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Abstract
Recently, the complex-valued metric spaces which are more general than the metric
spaces were first introduced by Azam et al. (Numer. Funct. Anal. Optim. 32:243-253,
2011). They also established the existence of fixed point theorems under the
contraction condition in these spaces. The aim of this paper is to introduce the
concepts of a C-Cauchy sequence and C-complete in complex-valued metric spaces
and establish the existence of common fixed point theorems in C-complete
complex-valued metric spaces. Furthermore, we apply our result to obtain the
existence theorem for a common solution of the Urysohn integral equations

x(t) =
∫ b

a
K1(t, s, x(s))ds + g(t),

x(t) =
∫ b

a
K2(t, s, x(s))ds + h(t),

where t ∈ [a,b] ⊆ R, x,g,h ∈ C([a,b],Rn) and K1,K2 : [a,b]× [a,b]×Rn → Rn.
MSC: 47H09; 47H10

Keywords: complex-valued metric spaces; Urysohn integral equations; common
fixed points; weakly compatible

1 Introduction
The study ofmetric spaces has played a vital role inmany branches of pure and applied sci-
ences.We can find useful applications ofmetric spaces inmathematics, biology, medicine,
physics and computer science (see [–]). Several mathematicians improved, generalized
and extended the concept of metric spaces to vector-valued metric spaces of Perov [],
G-metric spaces of Mustafa and Sims [], cone metric spaces of Huang and Zhang [],
modularmetric spaces of Chistyakov [], partialmetric spaces ofMatthews [] and others.
Since Banach [] introduced his contraction principle in complete metric spaces in ,
this field of fixed point theory has been rapidly growing. It has been very useful in many
fields such as optimization problems, control theory, differential equations, economics
and many others. A number of papers in this field have been dedicated to the improve-
ment and generalization of Banach’s contraction mapping principle in many spaces and
ways (see [–]).

© 2013 Sintunavarat et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.

http://www.advancesindifferenceequations.com/content/2013/1/49
mailto:yjcho@gnu.ac.kr
mailto:poom.kum@kmutt.ac.th
http://creativecommons.org/licenses/by/2.0


Sintunavarat et al. Advances in Difference Equations 2013, 2013:49 Page 2 of 14
http://www.advancesindifferenceequations.com/content/2013/1/49

Recently, Azam et al. [] introduced a new space, the so-called complex-valued metric
space, and established a fixed point theorem for some type of contraction mappings as
follows.

Theorem . (Azam et al. []) Let (X,d) be a complete complex-valued metric space and
S,T : X → X be two mappings. If S and T satisfy

d(Sx,Ty)� λd(x, y) +
μd(x,Sx)d(y,Ty)

 + d(x, y)
(.)

for all x, y ∈ X,where λ, μ are nonnegative reals with λ+μ < , then S and T have a unique
common fixed point in X.

Theorem . of Azam et al. in [] is an essential tool in the complex-valuedmetric space
to claim the existence of a common fixed point for some mappings. However, it is most
interesting to find another new auxiliary tool to claim the existence of a common fixed
point. Some other works related to the results in a complex-valued metric space are [,
].
In this paper, we introduce the concept of a C-Cauchy sequence and C-complete in

complex-valued metric spaces and also prove some common fixed point theorems for
new generalized contraction mappings in C-complete complex-valued metric spaces.
On the other hand, integral equations arise naturally frommany applications in describ-

ing numerous real world problems. These equations have been studied by many authors.
Existence theorems for the Urysohn integral equations can be obtained applying various
fixed point principles.
As applications, we show the existence of a common solution of the following system of

Urysohn integral equations by using our common fixed point results:

x(t) =
∫ b

a
K

(
t, s,x(s)

)
ds + g(t), (.)

x(t) =
∫ b

a
K

(
t, s,x(s)

)
ds + h(t), (.)

where t ∈ [a,b]⊆R, x, g,h ∈ C([a,b],Rn) and K,K : [a,b]× [a,b]×Rn →Rn.

