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Abstract
In this paper, we shall utilize Nevanlinna value distribution theory to study the
solvability of the difference equations of the form: f (z)n + p(z)(�cf )m = r(z)eq(z) and
f (z)n + p(z)eq(z)(�cf )m = r(z), and we shall study the growth of their entire solutions.
Moreover, we will give a number of examples to show that the results in this paper
are the best possible in certain senses. This article extends earlier results by Liu et al.
(Czechoslov. Math. J. 61:565-576, 2011; Ann. Pol. Math. 102:129-142, 2011).
MSC: Primary 39A05; secondary 30D35
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1 Introduction andmain results
In this paper, we use the basic notions in Nevanlinna theory of meromorphic functions, as
found in []. In addition, we use δ(f ), λ(f ), and λ( f ) to denote the order, and the exponents
of the convergence of zeros and poles of a meromorphic function f (z), respectively. We
define difference operators as �cf = f (z + c) – f (z), where c is a non-zero constant.
In , Yang [] started to study the existence and uniqueness of finite order entire

solutions of the following type of non-linear differential equation:

L(f ) – p(z)f (z)n = h(z), ()

where L(f ) is a linear differential polynomial in f with polynomial coefficients, p(z) is a
non-vanishing polynomial, h(z) is an entire function, and n is an integer such that n ≥ .
Subsequently, several papers have appeared in which the solutions of () are studied. The
reader is invited to see [–].
Recently, Yang and Laine [] considered the existence of the non-linear differential-

difference equation of the form

f (z)n + L(z, f ) = h(z), ()

where L(z, f ) is a finite sum of product of f , derivatives of f , and their shifts. They obtained
the following result.

TheoremA Let n≥  be an integer, L(z, f ) be a linear differential-difference polynomial of
f , with small meromorphic coefficients, and h(z) be a meromorphic function of finite order.
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Then () possesses at most one admissible transcendental entire solution of finite order,
unless L(z, f ) vanishes identically. If such a solution f (z) exists, then f (z) is of the same
order as h(z).

In particular, it is shown in [] that the equation

f (z) + P(z)f (z + ) =Q(z)

has no transcendental entire solution of finite order, where P(z), Q(z) are polynomials.
Some improvements of Theorem A can be found in [–] as well. Replacing f (z + c)

with �cf , one of the present authors considered the existence of entire solutions of

f (z)n + P(z)(�cf )m =Q(z), ()

we get the following result in [].

Theorem B Let P(z), Q(z) be polynomials, n and m be integers satisfying n >m ≥ . Then
() has no transcendental entire solution of finite order.

In fact, the special case of () with n =m, and p(z) = q(z) = , can be viewed as the Fermat
type functional equation. It is well known that () has no transcendental entire solutions
when n≥ , which can be seen in [].
It is natural to ask what happens if P(z) orQ(z) is a transcendental entire function in ().

Corresponding to this question, we will investigate the finite order entire (meromorphic)
solution of

f (z)n + p(z)(�cf )m = r(z)eq(z) and f (z)n + p(z)eq(z)(�cf )m = r(z).

Theorem . Consider the non-linear difference equation of the form

f (z)n + p(z)(�cf )m = r(z)eq(z), ()

where p(z) �≡ , q(z), r(z) are polynomials, n and m are positive integers. Suppose that f (z)
is a transcendental entire function of finite order, not of period c. If n >m, then f (z) cannot
be a solution of ().

Remarks () In case n ≤m, Theorem . is not true. In the special case thatm = n = , the
function f (z) = ez solves

f (z) + z�lnf = (z + )ez.

Moreover, the entire function f (z) = ez + z is a solution of the following equation:

f (z) +
z
π

(�π if ) = ez.

() From Theorem ., we get the following result: Let f (z) be a transcendental entire
function of finite order, then for n > m, f (z)n + p(z)(�cf )m assumes zero infinitely often,
where p(z) �≡  is polynomial.
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In the following, we will consider the properties of the solutions of the equation

f (z)n + p(z)eq(z)(�cf )m = r(z), ()

where p(z) �≡ , q(z), r(z) are polynomials. In fact, () may have solutions. For example,
the function f (z) = zez is a solution of the equation f (z) – z

π i e
z�π if = . One solution

of the equation f (z) – ez 
π i�π if = z is the function f (z) = ez + z. In addition, the function

f (z) = ez + z can solve f (z) + ez 
π
(�π if ) = z as well. Hence, here we just study the order

of the growth of the solutions. We state our findings as follows.

