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Abstract

In this article we establish an oscillation theorem for second order Sturm-Liouville
difference equations with general nonlinear dependence on the spectral parameter l.
This nonlinear dependence on l is allowed both in the leading coefficient and in the
potential. We extend the traditional notions of eigenvalues and eigenfunctions to this
more general setting. Our main result generalizes the recently obtained oscillation
theorem for second order Sturm-Liouville difference equations, in which the leading
coefficient is constant in l. Problems with Dirichlet boundary conditions as well as
with variable endpoints are considered.
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1 Introduction
In this article we consider the second order Sturm-Liouville difference equation

�(rk(λ)�xk) + qk(λ)xk+1 = 0, k ∈ [0,N − 1]Z, (SLλ)

where rk : ℝ ® ℝ for k Î [0, N]ℤ and qk : ℝ ® ℝ for k Î [0, N - 1]ℤ are given differen-

tiable functions of the spectral parameter l such that

rk(λ) �= 0 and ṙk(λ) ≤ 0, k ∈ [0,N]
Z
,

q̇k(λ) ≥ 0, k ∈ [0,N − 1]
Z
.

}
(1:1)

Here N Î N is a fixed number with N ≥ 2 and [a, b]ℤ := [a, b]∩ℤ, and the dot denotes

the differentiation with respect to l. With equation (SLl) we consider the Dirichlet

boundary conditions, that is, we study the eigenvalue problem

(SLλ), λ ∈ R, x0 = 0 = xN+1. (E0)

We recall first the classical setting of Sturm-Liouville difference equations, see e.g.

[1-4], in which the function rk(·) is constant (nonzero) in l and the function qk(·) is lin-

ear and increasing in l. That is, the traditional assumptions for the oscillation and

spectral theory of (SLl) are the following:

rk(λ) ≡ rk �= 0, for all k ∈ [0,N]
Z
,

qk(λ) = qk + λwk, wk > 0, for all k ∈ [0,N − 1]
Z
.

}
(1:2)
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In some publications, such as in [2,4], the authors also impose the sign condition rk > 0

for all k Î [0, N]ℤ, but it is well known nowadays that rk ≠ 0 is sufficient to develop the

oscillation and spectral theory of these equations, see e.g. [[5], p. 5] or [6]. The explana-

tion of this phenomenon also follows from the analysis of the general equation (SLl)

discussed below.

Assume for a moment that (1.2) holds. Following [4, Chapter 7] or [2, Chapter 4],

a number l0 Î ℂ is an eigenvalue of (E0) if there exists a nontrivial solution x = x(l0)
of equation (SLλ0) satisfying the Dirichlet endpoints x0(l0) = 0 = xN+1(l0). By the

uniqueness of solutions of equation (SLλ0) , it follows that the eigenvalues of (E0) are

characterized by the condition x̂N+1(λ0) = 0 , where x̂(λ) is the principal solution of

equation (SLl), i.e., it is the solution starting with the initial values x̂0(λ) = 0 and

x̂1(λ) = 1/r0 . If x(l) is a solution of (SLl) with (1.2), then the functions xk(l) are poly-

nomials in l for every k Î [0, N + 1]ℤ. Therefore, the zeros of xk(l) are isolated, show-

ing that the eigenvalues of (E0) are simple (with the multiplicity equal to one) and

isolated. Furthermore, by a standard argument from linear algebra it follows that the

eigenvalues of (E0) with l Î ℂ are indeed real and that the eigenfunctions correspond-

ing to different eigenvalues are orthogonal with respect to the inner product

〈x, y〉w :=
∑N

k=0 wkxk+1yk+1 . The oscillation theorem for (E0) then says that the j-th

eigenfunction has exactly j generalized zeros in the interval (0, N + 1]. The generalized

zeros are defined as follows, see [7,8]. A sequence x = {xk}N+1
k=0 has a generalized zero in

(k, k + 1], if

xk �= 0 and rkxkxk+1 ≤ 0. (1:3)

If the sequence x has a generalized zero in (k, k+1], then this generalized zero is said to

be at k + 1 when xk+1 = 0, while it is said to be in (k, k + 1) when rk xk xk+1 < 0. This

terminology corresponds, roughly speaking, to the idea of hitting the axis in the first

case or crossing the axis in the latter case. Finally, the Rayleigh principle for (E0) says

that the (j + 1)-th eigenvalue can be computed by minimizing the associated quadratic

form over nontrivial sequences η = {ηk}N+1
k=0 which satisfy the endpoints conditions

h0 = 0 = hN+1 and which are orthogonal to the first j eigenfunctions.

In this article we show that some of the above properties can be extended to the eigen-

value problem (E0) in which the coefficients depend on the spectral parameter l in gen-

eral nonlinearly and they satisfy the monotonicity assumption (1.1). In particular, we

discuss the notions of finite eigenvalues and finite eigenfunctions for such problems

which are appropriate generalizations of the corresponding notions for the case of (1.2).

