ∈ [, ]. If x̂ is the Mareš core
of 〈x̃〉, then λx̂ is the Mareš core of λ〈x̃〉. In fact, let ŷ be the Mareš core of λ〈x̃〉. Then, by
Theorems . and . in [], and Lemma ., we have

x̂L(α) =M〈x̃〉(α) –V 
α(M〈x̃〉),

x̂R(α) =M〈x̃〉(α) +V 
α(M〈x̃〉)

and

ŷL(α) =Mλ〈x̃〉(α) –V 
α(Mλ〈x̃〉) = λM〈x̃〉(α) – |λ|V 

α(M〈x̃〉),

ŷR(α) =Mλ〈x̃〉(α) +V 
α(Mλ〈x̃〉) = λM〈x̃〉(α) + |λ|V 

α(M〈x̃〉)

for all α ∈ [, ]. Hence, we get [ŷ]α = λ[x̂]α = [λx̂]α for all α ∈ [, ], i.e., ŷ = λx̂.

Definition . Define dsup :F /S × F /S →R
+ ∪ {} by

dsup
(〈x̃〉, 〈ỹ〉) = sup

α∈[,]

∣∣M〈x̃〉(α) –M〈ỹ〉(α)
∣∣

for all 〈x̃〉, 〈ỹ〉 ∈ F /S .

(F /S ,dsup) is a metric space []. FromDefinition ., we list here some simple prop-
erties of the metric dsup(〈x̃〉, 〈ỹ〉):
() dsup(〈x̃〉, 〈z̃〉)≤ dsup(〈x̃〉, 〈ỹ〉) + dsup(〈ỹ〉, 〈z̃〉);
() dsup(λ〈x̃〉,λ〈ỹ〉) = |λ|dsup(〈x̃〉, 〈ỹ〉);
() dsup(〈x̃〉 + 〈z̃〉, 〈ỹ〉 + 〈z̃〉) = dsup(〈x̃〉, 〈ỹ〉)

for all 〈x̃〉, 〈ỹ〉, 〈z̃〉 ∈ F /S and λ ∈ R, where the addition and scalar multiplication on
F /S are defined in Definitions . and ., respectively.

http://www.advancesindifferenceequations.com/content/2014/1/303
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3 Initial value problem
In this section, we will firstly give some definitions and basic results for the fuzzy differen-
tials and fuzzy integrals. Then we will solve the initial value problem for fuzzy differential
equations.

Definition . [] Let T = [a,b]. A mapping F : T → F /S is differentiable at t ∈ T if
there exists an F ′(t) ∈ F /S such that

lim
h→

dsup
(
F(t + h) – F(t)

h
,F ′(t)

)
= .

If t = a (or t = b), then we consider only h → + (or h → –). If F , G are differentiable
at t, then we have (F +G)′(t) = F ′(t) +G′(t) and (λF)′(t) = λF ′(t), λ ∈R.

Lemma . [] If F : T → F /S is differentiable, then it is continuous with respect to
dsup.

Definition . [] A mapping F : T → F /S is measurable if F is measurable with re-
spect to dsup.

Amapping F : T → F /S is called integrably bounded if there exists an integrable func-
tion h : T → R

+ ∪ {} such that |MF(t)(α)| ≤ h(t) for all t ∈ T and α ∈ [, ]; a mapping
F : T → F /S is said to be of uniformly bounded variation with respect to α ∈ [, ] (for
short, uniformly bounded variation) if there exists a constant K >  such that

V 
(MF(t)) ≤ K

for all t ∈ T [].

Definition . [] Let F : T → F /S be measurable. The integral of F over T , denoted∫
T F(t)dt or

∫ b
a F(t)dt, is amappingM∫

T F(t)dt : [, ] →R, which is defined by the equation

M∫
T F(t)dt(α) =

∫
T
MF(t)(α)dt

for all α ∈ [, ]. The mapping F : T → F /S is said to be integrable over T if there exists
an 〈x̃〉 ∈ F /S such thatM∫

T F(t)dt =M〈x̃〉. In this case, we denote the integral by

∫
T
F(t)dt = 〈x̃〉.

If F : T → F /S is a measurable, integrably bounded, and uniformly bounded variation
of a mapping, then F is integrable on T and

∫
T F(t)dt ∈ F /S []. Also the following

properties of the integral are valid. If F ,G : T → F /S are integrable on T and λ ∈ R,
then:

()
∫
T
(F +G)(t)dt =

∫
T
F(t)dt +

∫
T
G(t)dt,

()
∫
T

λF(t)dt = λ

∫
T
F(t)dt,

http://www.advancesindifferenceequations.com/content/2014/1/303
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() dsup(F ,G) is integrable,

() dsup
(∫

T
F(t)dt,

∫
T
G(t)dt

)
≤

∫
T
dsup

(
F(t),G(t)

)
dt,

()
∫ b

a
F(t)dt =

∫ c

a
F(t)dt +

∫ b

c
F(t)dt, a ≤ c≤ b.