2 Preliminaries
In this section, we discuss some background of the complex-valuedmetric spaces of Azam
et al. in [] and give some notions for our results. Also, some essential lemmas which are
useful for our results are given.
Let C be the set of complex numbers. For z, z ∈ C, we will define a partial order � on

C as follows:

z � z ⇐⇒ Re(z) ≤ Re(z) and Im(z)≤ Im(z).

We note that z � z if one of the following holds:
(C) Re(z) = Re(z) and Im(z) = Im(z);
(C) Re(z) < Re(z) and Im(z) = Im(z);
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(C) Re(z) = Re(z) and Im(z) < Im(z);
(C) Re(z) < Re(z) and Im(z) < Im(z).
It obvious that if a,b ∈R such that a ≤ b, then az� bz for all z ∈C.
In particular, we write z � z if z �= z and one of (C), (C) and (C) is satisfied, and

we write z ≺ z if only (C) is satisfied. The following are well known:

� z � z =⇒ |z| < |z|,
z � z, z ≺ z =⇒ z ≺ z.

Definition . [] Let X be a nonempty set. Suppose that the mapping d : X × X → C

satisfies the following conditions:
(d) � d(x, y) for all x, y ∈ X and d(x, y) =  if and only if x = y;
(d) d(x, y) = d(y,x) for all x, y ∈ X ;
(d) d(x, y)� d(x, z) + d(z, y) for all x, y, z ∈ X .

Then d is called a complex-valuedmetric onX and (X,d) is called a complex-valuedmetric
space.

Example . Let X =C. Define the mapping d : X ×X → C by

d(z, z) = |x – x| + |y – y|i,

where z = x + iy and z = x + iy. Then (X,d) is a complex-valued metric space.

Example . Let X = X ∪X, where

X =
{
z ∈C : Re(z) ≥ , Im(z) = 

}
and

X =
{
z ∈C : Re(z) = , Im(z) ≥ 

}
.

Define the mapping d : X ×X →C by

d(z, z) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩


 |x – x| + i|x – x|, z, z ∈ X,

|y – y| + i
 |y – y|, z, z ∈ X,


x + y + i(x + 

y), z ∈ X, z ∈ X,

x + y + i(x + 

y), z ∈ X, z ∈ X,

where z = x + iy and z = x + iy. Then (X,d) is a complex-valued metric space.

Example . Let X = X ∪X, where

X =
{
z ∈C :  ≤ Re(z) ≤ , Im(z) = 

}
and

X =
{
z ∈C : Re(z) = ,  ≤ Im(z) ≤ 

}
.
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Define the mapping d : X ×X →C by

d(z, z) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩


 |x – x| + i

 |x – x|, z, z ∈ X,

 |y – y| + i

 |y – y|, z, z ∈ X,

x +


y + i( x +


y), z ∈ X, z ∈ X,


y +


y + i( y +


x), z ∈ X, z ∈ X,

where z = x + iy and z = x + iy. Then (X,d) is a complex-valued metric space.

Definition . [] Let (X,d) be a complex-valued metric space.
() A point x ∈ X is called an interior point of a set A⊆ X whenever there exists

 ≺ r ∈C such that

B(x, r) =
{
y ∈ X : d(x, y) ≺ r

} ⊆ A.

() A point x ∈ X is called a limit point of A whenever, for all  ≺ r ∈C,

B(x, r)∩ (A –X) �= ∅.

() A set A ⊆ X is called open whenever each element of A is an interior point of A.
() A set A⊆ X is called closed whenever each limit point of A belongs to A.
() A sub-basis for a Hausdorff topology τ on X is the family

F =
{
B(x, r) : x ∈ X and  ≺ r

}
.

Definition . [] Let (X,d) be a complex-valued metric space, {xn} be a sequence in X
and let x ∈ X.
() If, for any c ∈C with  ≺ c, there exists N ∈N such that, for all n >N , d(xn,x) ≺ c,

then {xn} is said to be convergent to a point x ∈ X or {xn} converges to a point x ∈ X
and x is the limit point of {xn}. We denote this by limn→∞ xn = x or xn → x as
n→ ∞.

() If, for any c ∈C with  ≺ c, there exists N ∈N such that, for all n >N ,
d(xn,xn+m) ≺ c, where m ∈N, then {xn} is called a Cauchy sequence in X .