Then we prove as our main result the corresponding oscillation theorem. Note that such

an oscillation theorem for problem (E0) was recently proven in [9, Section 6.1 and Exam-

ple 7.6] under the assumption (1.1) with the first condition in (1.2), that is, under rk(l) ≡
rk constant in l. That result follows by writing equation (SLl) as a special discrete sym-

plectic system, see the next section. The oscillation theorem in the present article does

not impose this restriction, so that it directly generalizes the oscillation theorem in [9,

Example 7.6] to the case of variable rk(l). As an application of our new oscillation

theorem we prove that the j-th finite eigenfunction has exactly j generalized zeros in the

interval (0, N + 1], which is a discrete analogue of a traditional statement in the
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continuous time theory. In addition, we further consider the eigenvalue problems with

more general boundary conditions, which include the Neumann-Dirichlet or Neumann-

Neumann boundary conditions as a special case. This additional result is obtained by a

known transformation to problem (E0), see [10]. Our new oscillation theorem and the

new notions of finite eigenvalues and finite eigenfunctions for problem (E0) can also be

regarded as the discrete analogues to the corresponding continuous time theory in [11].

2 Main results
Equation (SLl) is a special scalar discrete symplectic system

xk+1 = ak(λ)xk + bk(λ)uk, uk+1 = ck(λ)xk + dk(λ)uk, k ∈ [0,N]Z , (2:1)

in which the 2 × 2 transition matrix is symplectic, i.e., with

Sk(λ) =
(
ak(λ) bk(λ)
ck(λ) dk(λ)

)
:=

(
1 1

rk(λ)

−qk(λ) 1 − qk(λ)
rk(λ)

)
, J :=

(
0 1

−1 0

)
, (2:2)

we have STk (λ)JSk(λ) = J for all k Î [0, N]ℤ and l Î ℝ. Note that Sk(l) being symplec-

tic is equivalent to the fact that the determinant of Sk(l) is equal to one, that is, to the

condition ak(l) dk(l) - bk (l) ck(l) = 1, see [12]. Oscillation theorems for discrete sym-

plectic systems (2.1) in which ak(l) ≡ ak and bk(l) ≡ bk are constant in l, and ck(l)
and dk(l) are linear in l were derived in [10,13-15].

Remark 2.1 The component uk in (2.1) is defined through xk as uk := rk(l) Δxk for
k Î [0, N - 1]ℤ. This yields that the first equation in (2.1) is satisfied for all k Î [0,N]ℤ
and the second equation in (2.1) for all k Î [0, N - 1]ℤ. If we want to have both equa-

tions satisfied for k Î [0,N]ℤ, we need to define the coefficient qN(l) in such a way

that the matrix SN(l) is symplectic and q̇N(λ) ≥ 0 . This can be done e.g. by taking

qN(l) := 0 for all l Î ℝ and uN+1 := uN.

First we show how certain solutions of (SLl) behave with respect to l. Assumption

(1.1) implies that the solutions of (SLl) are differentiable, hence continuous, in l on ℝ.

We will consider the solutions whose initial values

x0(λ), r0(λ)�x0(λ) do not depend on λ. (2:3)

This condition is satisfied for example by the principal solution x̂(λ) , for which

x̂0(λ) = 0, x̂1(λ) = 1/r0(λ) for all λ ∈ R. (2:4)

The following result shows that under the monotonicity assumption (1.1) the oscilla-

tion behavior in l is not allowed for the above type of solutions near any finite value

of l, compare with [9, Theorem 4.3].

Lemma 2.2 Assume that (1.1) holds and let x(λ) = {xk(λ)}N+1
k=0 be a nontrivial solution

of (SLl) satisfying (2.3). Then for each k Î [0, N + 1]ℤ and l0 Î ℝ there exists δ > 0 such

that xk(l) is either identically zero or never zero on (l0, l0 + δ), resp. on (l0 - δ, l0).
Proof. Let l0 Î ℝ and k Î [0, N + 1]ℤ be fixed. If k = 0, then the result follows trivi-

ally. Also, if xk(l0) ≠ 0, then the statement is a consequence of the continuity of xk(l)
in l. Therefore, further on we assume that k Î [1, N + 1]ℤ and xk(l0) = 0. First we

construct another solution y(λ) = {yj(λ)}N+1
j=0 whose initial conditions do not depend

on l as in (2.3) such that yk(l0) ≠ 0 and such that the Casorati determinant
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C[y(λ), x(λ)]j := rj(λ)

∣∣∣∣ yj(λ) xj(λ)
�yj(λ) �xj(λ)

∣∣∣∣ = 1

for all j Î [0, N + 1]ℤ and l Î ℝ. This means that the solutions y(l) and x(l) form a

normalized pair of solutions of (SLl). The solution y(l) can be constructed from the

initial conditions

y0(λ) = r0(λ)�x0(λ)/ω0, r0(λ)�y0(λ) = −x0(λ)/ω0,

where ω0 := x20(λ) + r20(λ)[�x0(λ)]2 is independent of l. The choice of yk(l0) = 0 then

follows from [[16], Proposition 4.1.1]. By the continuity of yk(l) in l, there exists ε > 0

such that yk(l) ≠ 0 on (l0 - ε, l0 + ε). For these values of l, a direct calculation shows

the formula

d
dλ

(
xk(λ)
yk(λ)