Lemma . [] Let F : T → F /S be continuous with respect to dsup and of uniformly
bounded variation. Then the integral G(t) =

∫ t
a F(s)ds is differentiable and G′(t) = F(t) for

all t ∈ T .

Lemma . [] Let F : T → F /S be differentiable and the derivative F ′ be integrable
over T . Then for all t ∈ T , we have F(t) = F(t) +

∫ t
t
F ′(s)ds, a ≤ t ≤ t ≤ b.

Lemma . [] Let F : T → F /S be continuous with respect to dsup and of uniformly
bounded variation and G(t) =

∫ t
a F(s)ds. Then for a ≤ t ≤ t ≤ b we have

dsup
(
G(t),G(t)

) ≤ (t – t) sup
t∈[t,t]

sup
α∈[,]

∣∣MF(t)(α)
∣∣ = (t – t) sup

t∈[t,t]
dsup

(
F(t), 〈̃〉).

Assume that f : T × F /S → F /S is continuous and of uniformly bounded variation.
Consider the initial value problem

x′(t) = f
(
t,x(t)

)
, x(a) = 〈̃〉. ()

From Lemmas ., ., and ., a lemma immediately follows.

Lemma . A mapping x : T → F /S is a solution to the problem () if and only if it is
continuous, uniformly bounded variation and satisfies the integral equation

x(t) = 〈̃〉 +
∫ t

a
f
(
s,x(s)

)
ds =

∫ t

a
f
(
s,x(s)

)
ds

for all t ∈ T .

Theorem . Let f : T × F /S → F /S be continuous with respect to dsup and of uni-
formly bounded variation on T . Suppose there exists an L >  such that

dsup
(
f
(
t, 〈x̃〉), 〈̃〉) ≤ L

for all t ∈ T and 〈x̃〉 ∈ F /S . Then the problem () has a solution on T .

Proof Since f is of uniformly bounded variation, there exists a constant K >  such that

V 
(Mf (t,〈x̃〉)) ≤ K

for all t ∈ T and 〈x̃〉 ∈ F /S . Let K = (b – a)K. Denote by CBV(T ,F /S ) the set of
all continuous and of uniformly bounded variation mappings ϕ from T to F /S and

http://www.advancesindifferenceequations.com/content/2014/1/303
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V 
(Mϕ(t)) ≤ K for all t ∈ T . We metricize CBV(T ,F /S ) by setting

D(ξ ,ψ) = sup
T

dsup
(
ξ (t),ψ(t)

)
for ξ ,ψ ∈ CBV(T ,F /S ). Since (F /S ,dsup) is a metric space, it is easy to show that also
(CBV(T ,F /S ),D) is metric space. Next, we shall show that (CBV(T ,F /S ),D) is com-
plete. By Definition ., we have

D(ξ ,ψ) = sup
t∈T ,α∈[,]

∣∣Mξ (t)(α) –Mψ(t)(α)
∣∣.

Let {ξn}∞n= is a Cauchy sequence inCBV(T ,F /S ), i.e., for any ε > , there exists a positive
integer N such that

D(ξm, ξn) = sup
t∈T ,α∈[,]

∣∣Mξm(t)(α) –Mξn(t)(α)
∣∣ < ε

for allm,n >N . Denote by C(T × [, ],R) the set of all continuous function with respect
to the first variable t ∈ T . Let

d(x, y) = sup
t∈T ,α∈[,]

∣∣x(t,α) – y(t,α)
∣∣

for any x, y ∈ C(T × [, ],R). Then {Mξn} is a Cauchy sequence in C(T × [, ],R), which
implies that for any given t ∈ T and α ∈ [, ], {Mξn(t)(α)} is a Cauchy sequence. Thus, there
exists anMξ (t)(α) such that

lim
n→∞

∣∣Mξn(t)(α) –Mξ (t)(α)
∣∣ = .

Now we shall show thatMξ (t)(α) ∈ C(T × [, ]). Firstly, we have

∣∣Mξm(t)(α) –Mξ (t)(α)
∣∣ ≤ ∣∣Mξm(t)(α) –Mξn(t)(α)

∣∣ + ∣∣Mξn(t)(α) –Mξ (t)(α)
∣∣

for all t ∈ T and α ∈ [, ]. Thus, letting n → ∞ we have

sup
t∈T ,α∈[,]

∣∣Mξm(t)(α) –Mξ (t)(α)
∣∣ ≤ ε,

wheneverm >N , which implies thatMξn(t)(α) converges uniformly toMξ (t)(α) with respect
to (t,α) on T × [, ]. Thus, we find that Mξ (t)(α) is continuous with respect to t ∈ T , i.e.,
Mξ (t)(α) ∈ C(T× [, ],R). For any given α ∈ [, ], let {αn}∞n= ⊆ [, ] be a nondecreasing
sequence converging to α. For any given t ∈ T , we have

∣∣Mξ (t)(αn) –Mξ (t)(α)
∣∣ ≤ ∣∣Mξm(t)(αn) –Mξ (t)(αn)