Theorem. Let p(z) �≡ , q(z), r(z) be polynomials, n andm be positive integers satisfying
n >m. Let f (z) be finite order entire solutions of (), then δ(f ) = degq(z).

Remark We will give the following examples to show that the assumption that n >m in
Theorem . is sharp. Clearly, f (z) = ez is a solution of the equation f (z) – 

�lnf = . The
function f (z) = eπ iz – eπ iz + z solves f (z) – (�– 


f ) = z – 

 . However, δ(f ) �= degq(z) in
the above two examples.

Corollary . Let p(z) �≡ , q(z), r(z) be polynomials, n > . Let f (z) be finite order entire
solutions of the equation

f (z)n + p(z)eq(z)�cf = r(z), ()

then δ(f ) = degq(z).

According to (), we will give a further discussion on the existence of meromorphic
solutions. We get:

Theorem. Let p(z) �≡ , q(z), r(z) be polynomials.Assume one of the following assertions
holds:

(i) n > , f (z) is a finite order meromorphic function (not entire),
(ii) n > , r(z) ≡ , and f (z) is a finite order entire function with infinitely many zeros,
(iii) n≥ , r(z) �≡ , and f (z) is a finite order entire function satisfying λ(f ) < δ(f ).

Then f (z) cannot be a solution of ().

Remarks () From Theorem ., we know that the solution of the equation f (z)n +
p(z)eq(z)�cf = must be expressed as f (z) = α(z)eβ(z), where α(z) and β(z) are polynomials.
() The condition that n >  in Theorem . is sharp. In fact, if n = , then we know the

function f (z) = ez
z is a solution of the equation f (z) + ( z

π i + )�π if = . Moreover, the
function f (z) = cos z can solve f (z) + 

�π f = .
() Some ideas of this paper are from [].

2 Preliminary lemmas
Lemma . [, Theorem .] Let f (z) be a meromorphic function of finite order, and let
c ∈ C, then

m
(
r,
f (z + c)
f (z)

)
+m

(
r,

f (z)
f (z + c)

)
= S(r, f ).
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Remark From Lemma ., we know T(r, f ) = T(r, f (z + c)) + S(r, f ) when f (z) is an entire
function of finite order.

Lemma . [, Theorem ..] Let f (z) be a transcendental meromorphic solution of

f nA(z, f ) = B(z, f ),

where A(z, f ), B(z, f ) are differential polynomials in f and its derivatives with small mero-
morphic coefficients aλ, in the sense of m(r,aλ) = S(r, f ) for all λ ∈ I . If d(B(z, f )) ≤ n, then
m(r,A(z, f )) = S(r, f ).

Lemma . [, Theorem .] Let fj(z) (j = , , ) be meromorphic functions that satisfy

∑
j=

fj(z) ≡ .

If f(z) is not a constant, and

∑
j=

N
(
r,

fj

)
+ 

∑
j=

N(r, fj) <
(
λ + o()

)
T(r),

where λ <  and T(r) =max≤j≤{T(r, fj)}, then either f(z) ≡  or f(z) ≡ .

Lemma . [, Theorem .] Suppose that fj(z) (j = , . . . ,n) (n ≥ ) are meromorphic
functions and gj(z) (j = , . . . ,n) are entire functions satisfying the following conditions.
()

∑n
j= fj(z)e

gj(z) ≡ .
() ≤ j < k ≤ n, gj(z) – gk(z) are not constants for ≤ j < k ≤ n.
() For ≤ j ≤ n, ≤ h < k ≤ n,

T(r, fj) = o
{
T

(
r, egh–gk

)}
, r → ∞, r /∈ E,

where E ⊂ (,∞) is of finite linear measure.
Then fj(z) ≡ .