)
=

1

y2k (λ)

k−1∑
j=0

{
q̇j(λ)

∣∣∣∣xj+1(λ)xk(λ)yj+1(λ)yk(λ)

∣∣∣∣
2

− ṙj(λ)

∣∣∣∣�xj(λ)xk(λ)
�yj(λ)yk(λ)

∣∣∣∣
2
}
,

compare with [9, Lemma 4.1]. Therefore, under the assumption (1.1) the function

zk(l) := xk(l)/yk(l) is nondecreasing in l on (l0-ε, l0+ε). This means that once zk(l0) =
0, then zk(l) is either identically zero on (l0, l0 + δ) for some δ Î (0, ε), or zk(l) is
positive on (l0, l0 + ε). Similar argument applies also on the left side of l0. And since

the zeros of zk(l) in (l0 - ε, l0 + ε) are exactly those of xk(l), the result follows.

Remark 2.3 The statement of Lemma 2.2 says that for a nontrivial solution

x(λ) = {xk(λ)}N+1
k=0 of (SLl) satisfying (2.3) the quantity

hk(λ) := rank xk(λ) (2:5)

is piecewise constant in l on ℝ for every given k Î [0, N + 1]ℤ.

Remark 2.4 If a solution x(l) of (SLl) satisfies xk(l0) ≠ 0 at some k Î [0, N + 1]ℤ
and l0 Î ℝ, then there exists δ > 0 such that xk(l) ≠ 0 on (l0 - δ, l0 + δ). Moreover,

as in the proof of Lemma 2.2 we can derive for all l Î (l0 - δ, l0 + δ) the formula

ṗk(λ) = − ṙk(λ)x2k(λ)

r2k (λ)x
2
k+1(λ)

+
1

r2k (λ)

k−1∑
j=0

{
q̇j(λ)x2j+1(λ) − ṙj(λ)[�xj(λ)]

2
}
, (2:6)

compare with [9, Remarks 6.13 and 6.15], where

pk(λ) :=
xk(λ)

rk(λ)xk+1(λ)
. (2:7)

Identity (2.6) shows that the function pk(l) is nondecreasing in l whenever it is defined,

i.e., whenever xk+1(l) ≠ 0. This monotonicity of pk(l) in l is essential for deriving the

oscillation theorem below. Note also that according to (1.3) we have pk(l) < 0 if and

only if the solution x(l) has a generalized zero in (k, k + 1).

Remark 2.5 The uniqueness of solutions of (SLl) implies that a nontrivial solution x(l)
of (SLl) cannot vanish at any two consecutive points k and k + 1. Therefore, if xk(l) = 0,

then xk+1(l) ≠ 0, while if xk+1(l) = 0, then xk(l) ≠ 0.

Let x(λ) = {xk(λ)}N+1
k=0 be a nontrivial solution of (SLl) and denote by mk(l) the num-

ber of its generalized zeros in (k, k + 1]. Then mk(l) Î {0,1}. Our aim is to prove the

following local oscillation theorem.
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Theorem 2.6 (Local oscillation Theorem I) Assume (1.1). Let x(λ) = {xk(λ)}N+1
k=0 be

a nontrivial solution of (SLl) such that (2.3) holds. Fix an index k Î [0, N]ℤ and denote

by mk(l) the number of generalized zeros of x(l) in (k, k + 1]. Then mk(l
-) and mk(l

+)

exist and for all l Î ℝ

mk(λ+) = mk(λ) ≤ 1, (2:8)

mk(λ+) − mk(λ−) = hk(λ) − hk(λ−) + hk+1(λ−) − hk+1(λ), (2:9)

where hk(l) and hk+1(l) are given in (2.5).

In the above formula the value of the function hj(l) is 1 if xj(l) ≠ 0 and it is 0 if

xj(l) = 0, for j Î {k, k + 1}. Moreover, the notation hj(l
-) means the left-hand limit of

the function hj(l) at the given point l. Similarly, the notation mk(l
-) and mk(l

+) stands

respectively for the left-hand and right-hand limits of the function mk(l) at the point l.
Proof of Theorem 2.6 Let k Î [0, N]ℤ and l0 Î ℝ be given. By Remark 2.3, the lim-

its hk(λ−
0 ) and hk+1(λ−

0 ) exist. We will show that the left-hand and right-hand limits

of the function mk(l) at l0 also exist and Equations (2.8) and (2.9) are satisfied. We

split the proof into two parts depending on the rank of xk+1(l0).
Part I. Assume first that xk+1(l0) ≠ 0. Then there exists ε > 0 such that xk+1(l) ≠ 0

for all l Î (l0 - ε,l0 + ε). This means that for these values of l the point k + 1 is not

a generalized zero of the solution x(l). According to Remark 2.4, the function pk(l) in
(2.7) is nondecreasing on (l0 - ε, l0 +ε), and we have on this interval either mk(l) = 1

if pk(l) < 0, or mk(l) = 0 if pk(l) ≥ 0. We further distinguish the following three sub-

cases:

(I-a) pk(l0) < 0,

(I-b) pk(l0) > 0, and

(I-c) pk(l0) = 0.