∣∣ + ∣∣Mξm(t)(αn) –Mξm(t)(α)
∣∣

+
∣∣Mξm(t)(α) –Mξ (t)(α)

∣∣.
SinceMξm(t) is continuous from the left on [, ] with respect to α andMξm(t)(α) converges
uniformly to Mξ (t)(α) with respect to t, we see that the limit of the right-hand side of the
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above inequality is equal to  as n,m → +∞. Hence Mξ (t) is continuous from the left on
[, ] with respect to α. Similarly, we can find thatMξ (t) is continuous from the right at .
Since {Mξn(t)(α)}∞n= are of bounded variation on [, ] and converge uniformly toMξ (t)(α)
with respect to α, by Theorem . in [] we obtain

V 
(Mξ (t)) ≤ lim

n→∞ infV 
(Mξn(t)) ≤ K .

Hence, by Lemma ., we know thatMξ (t)(α) is amidpoint function of some fuzzy number
equivalence class, we still use ξ (t) to denote this fuzzy equivalence class for any t ∈ T . It
is obvious that ξ (t) is a mapping of uniformly bounded variation from T to F /F and for
arbitrary ε >  there exists a positive integer N such that

D(ξn, ξ ) = sup
t∈T ,α∈[,]

∣∣Mξn(t)(α) –Mξ (t)(α)
∣∣ ≤ ε/

for all n >N . Since ξn(t) is continuous, for any given t ∈ T and the same ε > , there exists
a δ >  such that if |t – t| < δ, then

dsup
(
ξn(t), ξn(t)

)
= sup

α∈[,]

∣∣Mξn(t)(α) –Mξn(t)(α)
∣∣ < ε/.

Thus, we have

∣∣Mξ (t)(α) –Mξ (t)(α)
∣∣ ≤ ∣∣Mξn(t)(α) –Mξ (t)(α)

∣∣ + ∣∣Mξn(t)(α) –Mξn(t)(α)
∣∣

+
∣∣Mξn(t)(α) –Mξn(t)(α)

∣∣
≤ D(ξn, ξ ) + dsup

(
ξn(t), ξn(t)

)
< ε/ + ε/ = ε,

which implies that

dsup
(
ξ (t), ξ (t)

)
= sup

α∈[,]

∣∣Mξ (t)(α) –Mξ (t)(α)
∣∣ ≤ ε.

Thus, we get ξ ∈ CBV(T ,F /S ). Hence, (CBV(T ,F /S ),D) is complete.
For ξ ∈ CBV(T ,F /S ) define Gξ on T by the relation

Gξ (t) = 〈̃〉 +
∫ t

a
f
(
s, ξ (s)

)
ds =

∫ t

a
f
(
s, ξ (s)

)
ds.

Then for any α ∈ [, ], we have

MGξ (t)(α) =M∫ t
a f (s,ξ (s))ds

(α) =
∫ t

a
Mf (s,ξ (s))(α)ds.

By Lemma ., we get

V 
(MGξ (t)) = V 



(∫ t

a
Mf (s,ξ (s)) ds

)
≤

∫ t

a
V 
(Mf (s,ξ (s)))ds≤ K .

http://www.advancesindifferenceequations.com/content/2014/1/303
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Thus, we see that Gξ is of uniformly bounded variation. Hence, by Corollaries . and .
in [], we have Gξ ∈ CBV(T ,F /S ). Let

B =
{
x ∈ CBV(T ,F /S ) :D

(
x, 〈̃〉) ≤ (b – a)L

}
.

For any x, y ∈ B and λ ∈ [, ]:
() For any given t ∈ T , if t → t, then

dsup
(
λx(t) + ( – λ)y(t),λx(t) + ( – λ)y(t)

)
≤ dsup

(
λx(t) + ( – λ)y(t),λx(t) + ( – λ)y(t)

)
+ dsup

(
λx(t) + ( – λ)y(t),λx(t) + ( – λ)y(t)

)
= dsup

(
λx(t),λx(t)

)
+ dsup

(
( – λ)y(t), ( – λ)y(t)

)
= λdsup

(
x(t),x(t)

)
+ ( – λ)dsup

(
y(t), y(t)

) → .

() By Lemma . and Definitions . and ., we have

V 
(Mλx(t)+(–λ)y(t)) = V 


(
λMx(t) + ( – λ)My(t)

)
≤ λV 

(Mx(t)) + ( – λ)V 
(My(t))

≤ λK + ( – λ)K = K .

() By definition of D, we have

D
(
λx(t) + ( – λ)y(t), 〈̃〉) ≤ D

(
λx(t), 〈̃〉) +D

(
λx(t) + ( – λ)y(t),λx(t)

)
= D

(
λx(t), 〈̃〉) +D

(
( – λ)y(t), 〈̃〉)

= λD
(
x(t), 〈̃〉) + ( – λ)D

(
y(t), 〈̃〉)

≤ λ(b – a)L + ( – λ)(b – a)L

= (b – a)L.