() If every Cauchy sequence in X is convergent, then (X,d) is said to be a complete
complex-valued metric space.

Next, we give some lemmas which are an essential tool in the proof of main results.

Lemma . [, see Definition .] Let (X,d) be a complex-valued metric space and {xn}
be a sequence in X. Then {xn} converges to a point x ∈ X if and only if |d(xn,x)| →  as
n→ ∞.

Lemma . [] Let (X,d) be a complex-valued metric space and {xn} be a sequence in X.
Then {xn} is a Cauchy sequence if and only if |d(xn,xn+m)| →  as n→ ∞, where m ∈N.

Definition . Let S and T be self-mappings of a nonempty set X.
() A point x ∈ X is called a fixed point of T if Tx = x.

http://www.advancesindifferenceequations.com/content/2013/1/49
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() A point x ∈ X is called a coincidence point of S and T if Sx = Tx and the point w ∈ X
such that w = Sx = Tx is called a point of coincidence of S and T .

() A point x ∈ X is called a common fixed point of S and T if x = Sx = Tx.

Lemma . [] Let X be a nonempty set and T : X → X be a function. Then there exists
a subset E ⊆ X such that T(E) = T(X) and T : E → X is one-to-one.

3 Common fixed points (I)
Throughout this paper, R denotes a set of real numbers, C+ denotes a set {c ∈ C : � c}
and � denotes the class of all functions γ : C+ → [, ) which satisfies the condition: for
any sequences {xn} in C+,

γ (xn) →  =⇒ |xn| → .

The following are examples of the function in �:
() γ(x) = k, where k ∈ [, );
() γ(x) = 

+k|x| , where k ∈ (,∞).
Now, we introduce the concepts of a C-Cauchy sequence and C-complete in complex-

valued metric spaces.

Definition . Let (X,d) be a complex-valued metric space and {xn} be a sequence in X.
() If, for any c ∈C with  ≺ c, there exists N ∈ N such that, for all m,n >N ,

d(xn,xm) ≺ c, then {xn} is called a C-Cauchy sequence in X .
() If every C-Cauchy sequence in X is convergent, then (X,d) is said to be a

C-complete complex-valued metric space.

Next, we prove our main results.

Theorem . Let (X,d) be a C-complete complex-valued metric space and S,T : X → X
be mappings. If there exist two mappings α,β :C+ → [, ) such that, for all x, y ∈ X,
(a) α(x) + β(x) < ;
(b) the mapping γ :C+ → [, ) defined by γ (x) := α(x)

–β(x) belongs to �;
(c) d(Sx,Ty)� α(d(x, y))d(x, y) + β(d(x,y))d(x,Sx)d(y,Ty)

+d(x,y) .
Then S and T have a unique common fixed point in X.

Proof Let x be an arbitrary point in X. We construct the sequence {xn} in X such that

xn+ = Sxn, xn+ = Txn+ (.)

for all n ≥ . For all n≥ , we get

d(xn+,xn+)

= d(Sxn,Txn+)

� α
(
d(xn,xn+)

)
d(xn,xn+)

+
β(d(xn,xn+))d(xn,Sxn)d(xn+,Txn+)

 + d(xn,xn+)

http://www.advancesindifferenceequations.com/content/2013/1/49
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= α
(
d(xn,xn+)

)
d(xn,xn+)

+
β(d(xn,xn+))d(xn,xn+)d(xn+,xn+)

 + d(xn,xn+)

= α
(
d(xn,xn+)

)
d(xn,xn+)

+ β
(
d(xn,xn+)

)
d(xn+,xn+)

(
d(xn,xn+)

 + d(xn,xn+)

)

� α
(
d(xn,xn+)

)
d(xn,xn+) + β

(
d(xn,xn+)

)
d(xn+,xn+),

which implies that

d(xn+,xn+) �
(

α(d(xn,xn+))
 – β(d(xn,xn+))

)
d(xn,xn+)

= γ
(
d(xn,xn+)

)
d(xn,xn+). (.)