In subcase (I-a), in which pk(l0) < 0 we have pk(l) < 0 and xk(l) ≠ 0 for all l Î (l0 - δ,

l0 + δ) for some δ Î (0, ε), so that in this case mk(λ0) = mk(λ−
0 ) = mk(λ+

0) = 1 ,

hk(λ0) = hk(λ−
0 ) = 1 , and hk+1(λ0) = hk+1(λ−

0 ) = 1 . Therefore, the equations in (2.8) and

(2.9) hold as the identities 1 = 1 and 0 = 0, respectively. Similarly in subcase (I-b), in

which pk(l0) > 0, there is δ Î (0, ε) such that pk(l) > 0 and xk(l) ≠ 0 for all l Î (l0-δ,

l0+δ), so that in this case mk(λ0) = mk(λ−
0 ) = mk(λ+

0) = 0 , hk(λ0) = hk(λ−
0 ) = 1 , and

hk+1(λ0) = hk+1(λ−
0 ) = 1 . Therefore, both Equations (2.8) and (2.9) now hold as the

identity 0 = 0. In subcase (I-c), in which pk(l0) = 0, we have xk(l0) = 0. By Lemma 2.2,

there is δ Î (0, ε) such that one of the additional four subcases applies for the behavior

of xk(l) near the point l0:

(I-c-i) xk(l) ≠ 0 on (l0 - δ, l0) and on (l0, l0 + δ),

(I-c-ii) xk(l) ≠ 0 on (l0 - δ, l0) and xk(l) ≡ 0 on (l0, l0 + δ),

(I-c-iii) xk(l) ≡ 0 on (l0 - δ, l0) and xk(l) ≠ 0 on (l0, l0 + δ), and

(I-c-iv) xk(l) ≡ 0 both on (l0 - δ, l0) and on (l0, l0 + δ).
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In subcase (I-c-i), the function pk(l) must be nondecreasing on (l0 -δ, l0 + δ), which

implies that pk(l) < 0 on (l0 - δ, l0) and pk(l) > 0 on (l0, l0 + δ). Therefore,

in this case mk(λ−
0 ) = 1, mk(λ+

0) = mk(λ0) = 0 , hk(λ−
0 ) = 1 , hk(l0) = 0, and

hk+1(λ−
0 ) = hk+1(λ0) = 1 . This means that the equations in (2.8) and (2.9) now hold as

the identities 0 = 0 and -1 = -1, respectively. In subcase (I-c-ii), the function pk(l)
is nondecreasing on (l0 - δ, l0], which implies that pk(l) < 0 on (l0 - δ, l0) and
pk(l) ≡ 0 on (l0, l0 + δ). Thus, as in subcase (I-c-i) we now have

hk(λ−
0 ) = 1 ,hk(λ−

0 ) = 1 hk(l0) = 0 and hk+1(λ−
0 ) = hk+1(λ0) = 1 , so that the equations

in (2.8) and (2.9) hold as the identities 0 = 0 and -1 = -1, respectively. In subcase

(I-c-iii), the situation is similar with the result that pk(l) is nondecreasing on [l0,
l0 + δ), so that pk(l) ≡ 0 in (l0 - δ, l0] and pk(l) > 0 on (l0,l0 + δ). Thus, in this case

hk(λ−
0 ) = hk(λ0) = 0 , hk(λ−

0 ) = hk(λ0) = 0 , and hk+1(λ−
0 ) = hk+1(λ0) = 1 , so that both

Equations (2.8) and (2.9) hold as the identity 0 = 0. In the last subcase (I-c-iv), we

have pk(l) ≡ 0 on (l0-δ, l0+δ), and in this case mk(λ−
0 ) = mk(λ+

0) = mk(λ0) = 0 ,

hk(λ−
0 ) = hk(λ0) = 0 , and hk+1(λ−

0 ) = hk+1(λ0) = 1 , so that (2.8) and (2.9) hold as the

identity 0 = 0.

Part II. Assume that xk+1(l0) = 0. Then by Remark 2.5 we have xk(l0) ≠ 0, and there

exists ε > 0 such that xk(l) = 0 for all l Î (l0 - ε, l0 + ε). By Lemma 2.2, there is δ Î
(0, ε) such that one of the following four subcases applies for the behavior of xk+1(l)
near the point l0:

(II-a) xk+1(l) ≠ 0 on (l0 - δ, l0) and on (l0, l0 + δ),

(II-b) xk+1(l) ≠ 0 on (l0 - δ, l0) and xk+1(l) ≡ 0 on (l0, l0 + δ),

(II-c) xk+1(l) ≡ 0 on (l0 - δ, l0) and xk+1(l) ≠ 0 on (l0, l0 + δ), and

(II-d) xk+1(l) ≡ 0 both on (l0 - δ, l0) and on (l0, l0 + δ).