Thus, λx(t) + ( – λ)y(t) ∈ B, i.e., B is convex subset of CBV(T ,F /S ).
Let the set GB = {Gx : x ∈ B} and the sequence {ξn}∞n= converge to ξ in B. Since f is

continuous with respect to dsup, for any ε > , there exists N >  such that

dsup
(
f
(
t, ξn(t)

)
, f

(
t, ξ (t)

))
< ε

for all t ∈ T and n >N . Thus, we get

D(Gξn,Gξ ) = sup
t∈T

dsup
(
Gξn(t),Gξ (t)

)
= sup

t∈T
dsup

(∫ t

a
f
(
s, ξn(s)

)
ds,

∫ t

a
f
(
s, ξ (s)

)
ds

)

≤
∫ b

a
dsup

(
f
(
s, ξn(s)

)
, f

(
s, ξ (s)

))
ds

≤ (b – a)ε

http://www.advancesindifferenceequations.com/content/2014/1/303
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for all n >N . By Lemma ., we have

dsup
(
(Gx)(t), 〈̃〉) = dsup

(
(Gx)(t), (Gx)(a)

)
≤ (t – a) sup

T
dsup

(
f
(
t, (Gx)(t)

)
, 〈̃〉)

≤ (b – a)L

for all x ∈ CBV(T ,F /F ). Thus we get

D
(
Gx, 〈̃〉) = sup

T
dsup

(
(Gx)(t), 〈̃〉) ≤ (b – a)L.

Hence, G is a continuous mapping of B into itself, i.e., GB ⊆ B. For any t, t ∈ T , t ≤ t,
and x ∈ B, by Lemma ., we have

dsup
(
(Gx)(t), (Gx)(t)

) ≤ (t – t) sup
t∈[t,t]

dsup
(
f
(
t, (Gx)(t)

)
, 〈̃〉) ≤ (t – t)L,

which implies that GB is equicontinuous. Since GB is totally bounded if and only if it is
equicontinuous, we see that GB is totally bounded. By Ascoli’s theorem, we conclude that
GB is a relatively compact subset of CBV(T ,F /F ). By Schauder’s fixed point theorem, G
has a fixed point, and by Lemma ., we know that this fixed point is a solution of (). �

Example . Define F : T = [a,b]→ F /S by the level sets of the fuzzy mapping

[
F̂(t)

]α =
[
, eα(t–a)], α ∈ [, ],

where F̂(t) is the Mareš core of F(t), for all t ∈ [a,b]. Thus, we have

MF(t)(α) = eα(t–a)

for all α ∈ [, ] and t ∈ [a,b]. It is obvious that MF(t)(α) is continuous from the right at 
and continuous from the left on [, ] with respect to α. Since MF(t)(α) is increasing with
respect to α and by Lemma ., we get

V 
(MF(t)) = e(t–a) –  ≤ eb–a – .

Thus, we find that F(t) is of uniformly bounded variation. SinceMF(t)(α) is uniformly con-
tinuous with respect to t ∈ [a,b], we see that F(t) is continuous with respect to dsup. Define
f : [a,b]× F /S → F /S by

f
(
t, 〈x̃〉) = F(t).

It is obvious that f is continuous with respect to dsup. Since

Mf (t,〈x̃〉)(α) =MF(t)(α)

http://www.advancesindifferenceequations.com/content/2014/1/303


Qiu et al. Advances in Difference Equations 2014, 2014:303 Page 13 of 22
http://www.advancesindifferenceequations.com/content/2014/1/303

for all α ∈ [, ] and by Lemma ., we get

V 
(Mf (t,〈x̃〉)) = V 

(MF(t)) = e(t–a) –  ≤ eb–a – .

Thus, f is of uniformly bounded variation. Since

dsup
(
f
(
t, 〈x̃〉), 〈̃〉) = dsup

(
F(t), 〈̃〉) = sup

α∈[,]

∣∣MF(t)(α) – 
∣∣

= sup
α∈[,]

eα(t–a) ≤ eb–a

for all t ∈ [a,b] and 〈x̃〉 ∈ F /S . Then f (t, 〈x̃〉) satisfies the assumptions of Theorem .
and hence the initial value problem

x′(t) = f
(
t,x(t)

)
, x(a) = 〈̃〉,

has a unique solution on [a,b]. By the proof of Theorem ., we know that the unique
solution x(t) of the initial value problem is

x(t) = 〈̃〉 +
∫ t

a
F(s)ds.

Then we get

Mx(t)(α) =M〈̃〉(α) +
∫ t

a
MF(s)(α)ds =  +

∫ t

a
eα(s–a) ds

=

{
t – a, α = ,

α
(eα(t–a) – ), α ∈ (, ].

Thus, we have

V 
α(Mx(t)) = et–a – t + a – 

for all α ∈ [, ]. By Theorems . and . in [], we see that the left end points and the
right end points of level sets of the Mareš core x̂(t) for x(t), respectively, obey

x̂(t)L(α) =Mx(t)(α) –V 
α(Mx(t))

=

{
(t – a) – et–a + , α = ,

α
(eα(t–a) – ) – et–a + t – a + , α ∈ (, ],

x̂(t)R(α) =Mx(t)(α) +V 
α(Mx(t))

=

{
et–a – , α = ,

α
(eα(t–a) – ) + et–a – t + a – , α ∈ (, ].