3 Proof of Theorem 1.1
If q(z) is a constant or r(z) ≡ , then the conclusion follows from Theorem B. It remains
to consider the case q(z) is a non-constant polynomial and r(z) �≡ . Assume f (z) is a tran-
scendental entire solution of (), which is finite order, not of period c. Differentiating ()
and eliminating eq(z), we have

f (z)n–
(
nf ′(z) –

(
q′(z) +

r′(z)
r(z)

)
f (z)

)

=
(
q′(z) +

r′(z)
r(z)

)
p(z)(�cf )m – p′(z)(�cf )m –mp(z)(�cf )m–(�cf )′. ()

If nf ′(z) – (q′(z) + r′(z)
r(z) )f (z) ≡ , then we have f (z)n = Ar(z)eq(z). Writing f (z) = h(z)e

q(z)
n ,

where h(z) satisfies h(z)n = Ar(z) and A is a non-zero constant. Substituting f (z) into (),
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we get

(A – )r(z)eq(z) + p(z)(�cf )m ≡ . ()

Clearly, ifA = , then f (z) is a period functionwith period c, which contradicts the assump-
tion. Hence, A �= . Let g = e

q(z)
n , then (�cf )m can be expressed as

∑m
i=

(m
i
)
(–)ih(z)ih(z +

c)m–ig(z)ig(z + c)m–i. Furthermore, from Lemma ., we have

T
(
r, (�cf )m

)
= T

(
r,

m∑
i=

(
m
i

)
(–)ih(z)ih(z + c)m–ig(z)ig(z + c)m–i

)

=m

(
r,

m∑
i=

(
m
i

)
(–)ih(z)ih(z + c)m–ig(z)ig(z + c)m–i

)

≤m
(
r,

�m
i=

(m
i
)
(–)ig(z + c)m–ig(z)i

g(z)m

)
+m

(
r, g(z)m

)
+ S(r, g)

≤ T
(
r, g(z)m

)
+ S(r, g) =mT(r, g) + S(r, g). ()

From () and (), we get

nT(r, g) ≤mT(r, g) + S(r, g),

which contradicts the condition that n >m. Therefore, we conclude that nf ′(z) – (q′(z) +
r′(z)
r(z) )f (z) �≡ . We discuss the following two cases.
Case . n >m + . Rewrite () in the following forms:

f (z)n–m–
(
nf ′(z) –

(
q′(z) +

r′(z)
r(z)

)
f (z)

)

=
(
q′(z) +

r′(z)
r(z)

)
p(z)

(�cf )m

f m
– p′(z)

(�cf )m

f m
–mp(z)

(�cf )m–(�cf )′

f m

and

f (z)n–m–
(
f
(
nf ′(z) –

(
q′(z) +

r′(z)
r(z)

)
f (z)

))

=
(
q′(z) +

r′(z)
r(z)

)
p(z)

(�cf )m

f m
– p′(z)

(�cf )m

f m
–mp(z)

(�cf )m–(�cf )′

f m
.

Applying Lemma ., Lemma ., and the lemma on the logarithmic derivative to the
above two equations, we obtain

T
(
r,nf ′ –

(
q′ +

r′

r

)
f
)
=m

(
r,nf ′ –

(
q′ +

r′

r

)
f
)
+ S(r, f ) = S(r, f )

and

T
(
r, f

(
nf ′ –

(
q′ +

r′

r

)
f
))

=m
(
r, f

(
nf ′ –

(
q′ +

r′

r

)
f
))

+ S(r, f ) = S(r, f ).
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Hence

T(r, f ) = S(r, f ),

which is a contradiction.
Case . n =m + . For this case, () and () now take the following forms:

f m+ + p(z)(�cf )m = r(z)eq(z) ()

and

f (z)m
(
(m + )f ′(z) –

(
q′(z) +

r′(z)
r(z)

)
f (z)

)

=
(
q′(z) +

r′(z)
r(z)

)
p(z)(�cf )m – p′(z)(�cf )m –mp(z)(�cf )m–(�cf )′. ()

Set H(z) = (m + )f ′(z) – (q′(z) + r′(z)
r(z) )f (z). Dividing () by f (z)

m, we have

H(z) =
(
q′(z) +

r′(z)
r(z)

)
p(z)

(�cf )m

f m
– p′(z)

(�cf )m

f m
–mp(z)

(�cf )m–(�cf )′

f m
.