Similarly, for all n≥ , we get

d(xn+,xn+)

= d(xn+,xn+)

= d(Sxn+,Txn+)

� α
(
d(xn+,xn+)

)
d(xn+,xn+)

+
β(d(xn+,xn+))d(xn+,Sxn+)d(xn+,Txn+)

 + d(xn+,xn+)

= α
(
d(xn+,xn+)

)
d(xn+,xn+)

+
β(d(xn+,xn+))d(xn+,xn+)d(xn+,xn+)

 + d(xn+,xn+)

= α
(
d(xn+,xn+)

)
d(xn+,xn+)

+ β
(
d(xn+,xn+)

)
d(xn+,xn+)

(
d(xn+,xn+)

 + d(xn+,xn+)

)

� α
(
d(xn+,xn+)

)
d(xn+,xn+) + β

(
d(xn+,xn+)

)
d(xn+,xn+),

which implies that

d(xn+,xn+) �
(

α(d(xn+,xn+))
 – β(d(xn+,xn+))

)
d(xn+,xn+)

= γ
(
d(xn+,xn+)

)
d(xn+,xn+). (.)

From (.) and (.), we have

d(xn,xn+)� γ
(
d(xn–,xn)

)
d(xn–,xn)

for all n ∈N. Therefore, we get

∣∣d(xn,xn+)∣∣ ≤ γ
(
d(xn–,xn)

)∣∣d(xn–,xn)∣∣ ≤ ∣∣d(xn–,xn)∣∣ (.)

http://www.advancesindifferenceequations.com/content/2013/1/49
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for all n ∈N. This implies the sequence {|d(xn–,xn)|}n∈N is monotone non-increasing and
bounded below. Therefore, |d(xn–,xn)| → d for some d ≥ .
Next, we claim that d = . Assume to the contrary that d > . In (.), taking n → ∞, we

have

γ
(
d(xn–,xn)

) → .

Since γ ∈ �, we get |d(xn–,xn)| → , which is a contradiction. Therefore, we have d = ,
that is,

∣∣d(xn–,xn)∣∣ → . (.)

Next, we prove that {xn} is a C-Cauchy sequence. According to (.), it is sufficient to
show that the subsequence {xn} is a C-Cauchy sequence. On the contrary, assume that
{xn} is not a C-Cauchy sequence. By Definition .(), there is c ∈C with  ≺ c for which,
for all k ∈N, there existsmk > nk ≥ k such that

d(xnk ,xmk )� c. (.)

Further, corresponding to nk , we can choose mk in such a way that it is the smallest
integer with mk > nk ≥ k satisfying (.). Then we have

d(xnk ,xmk )� c (.)

and

d(xnk ,xmk–) ≺ c. (.)

By (.), (.) and the notion of a complex-valued metric, we have

c � d(xnk ,xmk )

� d(xnk ,xmk–) + d(xmk–,xmk–) + d(xmk–,xmk )

≺ c + d(xmk–,xmk–) + d(xmk–,xmk ).

This implies

|c| ≤ ∣∣d(xnk ,xmk )
∣∣ ≤ |c| + ∣∣d(xmk–,xmk–)

∣∣ + ∣∣d(xmk–,xmk )
∣∣.

On taking limit as k → ∞, we have

∣∣d(xnk ,xmk )
∣∣ → |c|. (.)

Further, we have

d(xnk ,xmk ) � d(xnk ,xmk+) + d(xmk+,xmk )

� d(xnk ,xmk ) + d(xmk ,xmk+) + d(xmk+,xmk ),

http://www.advancesindifferenceequations.com/content/2013/1/49
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and then

∣∣d(xnk ,xmk )
∣∣ ≤ ∣∣d(xnk ,xmk+)

∣∣ + ∣∣d(xmk+,xmk )
∣∣

≤ ∣∣d(xnk ,xmk )
∣∣ + ∣∣d(xmk ,xmk+)

∣∣ + ∣∣d(xmk+,xmk )
∣∣.

Passing to the limit when k → ∞ and using (.) and (.), we get

∣∣d(xnk ,xmk+)
∣∣ → |c|. (.)