4 Comparison theorems
Using the properties of dsup(〈x̃〉, 〈ỹ〉), integrals, and differential inequalities, we will estab-
lish the comparison principles in this section.

http://www.advancesindifferenceequations.com/content/2014/1/303
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Definition . Define d+ : C[T ,R]→R by

d+m(t) = lim
h→+


h
(
m(t + h) –m(t)

)
for allm(t) ∈ C[T ,R].

Theorem . Let f : T × F /S → F /S be continuous with respect to dsup and of uni-
formly bounded variation on T . Suppose

dsup
(
f
(
t, 〈x̃〉), f (t, 〈ỹ〉)) ≤ g

(
t,dsup

(〈x̃〉, 〈ỹ〉))
for all t ∈ T and 〈x̃〉, 〈ỹ〉 ∈ F /S , where g ∈ C[T × R+,R+] and g(t,ϕ) is nondecreasing
with respect to ϕ for all t ∈ T . Suppose the maximal solution r(t) = r(t;a,ϕ) of the scalar
differential equation

dϕ

dt
= g(t,ϕ), ϕ(a) = ϕ ≥ , ()

exists on T . Then, if x(t), y(t) are any two solutions of () through (a,x), (a, y) on T ,
respectively, and dsup(x, y) ≤ ϕ we have

dsup
(
x(t), y(t)

) ≤ r(t)

for all t ∈ T .

Proof Let m(t) = dsup(x(t), y(t)). Then m(t) = dsup(x, y) ≤ ϕ. Thus, we get

m(t) = dsup
(
x(t), y(t)

)
= dsup

(
x +

∫ t

a
f
(
s,x(s)

)
ds, y +

∫ t

a
f
(
s, y(s)

)
ds

)
≤ dsup

(
x +

∫ t

a
f
(
s,x(s)

)
ds,x +

∫ t

a
f
(
s, y(s)

)
ds

)
+ dsup

(
x +

∫ t

a
f
(
s, y(s)

)
ds, y +

∫ t

a
f
(
s, y(s)

)
ds

)
= dsup

(∫ t

a
f
(
s,x(s)

)
ds,

∫ t

a
f
(
s, y(s)

)
ds

)
+ dsup(x, y)

≤ m(t) +
∫ t

a
dsup

(
f
(
s,x(s)

)
, f

(
s, y(s)

))
ds

≤ m(t) +
∫ t

a
g
(
s,dsup

(
x(s), y(s)

))
ds

= m(t) +
∫ t

a
g
(
s,m(s)

)
ds

for all t ∈ T . By Theorem .. in [], we obtain dsup(x(t), y(t)) = m(t) ≤ r(t) for all
t ∈ T . �
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Example . Define F : T = [a,b]→ F /S by the level sets of the fuzzy mapping

[
F̂(t)

]α =

⎧⎪⎨⎪⎩
[, ( – α

t+b–a
b–a )], if α ∈ (, ),

[, ], if α = ,
{}, if α = ,

where F̂(t) is the Mareš core of F(t), for all t ∈ [a,b]. Thus, we have

MF(t)(α) =

⎧⎪⎨⎪⎩
 – α

t+b–a
b–a , if α ∈ (, ),

, if α = ,
, if α = .

It is obvious that F is continuous with respect to dsup. Since

V 
(MF(t)) = 

for all t ∈ [a,b], we see that F is of uniformly bounded variation. Define f : [a,b]×F /S →
F /S by

f
(
t, 〈x̃〉) = F(t)〈x̃〉,

where the multiplication in F /S is defined by Definition .. It is obvious that f is con-
tinuous with respect to dsup and of uniformly bounded variation. By Definition ., we
have

dsup
(
f
(
t, 〈x̃〉), f (t, 〈ỹ〉)) = dsup

(
F(t)〈x̃〉,F(t)〈ỹ〉)

= sup
α∈[,]

∣∣MF(t)(α)M〈x̃〉(α) –MF(t)(α)M〈ỹ〉(α)
∣∣

≤ sup
α∈[,]

∣∣MF(t)(α)
∣∣dsup(〈x̃〉, 〈ỹ〉)

= dsup
(〈x̃〉, 〈ỹ〉)

for all t ∈ [a,b] and 〈x̃〉, 〈ỹ〉 ∈ F /S . Define the scalar differential equation

dϕ

dt
= g(t,ϕ), ϕ(a) = ,

where the function g(t,ϕ) = γ (t)ϕ and γ (t) = et–a. It is obvious that γ (t) ≥  for all t ∈
[a,b], g ∈ C[T × R+,R+] and g(t,ϕ) is nondecreasing with respect to ϕ for all t ∈ [a,b].
Then

g
(
t,dsup

(〈x̃〉, 〈ỹ〉)) = γ (t)dsup
(〈x̃〉, 〈ỹ〉) ≥ dsup

(〈x̃〉, 〈ỹ〉)
for all t ∈ [a,b] and 〈x̃〉, 〈ỹ〉 ∈ F /S . Hence, we obtain

dsup
(
f
(
t, 〈x̃〉), f (t, 〈ỹ〉)) ≤ g

(
t,dsup

(〈x̃〉, 〈ỹ〉))
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for all t ∈ [a,b] and 〈x̃〉, 〈ỹ〉 ∈ F /S . Let x(a) = x and y(a) = y, such that dsup(x, y) ≤ .
By Theorem ., we conclude that

dsup
(
x(t), y(t)