Since f (z) is entire, applying Lemma . and the lemma on the logarithmic derivative to
the above equation, we conclude that

T(r,H) =m(r,H) + S(r, f ) = S(r, f ). ()

Differentiating H(z), we have

(m + )f ′′ –
(
q′ +

r′

r

)
f ′ –

(
q′ +

r′

r

)′
f

=
H ′

H
·H =

H ′

H

(
(m + )f ′ –

(
q′ +

r′

r

)
f
)
,

that is

(m + )f ′′ –
(
q′ +

r′

r
+ (m + )

H ′

H

)
f ′ –

(
q′′ – q′H ′

H
+

(
r′

r

)′
–
H ′

H
· r

′

r

)
f = .

The above equation can be rewritten in the following form:

(m + )
((

f ′

f

)′
+

(
f ′

f

))
–

(
q′ +

r′

r
+ (m + )

H ′

H

)
f ′

f

–
(
q′′ – q′H ′

H
+

(
r′

r

)′
–
H ′

H
· r

′

r

)
= . ()

Suppose z is a zero of f (z) with multiplicity k. If z is a zero of r(z) as well, then the
contribution to N(r, f ) is S(r, f ). Assuming that z is not a zero of r(z), we will discuss the
two subcases:

http://www.advancesindifferenceequations.com/content/2014/1/256
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Subcase . Suppose z is a zero of H(z) with multiplicity t. From (), by simple calcula-
tions, we know that k = + t ≤ t, whichmeans that z is a contribution of S(r, f ) toN(r, f )
by ().
Subcase . Suppose z is not a zero of H(z). By (), we get k – k = , then such a zero

of f (z) must be simple and we find that q′ + r′
r + (m + )H′

H must vanish at z. That implies
that z makes a contribution of S(r, f ) to N(r, f ) by ().
In a word, N(r, f ) = S(r, f ). Therefore, we can assume f (z) to be of the form f (z) =

G(z)es(z), where s(z) is a non-constant polynomial, and G(z) is an entire function satis-
fying N(r, 

G ) = T(r,G) = S(r, f ) by the Hadamard factorization theorem. Substituting this
expression into (), we get

G(z)m+e(m+)s(z) + p(z)
(
G(z + c)es(z+c) –G(z)es(z)

)m = r(z)eq(z),

and so

G(z)m+e(m+)s(z) + p(z)

(m–∑
i=

(
m
i

)
(–)iG(z + c)m–iG(z)ie(m–i)s(z+c)+is(z)

)

+ p(z)(–)mG(z)mems(z) = r(z)eq(z),

which may be written in the form

G(z)es(z)

p(z)(–)m– +
r(z)eq(z)

p(z)(–)mG(z)mems(z)

+
∑m–

i=
(m
i
)
(–)iG(z + c)m–iG(z)ie(m–i)s(z+c)+is(z)

(–)m–G(z)mems(z) = . ()

From Lemma ., we have either

f(z) =
r(z)eq(z)

p(z)(–)mG(z)mems(z) ≡ 

or

f(z) =
∑m–

i=
(m
i
)
(–)iG(z + c)m–iG(z)ie(m–i)s(z+c)+is(z)

(–)m–G(z)mems(z) ≡ .

If f(z) ≡ , then we get

r(z)eq(z) = p(z)(–)mG(z)mems(z) = p(z)(–)mf (z)m.

Plugging the above equation into (), similar to (), we getT(r, req–p(�cf )m) ≤mT(r, f )+
S(r, f ). Comparing both sides of (), we get a contradiction. If f(z) ≡ , then we get
f (z)m+ ≡ r(z)eq(z), which means that �cf ≡ , and this contradicts the assumption.
Therefore, from the discussions above, we find that a transcendental finite order entire

function f (z) which is not of period c, cannot be a solution of (). The proof of Theorem .
is finished completely.
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4 Proof of Theorem 1.2
Applying Lemma . to (), we get

nm(r, f ) =m
(
r, r – peq(�cf )m

)
≤m

(
r, eq

)
+m

(
r,
(�cf )m

f m

)
+m

(
r, f m

)
+ S(r, f )

≤m
(
r, eq

)
+mm(r, f ) + S(r, f ),

which means that (n –m)m(r, f ) ≤ m(r, eq) + S(r, f ). From the assumption that n >m and
the above inequality, we conclude that δ(f ) ≤ degq(z).
Now we show that δ(f ) = degq(z). Suppose to the contrary that δ(f ) < degq(z). Then

δ(f n + peq(�cf )m) = degq(z) >  from Remark below Lemma ., and δ(r) = . This is a
contradiction by ().