Now, from the triangle inequality for a complex-valued metric d, we obtain that

d(xnk ,xmk+) � d(xnk ,xnk+) + d(xnk+,xmk+) + d(xmk+,xmk+)

= d(xnk ,xnk+) + d(Sxnk ,Txmk+) + d(xmk ,xmk+)

� d(xnk ,xnk+) + α
(
d(xnk ,xmk+)

)
d(xnk ,xmk+)

+
β(d(xnk ,xmk+))d(xnk ,Sxnk )d(xmk+,Txmk+)

 + d(xnk ,xmk+)
+ d(xmk ,xmk+)

= d(xnk ,xnk+) + α
(
d(xnk ,xmk+)

)
d(xnk ,xmk+)

+
β(d(xnk ,xmk+))d(xnk ,xnk+)d(xmk+,xmk+)

 + d(xnk ,xmk+)
+ d(xmk ,xmk+),

which implies that

∣∣d(xnk ,xmk+)
∣∣

≤ ∣∣d(xnk ,xnk+)∣∣ + α
(
d(xnk ,xmk+)

)∣∣d(xnk ,xmk+)
∣∣

+ β
(
d(xnk ,xmk+)

)∣∣∣∣d(xnk ,xnk+)d(xmk+,xmk+)
 + d(xnk ,xmk+)

∣∣∣∣ + ∣∣d(xmk ,xmk+)
∣∣

≤ ∣∣d(xnk ,xnk+)∣∣ + α
(
d(xnk ,xmk+)

)∣∣d(xnk ,xmk+)
∣∣

+
∣∣∣∣d(xnk ,xnk+)d(xmk+,xmk+)

 + d(xnk ,xmk+)

∣∣∣∣ + ∣∣d(xmk ,xmk+)
∣∣

≤ ∣∣d(xnk ,xnk+)∣∣ + α(d(xnk ,xmk+))
 – β(d(xnk ,xmk+))

∣∣d(xnk ,xmk+)
∣∣

+
∣∣∣∣d(xnk ,xnk+)d(xmk+,xmk+)

 + d(xnk ,xmk+)

∣∣∣∣ + ∣∣d(xmk ,xmk+)
∣∣

≤ ∣∣d(xnk ,xnk+)∣∣ + γ
(
d(xnk ,xmk+)

)∣∣d(xnk ,xmk+)
∣∣

+
∣∣∣∣d(xnk ,xnk+)d(xmk+,xmk+)

 + d(xnk ,xmk+)

∣∣∣∣ + ∣∣d(xmk ,xmk+)
∣∣

≤ ∣∣d(xnk ,xnk+)∣∣ + ∣∣d(xnk ,xmk+)
∣∣

+
∣∣∣∣d(xnk ,xnk+)d(xmk+,xmk+)

 + d(xnk ,xmk+)

∣∣∣∣ + ∣∣d(xmk ,xmk+)
∣∣.

Taking k → ∞, we have

|c| ≤
(
lim
k→∞

γ
(
d(xnk ,xmk+)

))|c| ≤ |c|,

http://www.advancesindifferenceequations.com/content/2013/1/49
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that is,

lim
k→∞

γ
(
d(xnk ,xmk+)

)
= .

Since γ ∈ �, we get |d(xnk ,xmk+)| → , which contradicts ≺ c. Therefore, we can con-
clude that {xn} is a C-Cauchy sequence and hence {xn} is a C-Cauchy sequence. By the
completeness of X, there exists a point z ∈ X such that xn → z as n→ ∞.
Next, we claim that Sz = z. If Sz �= z, then d(z,Sz) > . By the notion of a complex-valued

metric d, we have

d(z,Sz)

� d(z,xn+) + d(xn+,Sz)

= d(z,xn+) + d(Txn+,Sz)

= d(z,xn+) + d(Sz,Txn+)

� d(xn+, z) + α
(
d(z,xn+)

)
d(z,xn+) +

β(d(z,xn+))d(z,Sz)d(xn+,Txn+)
 + d(z,xn+)

= d(xn+, z) + α
(
d(z,xn+)

)
d(z,xn+) +

β(d(z,xn+))d(z,Sz)d(xn+,xn+)
 + d(z,xn+)

� d(xn+, z) + d(z,xn+) +
d(z,Sz)d(xn+,xn+)

 + d(z,xn+)
, (.)