) ≤ e(e
t–a–)

for all t ∈ [a,b], where x(t), y(t) are two solutions of fuzzy differential equation

x′(t) = f
(
t,x(t)

)
through (a,x), (a, y) on [a,b].

Corollary . Let f : T × F /S → F /S be continuous with respect to dsup and of uni-
formly bounded variation on T . Suppose

dsup
(
f
(
t, 〈x̃〉), 〈̃〉) ≤ g

(
t,dsup

(〈x̃〉, 〈̃〉))
for all t ∈ T and 〈x̃〉 ∈ F /S , where g satisfies the assumptions of Theorem .. Then, if
dsup(x, 〈̃〉) ≤ ϕ, we have

dsup
(
x(t), 〈̃〉) ≤ r(t)

for all t ∈ T , where x(t) is any solution of () through (a,x) on T and r(t) = r(t,a,ϕ) is the
maximal solution of the scalar differential equation () on T .

Proof In fact, we can show this corollary by a similar method to Theorem .. �

Theorem . Let f : T × F /S → F /S be continuous with respect to dsup and of uni-
formly bounded variation on T . Suppose

dsup
(
f
(
t, 〈x̃〉), f (t, 〈ỹ〉)) ≤ g

(
t,dsup

(〈x̃〉, 〈ỹ〉))
for all t ∈ T and 〈x̃〉, 〈ỹ〉 ∈ F /S , where g ∈ C[T ×R+,R+]. Suppose the maximal solution
r(t) = r(t,a,ϕ) of the scalar differential equation () exists on T . Then, if x(t), y(t) are any
two solutions of () through (a,x), (a, y) on T , respectively, and dsup(x, y) ≤ ϕ we have

dsup
(
x(t), y(t)

) ≤ r(t)

for all t ∈ T .

Proof Letm(t) = dsup(x(t), y(t)). Thenm(t) = dsup(x, y)≤ ϕ and for any fixed t ∈ T and
h �=  with t + h ∈ T , we have

m(t + h) –m(t) = dsup
(
x(t + h), y(t + h)

)
– dsup

(
x(t), y(t)

)
.

Since

dsup
(
x(t + h), y(t + h)

) ≤ dsup
(
x(t + h),x(t) + hf

(
t,x(t)

))
+ dsup

(
x(t) + hf

(
t,x(t)

)
, y(t + h)

)
,
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dsup
(
x(t) + hf

(
t,x(t)

)
, y(t + h)

) ≤ dsup
(
y(t) + hf

(
t, y(t)

)
, y(t + h)

)
+ dsup

(
x(t) + hf

(
t,x(t)

)
, y(t) + hf

(
t, y(t)

))
and

dsup
(
x(t) + hf

(
t,x(t)

)
, y(t) + hf

(
t, y(t)

))
≤ dsup

(
x(t) + hf

(
t,x(t)

)
,x(t) + hf

(
t, y(t)

))
+ dsup

(
x(t) + hf

(
t, y(t)

)
, y(t) + hf

(
t, y(t)

))
= |h|dsup

(
f
(
t,x(t)

)
, f

(
t, y(t)

))
+ dsup

(
x(t), y(t)

)
,

we get

m(t + h) –m(t)
h

≤ 
h
dsup

(
x(t + h),x(t) + hf

(
t,x(t)

))
+

h
dsup

(
y(t) + hf

(
t, y(t)

)
, y(t + h)

)
+

|h|
h
dsup

(
f
(
t,x(t)

)
, f

(
t, y(t)

))
.

Thus, by Definition ., we get

d+m(t) = lim
h→+


h
(
m(t + h) –m(t)

)
≤ lim

h→+
dsup

(
x(t + h) – x(t)

h
, f

(
t,x(t)

))
+ lim

h→+
dsup

(
f
(
t, y(t)

)
,
y(t + h) – y(t)

h

)
+ dsup

(
f
(
t,x(t)

)
, f

(
t, y(t)

))
= dsup

(
f
(
t,x(t)

)
, f

(
t, y(t)

)) ≤ g
(
t,dsup

(
x(t), y(t)

))
= g

(
t,m(t)

)
.