5 Proof of Theorem 1.4
First, we confirm that one period function with period c cannot be a solution of (). Actu-
ally, if f (z) is a period function, then the order of f (z) satisfies δ(f ) ≥ . At the same time,
we get f (z)n = r(z), which is impossible. It remains to consider the function which is not
of period c.

(i) Suppose that f (z) is a finite order meromorphic solution of (), and z is a pole of
f (z) with multiplicity t. Then we get z + c is a pole of f (z) with multiplicity ≥ nt. By
calculation, we see that z + kc is a pole of f (z) with multiplicity nkt, where k is a
positive integer. Since n > , we conclude that λ(f ) = ∞, i.e., δ(f ) = ∞. This is a
contradiction.

(ii) Suppose that a finite order entire solution f (z) has infinitely many zeros and
r(z) ≡ . We assume that all zeros of p(z) are in D = {z : |Re z| ≤M, | Im z| ≤M},
whereM >  is some constant. From the assumption, we know that f (z) has
infinitely many zeros which are not in D. If z /∈ D satisfies f (z) = , then from ()
we know that z + kc are zeros of f (z). Moreover, we have z + kc are not in D, as
k → ∞. In the same way as (i), we get λ( f ) = ∞, i.e., δ(f ) =∞, which contradicts
the assumption that δ(f ) <∞.

(iii) Suppose f (z) is an entire solution of finite order satisfying λ(f ) < δ(f ), then we know
δ(f ) ≥  by the conclusion of Corollary .. Hence, from the Hadamard
factorization theorem, f (z) can be written as f (z) = α(z)eβ(z), where β(z) is a
non-constant polynomial.

Case . n > . From the conclusion of Corollary ., we know λ(f ) = δ(α) < δ(f ) =
degq(z) = q ≥ . So we can rewrite f (z) in the following form:

f (z) = γ (z)eaqz
q
, ()

where aq is a non-zero constant, δ(γ ) < q, and T(r,γ ) = S(r, f ). From the conclusion of
Corollary ., we conclude that

eq(z) = μ(z)ebqz
q
, ()

http://www.advancesindifferenceequations.com/content/2014/1/256
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where bq is a non-zero constant, δ(μ) < q, and T(r,μ) = S(r, f ). By (), (), and (), we
have

γ (z)nenaqz
q
+ p(z)μ(z)

(
γ (z + c)eν(z) – γ (z)

)
e(aq+bq)z

q
= r(z), ()

where ν(z) is a polynomial such that degν(z) ≤ q – .
Subcase . If naq = bq + aq, then () can be expressed as

γ (z)n + p(z)μ(z)
(
γ (z + c)eν(z) – γ (z)

)
=

r(z)
enaqzq

.

Since r(z) �≡ , we get γ (z)n + p(z)μ(z)(γ (z + c)eν(z) – γ (z)) �≡ . Comparing the character-
istics function of both sides of the above equation, we get a contradiction.
Subcase . If naq �= bq + aq, then we rewrite () in the form

γ (z)nenaqz
q
+ p(z)μ(z)

(
γ (z + c)eν(z) – γ (z)

)
e(aq+bq)z

q
– r(z) = .

Applying Lemma . to the above equation, we get r(z) ≡ , which contradicts the as-
sumption.
Case . n = . Comparing both sides of (), we obtain δ(f ) ≥ degq(z) = q by Remark

below Lemma .. If δ(f ) = q, then in the same way as Case , the conclusion follows. If
k = δ(f ) > q, then f (z) can bewritten as f (z) = φ(z)eakzk , where δ(φ) < k, andT(r,φ) = S(r, f ).
Substituting this expression into (), we get

(
φ(z) + p(z)eq(z)

(
φ(z + c)ϕ(z) – φ(z)

))
eakz

k = r(z), ()

where δ(ϕ) < k, and T(r,ϕ) = S(r, f ). Since r(z) �≡ , we get φ(z) + p(z)eq(z)(φ(z + c)ϕ(z) –
φ(z)) �≡ . Comparing the characteristics function of both sides of the above equation, we
get a contradiction.
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