which implies that

∣∣d(z,Sz)∣∣ ≤ ∣∣d(xn+, z)∣∣ + ∣∣d(z,xn+)∣∣ +
∣∣∣∣d(z,Sz)d(xn+,xn+) + d(z,xn+)

∣∣∣∣.
Taking n → ∞, we have |d(z,Sz)| = , which is a contradiction. Thus, we get Sz = z. It
follows similarly that Tz = z. Therefore, z = Sz = Tz, that is, z is a common fixed point of S
and T .
Finally, we show that z is a unique common fixed point of S and T . Assume that there

exists another point ẑ such that ẑ = Ŝz = Tẑ. Now, we have

d(z, ẑ) = d(Sz,Tẑ)

� α
(
d(z, ẑ)

)
d(z, ẑ) +

β(d(z, ẑ))d(z,Sz)d(̂z,Tẑ)
 + d(z, ẑ)

= α
(
d(z, ẑ)

)
d(z, ẑ).

Hence |d(z, ẑ)| ≤ α(d(z, ẑ))|d(z, ẑ)|. Since  ≤ α(d(z, ẑ)) < , we get |d(z, ẑ)| =  and then
z = ẑ. Therefore, z is a unique common fixed point of S and T . This completes the proof.�

Corollary . Let (X,d) be a C-complete complex-valued metric space and S,T : X → X
be mappings. If S and T satisfy

d(Sx,Ty)� λd(x, y) +
μd(x,Sx)d(y,Ty)

 + d(x, y)
(.)

http://www.advancesindifferenceequations.com/content/2013/1/49
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for all x, y ∈ X,where λ, μ are nonnegative reals with λ+μ < , then S and T have a unique
common fixed point in X.

Proof We can prove this result by applying Theorem . by setting α(x) = λ and β(x) = μ.
�

Corollary . Let (X,d) be a C-complete complex-valued metric space and T : X → X be
a mapping. If there exist two mappings α,β :C+ → [, ) such that, for all x, y ∈ X,
(a) α(x) + β(x) < ;
(b) the mapping γ :C+ → [, ) defined by γ (x) := α(x)

–β(x) belongs to �;
(c) d(Tx,Ty)� α(d(x, y))d(x, y) + β(d(x,y))d(x,Tx)d(y,Ty)

+d(x,y) .
Then T has a unique fixed point in X.

Proof We can prove this result by applying Theorem . with S = T . �

Corollary . Let (X,d) be a C-complete complex-valued metric space and T : X → X be
a mapping. If T satisfies

d(Tx,Ty)� λd(x, y) +
μd(x,Tx)d(y,Ty)

 + d(x, y)
(.)

for all x, y ∈ X, where λ, μ are nonnegative reals with λ +μ < , then T has a unique fixed
point in X.

Proof We can prove this result by applying Corollary . with α(x) = λ and β(x) = μ. �

Theorem . Let (X,d) be a C-complete complex-valued metric space and T : X → X. If
there exist two mappings α,β :C+ → [, ) such that, for all x, y ∈ X,
(a) α(x) + β(x) < ;
(b) the mapping γ :C+ → [, ) defined by γ (x) := α(x)

–β(x) belongs to �;
(c) d(Tnx,Tny)� α(d(x, y))d(x, y) + β(d(x,y))d(x,Tnx)d(y,Tny)

+d(x,y) for some n ∈N.
Then T has a unique fixed point in X.

Proof From Corollary ., we get Tn has a unique fixed point z. Since

Tn(Tz) = T
(
Tnz

)
= Tz,

we know that Tz is a fixed point of Tn. Therefore, Tz = z by the uniqueness of a fixed point
of Tn. Therefore, z is also a fixed point of T . Since the fixed point of T is also a fixed point
of Tn, the fixed point of T is also unique. �

Corollary . Let (X,d) be a C-complete complex-valued metric space and S,T : X → X
be mappings. If T satisfy

d
(
Tnx,Tny

)
� λd(x, y) +

μd(x,Tnx)d(y,Tny)
 + d(x, y)

(.)

for all x, y ∈ X for some n ∈ N, where λ, μ are nonnegative reals with λ +μ < , then T has
a unique fixed point in X.

http://www.advancesindifferenceequations.com/content/2013/1/49
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Proof We can prove this result by applying Theorem . with α(x) = λ and β(x) = μ. �

Remark . It is easy to see that Corollaries ., . and . hold in complete complex-
valued metric spaces. Therefore, Corollaries ., . and . become Theorem , Corol-
lary  and Corollary  of Azam et al. [] in complete complex-valued metric spaces.