By Theorem .. in [], we obtain dsup(x(t), y(t)) =m(t)≤ r(t), for all t ∈ T . �

Corollary . Let f : T × F /S → F /S be continuous with respect to dsup and of uni-
formly bounded variation on T . If

dsup
(
f
(
t, 〈x̃〉), 〈̃〉) ≤ g

(
t,dsup

(〈x̃〉, 〈̃〉))
for all t ∈ T and 〈x̃〉 ∈ F /S , where g satisfies the assumptions of Theorem ., then, if
dsup(x, 〈̃〉) ≤ ϕ, we have

dsup
(
x(t), 〈̃〉) ≤ r(t)

for all t ∈ T , where x(t) is any solution of () through (a,x) on T and r(t) = r(t,a,ϕ) is the
maximal solution of the scalar differential equation () on T .

Proof In fact, we can show this corollary by a similar method to Theorem .. �

http://www.advancesindifferenceequations.com/content/2014/1/303


Qiu et al. Advances in Difference Equations 2014, 2014:303 Page 18 of 22
http://www.advancesindifferenceequations.com/content/2014/1/303

Theorem . Let f : T × F /S → F /S be continuous with respect to dsup and of uni-
formly bounded variation on T . Suppose

lim
h→+


h
{
dsup

(〈x̃〉 + hf
(
t, 〈x̃〉), 〈ỹ〉 + hf

(
t, 〈ỹ〉)) – dsup

(〈x̃〉, 〈ỹ〉)} ≤ g
(
t,dsup

(〈x̃〉, 〈ỹ〉))
for all t ∈ T and 〈x̃〉, 〈ỹ〉 ∈ F /S , where g ∈ C[T ×R+,R]. Suppose the maximal solution
r(t) = r(t,a,ϕ) of the scalar differential equation () exists on T . Then, if x(t), y(t) are any
two solutions of () through (a,x), (a, y) on T , respectively, and dsup(x, y) ≤ ϕ, we have

dsup
(
x(t), y(t)

) ≤ r(t)

for all t ∈ T .

Proof Letm(t) = dsup(x(t), y(t)). Thenm(t) = dsup(x, y)≤ ϕ and for any fixed t ∈ T and
h �=  with t + h ∈ T , from the proof of Theorem ., we have

m(t + h) –m(t) = dsup
(
x(t + h), y(t + h)

)
– dsup

(
x(t), y(t)

)
≤ dsup

(
x(t + h),x(t) + hf

(
t,x(t)

))
+ dsup

(
y(t) + hf

(
t, y(t)

)
, y(t + h)

)
+ dsup

(
x(t) + hf

(
t,x(t)

)
, y(t) + hf

(
t, y(t)

))
– dsup

(
x(t), y(t)

)
,

which implies that

d+m(t) = lim
h→+


h
(
m(t + h) –m(t)

)
≤ lim

h→+
dsup

(
x(t + h) – x(t)

h
, f

(
t,x(t)

))
+ lim

h→+
dsup

(
f
(
t, y(t)

)
,
y(t + h) – y(t)

h

)
+ lim

h→+

h
{
dsup

(
x(t) + hf

(
t,x(t)

)
, y(t) + hf

(
t, y(t)

))
– dsup

(
x(t), y(t)

)}
= lim

h→+

h
{
dsup

(
x(t) + hf

(
t,x(t)

)
, y(t) + hf

(
t, y(t)

))
– dsup

(
x(t), y(t)

)}
≤ g

(
t,dsup

(
x(t), y(t)

))
= g

(
t,m(t)

)
.

By Theorem .. in [], we obtain dsup(x(t), y(t)) =m(t)≤ r(t), for all t ∈ T . �

Corollary . Let f : T × F /S → F /S be continuous with respect to dsup and of uni-
formly bounded variation on T . Suppose

lim
h→+


h
{
dsup

(〈x̃〉 + hf
(
t, 〈x̃〉), 〈̃〉) – dsup

(〈x̃〉, 〈̃〉)} ≤ g
(
t,dsup

(〈x̃〉, 〈̃〉))
for all t ∈ T and 〈x̃〉 ∈ F /S , where g satisfies the assumptions of Theorem .. Then, if
dsup(x, 〈̃〉) ≤ ϕ, we have

dsup
(
x(t), 〈̃〉) ≤ r(t)

for all t ∈ T , where x(t) is any solution of () through (a,x) on T and r(t) = r(t;a,ϕ) is the
maximal solution of the scalar differential equation () on T .
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Proof In fact, we can show this corollary by a similar method to Theorem .. �

Example . Define two fuzzy mappings F ,G : [a,b]→ F /S by the level sets

[
F̂(t)

]α =
[
–e


+α (b–a)( t–ab–a )

+α

, 
]

and

[
Ĝ(t)

]α =
[
,

(
t – a
b – a

)+α]

for all α ∈ [, ], where F̂(t) and Ĝ(t) are the Mareš core of F(t) and G(t), respectively, for
all t ∈ [a,b]. Thus, we have

MF(t)(α) = –


e


+α (b–a)( t–ab–a )

+α

and MG(t)(α) =



(
t – a
b – a

)+α

for all α ∈ [, ] and t ∈ [a,b]. It is obvious thatMF(t)(α) andMG(t)(α) are continuous from
the right at  and continuous from the left on [, ] with respect to α. Since MF(t)(α) and
MG(t)(α) are decreasing with respect to α and by Lemma ., we get

V 
(MF(t)) =



(
e

 (b–a)(

t–a
b–a )


– e


 (b–a)(

t–a
b–a )

) ≤ 

e

 (b–a)(

t–a
b–a )

 ≤ 

e

 (b–a)

and

V 
(MG(t)) =




((
t – a
b – a

)

–
(
t – a
b – a

))
= –




(
t – a
b – a

–



)

+



≤ 

.