In subcase (II-a), the function pk(l) is well defined on (l0 - δ, l0) and (l0, l0 + δ), so

that it is nondecreasing on each of these two intervals, by Remark 2.4. Since xk(l0) ≠

0, it follows that pk(λ−
0 ) = +∞ and pk(λ+

0) = −∞ , which shows that mk(λ−
0 ) = 0 and

mk(λ+
0) = 1 . Since in this case we also have mk(l0) = 1 (by the definition of a general-

ized zero at k + 1) and hk(λ−
0 ) = hk(λ0) = 1 , hk+1(λ−

0 ) = 1 , and hk+1(l0) = 0, it follows

that the equations in (2.8) and (2.9) hold as the identity 1 = 1. In subcase (II-b), the

function pk(l) is well defined and nondecreasing on (l0 - δ, l0), so that pk(λ−
0 ) = +∞ ,

and hence mk(λ−
0 ) = 0. Moreover, hk(λ−

0 ) = hk(λ0) = 1 , hk+1(λ−
0 ) = 1 , hk+1(l0) = 0,

and mk(λ+
0) = mk(λ0) = 1 , by the definition of a generalized zero at k + 1. This shows

that in this case (2.8) and (2.9) hold again as the identity 1 = 1. In subcase (II-c), we

have mk(λ−
0 ) = mk(λ0) = 1 (by the definition of a generalized zero at k + 1),

hk(λ−
0 ) = hk(λ0) = 1 , and hk+1(λ−

0 ) = hk+1(λ0) = 0 . Moreover, the function pk(l) is well

defined and nondecreasing on (l0, l0 + δ), so that pk(λ+
0) = −∞ , and hence

mk(λ+
0) = 1 . In this case (2.8) and (2.9) hold as the identities 1 = 1 and 0 = 0, respec-

tively. Finally, in subcase (II-d), we have mk(λ−
0 ) = mk(λ0) = mk(λ+

0) (by the definition
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of a generalized zero at k + 1), while hk(λ−
0 ) = hk(λ0) = 1 and hk+1(λ−

0 ) = hk+1(λ0) = 0 .

Thus, both (2.8) and (2.9) now hold as the identity 0 = 0. This completes the proof.

The above result (Theorem 2.6) now leads to further oscillation theorems for the

problem (E0). Denote by

n1(λ) := the number of generalized zeros of x(λ) in (0,N + 1]. (2:10)

Theorem 2.7 (Local oscillation Theorem II) Assume (1.1). Let x(λ) = {xk(λ)}N+1
k=0 be

a non-trivial solution of (SLl) such that (2.3) holds. Then n1(l
-) and n1(l

+) exist and

for all l Î ℝ

n1(λ+) = n1(λ) ≤ N + 1, (2:11)

n1(λ+) − n1(λ−) = hN+1(λ−) − hN+1(λ) ∈ {0, 1}. (2:12)

Hence, the function n1(l) is nondecreasing in l on ℝ, the limit

m := lim
λ→−∞

n1(λ) (2:13)

exists with m Î [0, N + 1]ℤ, so that for a suitable l0 < 0 we have

n1(λ) ≡ m and hN+1(λ−) − hN+1(λ) ≡ 0 for all λ ≤ λ0. (2:14)

Proof. The number of generalized zeros of x(l) in (0, N + 1] is by definition

n1(λ) =
N∑
k=0

mk(λ), λ ∈ R,

where, as in Theorem 2.6, mk(l) is the number of generalized zeros of x(l) in (k,k + 1].

The statement in (2.11) follows directly from (2.8). The expression in (2.12) is calcu-

lated by the telescope sum of the expression in (2.9). This yields that

n1(λ+) − n1(λ−) = hN+1(λ−) − hN+1(λ) − h0(λ−) + h0(λ), λ ∈ R.

But since by (2.3) the initial conditions of x(l) do not depend on l, we have h0(l
-) =

h0(l) for all l Î ℝ, which shows (2.12). From the two conditions (2.11) and (2.12)

we then have that the function n1(l) is nondecreasing in l on ℝ. Since the values of

n1(l) are nonnegative integers, the limit in (2.13) exists with m Î N ∪ {0}. Conse-

quently, n1(l) ≡ m for l sufficiently negative, say for all l ≤ l0 for some l0 < 0.

Hence, n1(l
+) - n1(l

-) ≡ 0 for l ≤ l0. Applying (2.12) once more then yields the

second equation in (2.14). This completes the proof.

Now we relate the above oscillation results with the eigenvalue problem (E0). We say

that l0 Î ℝ is a finite eigenvalue of (E0), provided there exists a nontrivial solution

x(λ) = {xk(λ)}N+1
k=0 of (E0) such that xN+1(l0) = 0 and

xN+1(λ) �= 0 for λ in some left neighborhood of λ0. (2:15)

Note that such a requirement is justified by Lemma 2.2. We observe that every finite

eigenvalue of (E0) is also a traditional eigenvalue, for which the “nondegeneracy condi-

tion” (2.15) is dropped. From the uniqueness of solutions of equation (SLl) it then fol-

lows that l0 is a finite eigenvalue of (E0) if and only if the principal solution x̂(λ) ,
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see (2.4), satisfies x̂N+1(λ0) = 0 and x̂N+1(λ) �= 0 for l in some left neighborhood of l0.