4 Common fixed points (II)
In this section, we prove a common fixed point theorem for weakly compatible mappings
in C-complete complex-valued metric spaces.
Since Banach’s fixed point theorem, many authors have improved, extended and gener-

alized Banach’s fixed point theorem in several ways. Especially, in [], Jungck generalized
Banach’s fixed point theorem by using the concept of commuting mappings as follows.

Theorem J Let (X,d) be a complete metric space. Then a continuous mapping S : X → X
has a fixed point in X if and only if there exists a number α ∈ (, ) and amapping T : X →
X such that T(X)⊂ S(X), S and T are commuting (i.e., TSx = STx for all x in X),

d(Tx,Ty) ≤ αd(Sx,Sy)

for all x, y ∈ X. Further, S and T have a unique common fixed point in X (i.e., there exists
a unique point z in X such that Sz = Tz = z).

Note that if we put S = IX (the identity mapping on X) in Theorem J, we have Banach’s
fixed point theorem.
Since Theorem J, in , Jungck [] introduced more generalized commuting map-

pings in metric spaces, called compatible mappings, which also are more general than
weakly commuting mappings (that is, the mappings S,T : X → X are said to be weakly
commuting if d(STx,TSx)≤ d(Sx,Tx) for all x ∈ X) introduced by Sessa [] as follows.

Definition . Let S and T be mappings from a metric space (X,d) into itself. The map-
pings S and T are said to be compatible if

lim
n→∞d(STxn,TSxn) = 

whenever {xn} is a sequence in X such that limn→∞ Sxn = limn→∞ Txn = z for some z ∈ X.

In general, commuting mappings are weakly commuting and weakly commuting map-
pings are compatible, but the converse is not necessarily true; some examples can be found
in [, –].
Also, some authors introduced some kind of generalizations of compatible mappings in

metric spaces and other spaces (see [–]) and they proved common fixed point theo-
rems using these kinds of compatible mappings in metric spaces and other spaces.
In [], Jungck and Rhoades introduced the concept of weakly compatible mappings in

symmetric spaces (X,d) and proved some common fixed point theorems for these map-
pings in symmetric spaces as follows.

http://www.advancesindifferenceequations.com/content/2013/1/49
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Definition . Let S and T be mappings from a metric space (X,d) into itself. The map-
pings S and T are said to be weakly compatible if they commute at coincidence points of
S and T .

In Djoudi and Nisse [], we can find an example to show that there exist weakly com-
patible mappings which are not compatible mappings in metric spaces.
Now, we give the main result in this section.

Theorem . Let (X,d) be a complex-valued metric space and S,T : X → X be such that
T(X) ⊆ S(X) and S(X) is C-complete. If there exist two mappings α,β : C+ → [, ) such
that, for all x, y ∈ X,
(a) α(x) + β(x) < ;
(b) the mapping γ :C+ → [, ) defined by γ (x) := α(x)

–β(x) belongs to �;
(c) d(Tx,Ty)� α(d(Sx,Sy))d(Sx,Sy) + β(d(Sx,Sy))d(Sx,Tx)d(Sy,Ty)

+d(Sx,Sy) .
Then S and T have a unique point of coincidence in X. Moreover, S and T have a unique
common fixed point in X if S and T are weakly compatible.