Thus, we see that F(t) and G(t) are of uniformly bounded variation. Since MF(t)(α) and
MG(t)(α) are uniformly continuous with respect to t ∈ [a,b], we see that F(t) and G(t) are
continuous with respect to dsup. Define f : [a,b]× F /S → F /S by

f
(
t, 〈x̃〉) = F(t)〈x̃〉 +G(t),

where the addition and multiplication in F /S are defined by Definitions . and ., re-
spectively. It is obvious that f is continuous with respect to dsup and of uniformly bounded
variation. By Definition ., we get

dsup
(〈x̃〉 + hf

(
t, 〈x̃〉), 〈ỹ〉 + hf

(
t, 〈ỹ〉)) – dsup

(〈x̃〉, 〈ỹ〉)
= dsup

(〈x̃〉 + h
(
F(t)〈x̃〉 +G(t)

)
, 〈ỹ〉 + h

(
F(t)〈ỹ〉 +G(t)

))
– dsup

(〈x̃〉, 〈ỹ〉)
= dsup

(〈x̃〉 + hF(t)〈x̃〉, 〈ỹ〉 + hF(t)〈ỹ〉) – dsup
(〈x̃〉, 〈ỹ〉)

= sup
α∈[,]

∣∣M〈x̃〉(α) + hMF(t)(α)M〈x̃〉(α) –M〈ỹ〉(α) – hMF(t)(α)M〈ỹ〉(α)
∣∣ – dsup

(〈x̃〉, 〈ỹ〉)
≤

(
 + h sup

α∈[,]
MF(t)(α)

)
dsup

(〈x̃〉, 〈ỹ〉) – dsup
(〈x̃〉, 〈ỹ〉)

= h sup
α∈[,]

MF(t)(α)dsup
(〈x̃〉, 〈ỹ〉)
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= –


he


 (b–a)(

t–a
b–a )


dsup

(〈x̃〉, 〈ỹ〉)
≤ –



hdsup

(〈x̃〉, 〈ỹ〉)
for all h >  sufficiently small. Hence

lim
h→+


h
{
dsup

(〈x̃〉 + hf
(
t, 〈x̃〉), 〈ỹ〉 + hf

(
t, 〈ỹ〉)) – dsup

(〈x̃〉, 〈ỹ〉)} ≤ –


dsup

(〈x̃〉, 〈ỹ〉)
for all t ∈ [a,b] and 〈x̃〉, 〈ỹ〉 ∈ F /S . Define the scalar differential equation

dϕ

dt
= g(t,ϕ), ϕ(a) = ,

where the function g(t,ϕ) = γ (t)ϕ and γ (t) = –/ea–t . It is obvious that γ (t) ≥ –/ for all
t ∈ [a,b], g ∈ C[[a,b]×R+,R]. Then

g
(
t,dsup

(〈x̃〉, 〈ỹ〉)) = γ (t)dsup
(〈x̃〉, 〈ỹ〉) ≥ –



dsup

(〈x̃〉, 〈ỹ〉)
for all t ∈ [a,b] and 〈x̃〉, 〈ỹ〉 ∈ F /S . Hence, we obtain

lim
h→+


h
{
dsup

(〈x̃〉 + hf
(
t, 〈x̃〉), 〈ỹ〉 + hf

(
t, 〈ỹ〉)) – dsup

(〈x̃〉, 〈ỹ〉)} ≤ g
(
t,dsup

(〈x̃〉, 〈ỹ〉))
for all t ∈ [a,b] and 〈x̃〉, 〈ỹ〉 ∈ F /S . Let x(a) = x and y(a) = y, such that dsup(x, y) ≤ .
By Theorem ., we conclude that

dsup
(
x(t), y(t)

) ≤ e

 (e

a–t–)

for all t ∈ [a,b], where x(t), y(t) are two solutions of the fuzzy differential equation

x′(t) = f
(
t,x(t)

)
through (a,x), (a, y) on [a,b].

5 Conclusions
In this paper, we have researched the basic theory of fuzzy differential equations in the
quotient space of fuzzy numbers. We have solved the initial value problem for the fuzzy
differential equations provided that f is a continuous with respect to dsup, of uniformly
bounded variation on T , and is a bounded function, and then we have established a vari-
ety of comparison results for the solutions of fuzzy differential equations which form the
essential tools for studying the fundamental theory of fuzzy differential equations. The
comparison discussion shows how, with the minimum linear structure, one can develop
the theory of differential inequalities that are important in comparison principles.We also
hope that our results in this paper may lead to significant, new, and innovative results in
related fields.
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