Or equivalently, the principal solution x̂(λ) has hN+1(λ−
0 ) = 1 and hN+1(l0) = 0. This

shows that the difference hN+1(λ−
0 ) − hN+1(λ0) , whenever it is positive, indicates a

finite eigenvalue of problem (E0).

From Lemma 2.2 we obtain that under the assumption (1.1) the finite eigenvalues of

(E0) are isolated. This property was also proven for the classical eigenvalues of (SLl) in

[17] under the strict monotonicity of rk(l) and qk(l). Such a strict monotonicity

assumption is not required in this article.

Thus, we finally arrive at the following global oscillation theorem. Set

n2(λ) := the number of finite eigenvalues of (E0) in (−∞,λ]. (2:16)

Then from this definition we have

n2(λ+) = n2(λ),
n2(λ) − n2(λ−) = hN+1(λ−) − hN+1(λ),

}
for all λ ∈ R, (2:17)

i.e., positivity of the difference n2(l) - n2(l
-) indicates finite eigenvalue at l.

Theorem 2.8 (Global oscillation theorem) Assume (1.1). Then for all l Î ℝ

n2(λ+) = n2(λ) ≤ 1, (2:18)

n2(λ+) − n2(λ−) = n1(λ+) − n1(λ−) ∈ {0, 1}, (2:19)

and there exists m Î [0, N + 1]ℤ such that

n1(λ) = n2(λ) +m for all λ ∈ R. (2:20)

Moreover, for a suitable l0 < 0 we have

n2(λ) ≡ 0 and n1(λ) ≡ m for all λ ≤ λ0. (2:21)

Proof. The result follows directly from Theorem 2.7.

Corollary 2.9 Under the assumption (1.1), the finite eigenvalues of (E0) are isolated

and bounded from below.

Proof. From Lemma 2.2 we know that the finite eigenvalues of (E0) are isolated. The

second statement follows from condition (2.21) of Theorem 2.8, since n2(l) ≡ 0 for all

l ≤ l0 means that there are no finite eigenvalues of (E0) in the interval (-∞, l0].
It remains to connect the above global oscillation theorem with the traditional state-

ment saying that the j-th eigenfunction has exactly j generalized zeros in the interval

(0, N + 1]. We will see that under some additional assumption the statement of this

result remains exactly the same when we replace the eigenfunctions of (E0) by its finite

eigenfunctions. This additional assumption is formulated in terms of the associated dis-

crete quadratic functional

F0(η,λ) :=
N∑
k=0

{rk(λ)(�ηk)
2 − qk(λ)η2

k+1},

where η = {ηk}N+1
k=0 is a sequence such that h0 = 0 = hN+1. The functional F0(·, l) is

positive, we write F0(·, l) > 0, if F0(h, l) > 0 for every sequence h with h0 = 0 = hN + 1
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and h ≠ 0. The following auxiliary result is taken from [[18], Theorem 5.1], compare

also with [4, Theorem 8.10].

Proposition 2.10 Let l0 Î ℝ be fixed. The functional F0(·, l0) is positive if and only if

the principal solution x̂(λ0) of (SLλ0) has no generalized zeros in (0, N + 1], i.e., n1
(l0) = 0.

Theorem 2.11 (Oscillation theorem) Assume (1.1). Then

n1(λ) = n2(λ) for all λ ∈ R (2:22)

if and only if there exists l0 < 0 such that F0(·, l0) > 0. In this case, if l1 < l2 < ... < lr
(where r ≤ N + 1) are the finite eigenvalues of (E0) with the corresponding finite eigen-

functions x(1), x(2),..., x(r), then for each j Î {1,..., r} the finite eigenfunction x(j) has

exactly j generalized zeros in (0,N + 1].

Note that since the finite eigenfunction x(j) has x(j)N+1 = 0 , it satisfies x(j)N �= 0 , by

Remark 2.5. Therefore, the point N + 1 is one of the generalized zeros of x(j), and conse-

quently the remaining j - 1 generalized zeros of x(j) are in the open interval (0, N + 1).

This complies with the traditional continuous time statement.

Proof of Theorem 2.11 If n1(l) = n2(l) for all l Î ℝ, then the number m in Equa-

tion (2.20) of Theorem 2.8 is zero. This implies through condition (2.21) that n1(l) ≡ 0

for all l ≤ l0 with some l0 < 0. By Proposition 2.10, the latter condition is equivalent

to the positivity of the functional F0(·, l) for every l ≤ l0, in particular for l = l0.
Conversely, assume that F0(·, l0) > 0 for some l0 < 0. Then n1(l0) = 0, by Proposition

2.10, and since the function n1(·) is nondecreasing in l on ℝ (see Theorem 2.7), it fol-

lows that n1(l) ≡ 0 for all l ≤ l0. From this we see that m = 0 in (2.21), and hence

also in (2.20). Equality (2.22) is therefore established. Finally, assume that (2.22) holds

and let lj (where j Î {1,..., r}) be the j-th finite eigenvalue of (E0) with the correspond-

ing finite eigenfunction x(j). Then n2(lj) = j and from (2.22) we get n1(lj) = j, i.e., x(j)

has exactly j generalized zeros in (0, N + 1]. The proof is complete.