Proof Consider the mapping S : X → X. By Lemma ., there exists E ⊆ X such that
S(E) = S(X) and S : E → X is one-to-one.
Next, we define a mappingW : S(E) → S(E) byW(Sx) = Tx for all Sx ∈ S(E). Therefore,

W is well defined since S is one-to-one on E. SinceW ◦ S = T , using (c), we get

d
(
W(Sx),W(Sy)

)
� α

(
d(Sx,Sy)

)
d(Sx,Sy)

+
β(d(Sx,Sy))d(Sx,W(Sx))d(Sy,W(Sy))

 + d(Sx,Sy)
(.)

for all Sx,Sy ∈ S(E). Since S(E) = S(X) is C-complete and (.) holds, we can apply Corol-
lary . with a mappingW . Therefore, there exists a unique fixed point z ∈ S(X) such that
Wz = z. It follows from z ∈ S(X) that z = Sz′ for some z′ ∈ X. So, W(Sz′) = Sz′, that is,
Tz′ = Sz′. Therefore, T and S have a unique point of coincidence.
Next, we show that S and T have a common fixed point. Now, we have z = Tz′ = Sz′.

Since S and T are weakly compatible, we get

Sz = STz′ = TSz′ = Tz.

This implies Sz = Tz is a point of coincidence of S and T . But z is a unique point of co-
incidence of S and T . Therefore, we conclude that z = Sz = Tz, which implies that z is a
common fixed point of S and T .
Finally, we prove the uniqueness of a common fixed point of S and T . Assume that z

is another common fixed point of S and T . So, z = Sz = Tz, and then z is also a point of
coincidence of S and T . However, we know that z is a unique point of coincidence of S
and T . Therefore, we get z = z, that is, z is a unique common fixed point of S and T . This
completes the proof. �

5 Urysohn integral equations
In this section, we show that Theorem . can be applied to the existence of a common
solution of the system of the Urysohn integral equations.

http://www.advancesindifferenceequations.com/content/2013/1/49
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Theorem . Let X = C([a,b],Rn), a > , and d : X ×X → C be defined by

d(x, y) = max
t∈[a,b]

∥∥x(t) – y(t)
∥∥∞

√
 + aei tan

– a.

Consider the Urysohn integral equations

x(t) =
∫ b

a
K

(
t, s,x(s)

)
ds + g(t), (.)

x(t) =
∫ b

a
K

(
t, s,x(s)

)
ds + h(t), (.)

where t ∈ [a,b]⊆R, x, g,h ∈ X and K,K : [a,b]× [a,b]×Rn →Rn.
Suppose that K, K are such that Fx,Gx ∈ X for all x ∈ X, where

Fx(t) =
∫ b

a
K

(
t, s,x(s)

)
ds,

Gx(t) =
∫ b

a
K

(
t, s,x(s)

)
ds

for all t ∈ [a,b].
If there exist two mappings α,β :C+ → [, ) such that for all x, y ∈ X the following hold:
(a) α(x) + β(x) < ;
(b) the mapping γ :C+ → [, ) defined by γ (x) := α(x)

–β(x) belongs to �;
(c) ‖Fx(t) –Gy(t) + g(t) – h(t)‖∞

√
 + aei tan– a � α(maxt∈[a,b]A(x, y)(t))A(x, y)(t) +

β(maxt∈[a,b]A(x, y)(t))B(x, y)(t), where

A(x, y)(t) =
∥∥x(t) – y(t)

∥∥∞
√
 + aei tan

– a,

B(x, y)(t) =
‖Fx(t) + g(t) – x(t)‖∞‖Gy(t) + h(t) – y(t)‖∞

 + d(x, y)
√
 + aei tan

– a,

then the system of integral equations (.) and (.) has a unique common solution.

Proof Define two mappings S,T : X → X by Sx = Fx + g and Tx =Gx + h. Then we have

d(Sx,Ty) = max
t∈[a,b]

∥∥Fx(t) –Gy(t) + g(t) – h(t)
∥∥∞

√
 + aei tan

– a,

d(x,Sx) = max
t∈[a,b]

∥∥Fx(t) + g(t) – x(t)
∥∥∞

√
 + aei tan

– a

and

d(y,Ty) = max
t∈[a,b]

∥∥Gy(t) + h(t) – y(t)
∥∥∞

√
 + aei tan

– a.

We can show easily that for all x, y ∈ X,

d(Sx,Ty)� α
(
d(x, y)

)
d(x, y) +

β(d(x, y))d(x,Sx)d(y,Ty)
 + d(x, y)

.
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Now, we can apply Theorem .. Therefore, we get the Urysohn integral equations (.)
and (.) have a unique common solution. �
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