In the last part of this section we present certain results on the existence of finite

eigenvalues of (E0). These results are proven in [9, Section 7] under the restriction

that rk(l) ≡ rk is constant in l for every k Î [0, N]ℤ, since the corresponding oscilla-

tion theorem in [9, Theorem 7.2] required that assumption. In the present article

we allow rk(l) in Theorem 2.11 to be dependent on l, so that the results in [9,

Theorems 7.3-7.5] can be directly transferred to the equation (SLl). The proofs of

the three results below are identical to the proofs of [9, Theorems 7.3-7.5] and they

are therefore omitted.

Theorem 2.12 (Existence of finite eigenvalues: necessary condition) Assume (1.1).

If (E0) has a finite eigenvalue, then there exist l0, l1 Î ℝ with l0 < l1 and m Î N∪{0}
such that n1(l) ≡ m for all l ≤ l0 and F0(.,λ1) �> 0 .

Theorem 2.13 (Existence of finite eigenvalues: sufficient condition) Assume (1.1).

If there exist l0, l1 Î ℝ with l0 < l1 such that F0(·, l0) > 0 and F0(.,λ1) �> 0 , then

(E0) has at least one finite eigenvalue.

Theorem 2.14 (Characterization of the smallest finite eigenvalue) Assume (1.1).

Let there exist l0, l1 Î ℝ with l0 < l1 such that F0(·, l0) > 0 and F0(.,λ1) �> 0 . Then

the eigenvalue problem (E0) possesses a smallest finite eigenvalue lmin, which is charac-

terized by any of the conditions:
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λmin = sup{λ ∈ R, F0(.,λ) > 0}, λmin = min{λ ∈ R, F0(.,λ) �> 0}.

Remark 2.15 The differentiability assumption on the coefficients rk(l) and qk(l) can
be weakened without changing the statements in Theorems 2.6, 2.7 and 2.8 as follows.

The functions rk(l) and qk(l) are continuous in l on ℝ and differentiable in l except

possibly at isolated values at which the left-hand and right-hand derivatives of rk(l)
and qk(l) exist finite (i.e., there may be a corner at such points). In this case we replace

the quantities ṙk(λ) and q̇k(λ) by the corresponding one sided limits ṙk(λ−) , ṙk(λ+)

and q̇k(λ−), q̇k(λ+) .

Remark 2.16 The methods of this article allow to study the eigenvalue problem (E0)

when the spectral parameter l is restricted to some compact interval [a, b] only. In

this case, using Remark 2.15, we may extend the coefficient rk(l) by the constant rk(a)

for l Î (-∞, a), and by the constant rk(b) for l Î (b, ∞), and similarly the coefficient

qk(l). After such an extension of rk(l) and qk(l), the finite eigenvalues of (E0) belong

to the interval (a, b] (if there is a finite eigenvalue at all).

Remark 2.17 One of the referees pointed out the article [19], in which the authors

study spectral properties of the Jacobi matrices associated with the eigenvalue problem

(E0) for two Jacobi equations of the form

sk+1xk+2 − tk+1xk+1 + skxk = λxk+1

with sk ≠ 0 in terms of the generalized zeros of a weighted Wronskian of their specific

solutions. As the results in [19] are proven under the linear dependence on l as in

(1.2), it is an interesting topic to extend such results to general nonlinear dependence

on l, i.e., to Jacobi equations

sk+1(λ)xk+2 − tk+1(λ)xk+1 + sk(λ)xk = 0

with sk(l) ≠ 0, compare also with [6] and [9, Example 7.8].

3 Eigenvalue problem with variable endpoints
In this section we consider more general boundary conditions than the Dirichlet end-

points in problem (E0). Our aim is to establish the oscillation theorems for the variable

initial endpoint, i.e., for the boundary conditions

αx0 + βr0(λ)�x0 = 0, xN+1 = 0, (3:1)

where a, b Î ℝ are, without loss of generality, such that a2 + b2 = 1 and a ≥ 0.

Boundary conditions (3.1) contain as a special case the Dirichlet endpoints x0 = 0 = xN

+1 as in the previous section (upon taking a = 1 and b = 0), or the Neumann-Dirichlet

boundary conditions Δx0 = 0 = xN+1 (upon taking a = 0 and b = 1), or other combina-

tions. One possibility to study the eigenvalue problem

(SLλ), λ ∈ R, (3.1) (3:2)

is to transform (3.2) into a problem with the Dirichlet endpoints and apply to this

transformed problem the results from Section 2. This technique has been successfully

used in the literature in this context, see e.g. [10,20,21], and it will be utilized also in

the present article. Define the natural solution x̄(λ) = {x̄k(λ)}N+1
k=0 of equation (SLl)

associated with boundary conditions (3.1) as the solution starting with the initial values
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x̄0(λ) ≡ −β , r0(λ)�x̄0(λ) ≡ α, for all λ ∈ R. (3:3)

Since a and b cannot be simultaneously zero, it follows that x̄(λ) is a nontrivial solu-

tion of (SLl) and satisfies the initial boundary condition in (3.1). And similarly to the

Dirichlet endpoints case in Section 2, in which the natural solution x̄(λ) reduces to

the principal solution x̂(λ) , the finite eigenvalues of (3.2) will be determined by the

behavior of x̄N+1(λ) in l. We say that l0 Î ℝ is a finite eigenvalue of (3.2), if

x̄N+1(λ0) = 0 and x̄N+1(λ) �= 0 in some left neighborhood of l0. As before, denote by

n1(λ) := the number of generalized zeros of x̄(λ) in (0,N + 1], (3:4)

n2(λ) := the number of finite eigenvalues of (3.2) in (−∞,λ]. (3:5)

The following result is an extension of Theorem 2.8 to problem (3.2).

Theorem 3.1 (Global oscillation theorem) Assume that (1.1) is satisfied. Then with

n1(l) and n2(l) defined in (3.4)-(3.5), conditions (2.18) and (2.19) hold for all l Î ℝ,

and there exist m Î [0,N + 1]ℤ and l0 < 0 such that (2.20) and (2.21) are satisfied.

Proof. If b = 0, then a = 1 and the result is contained in Theorem 2.8. Therefore, we

assume further on that b ≠ 0. We extend the interval [0, N + 1]ℤ by the point k = -1

to get an equivalent eigenvalue problem on the interval [-1, N + 1]ℤ with the Dirichlet

endpoints x-1 = 0 = xN+1. This is done as follows. We put

r−1(λ) := −1/β and q−1(λ) := (α − 1)/β for all λ ∈ R,

and consider the extended Sturm-Liouville difference equation

�(rk(λ)�xk) + qk(λ)xk+1 = 0, k ∈ [−1,N − 1]Z. (SLextλ )

Since r-1(l) ≠ 0 and ṙ−1(λ) = q̇−1(λ) = 0 for all l Î ℝ, and since (1.1) is assumed, it

follows that the coefficients rk(l) for k Î [-1, N]ℤ and qk(l) for k Î [-1, N - 1]ℤ of

(SLextλ ) satisfy the main assumptions in Section 1. Consequently, the eigenvalue pro-

blem (3.2) is equivalent to the extended eigenvalue problem

(SLextλ ), λ ∈ R, x−1 = 0 = xN+1. (3:6)

Consider the principal solution x̂ext(λ) of the extended equation (SLextλ ) , which starts

with the initial values x̂ext−1(λ) = 0 and r−1(λ)�x̂ext−1(λ) = 1 , i.e., x̂ext0 (λ) = −β . From

equation (SLextλ ) at k = -1 we then get r0(λ)�x̂ext−1(λ) = α . This shows that the princi-

pal solution x̂ext(λ) of (SLextλ ) coincides on [0, N + 1]ℤ with the natural solution x̄(λ)

of (SLl). Moreover, since the principal solution x̂ext(λ) does not have a generalized

zero in (-1,0], it follows that the number of generalized zeros of x̂ext(λ) in (-1, N + 1]

is the same as the number of generalized zeros of x̄(λ) in (0, N + 1]. This shows that

the definitions of n1(l) in (2.10) and (3.4) coincide, and the definitions of n2(l) in
(2.16) and (3.5) coincide as well. The result then follows from Theorem 2.8 applied to

eigenvalue problem (3.6).

Remark 3.2 Note that the transformation in the proof of Theorem 3.1 is different

from the transformation in [10]. The transition matrices S-1(l) in the above proof and

in [10] have respectively the form
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S−1(λ) =
(

1 −β

(1 − α)/β α

)
, S−1(λ) =

(
α −β

β α

)
.

We can see that the second one does not in general correspond to a Sturm-Liouville

difference equation, while the first one always does, compare with (2.2).

The methods of this article in combination with the result in [9, Theorem 6.1] allow

to study the eigenvalue problems with more general separated boundary conditions

αx0 + βr0(λ)�x0 = 0, γ xN+1 + δrN(λ)�xN = 0, (3:7)

where a, b, g, δ Î ℝ satisfy, without loss of generality,

α2 + β2 = 1, γ 2 + δ2 = 1, α ≥ 0, γ ≥ 0. (3:8)

Boundary conditions (3.7) contain as a special case for example the Neumann-Neu-

mann boundary conditions Δx0 = 0 = ΔxN (upon taking a = g = 0 and b = δ = 1).

The proof is based on the transformation of the final endpoint condition in (3.7) to

the Dirichlet endpoint xN+2 = 0, which was suggested in [10]. This transformation,

however, leads to a symplectic eigenvalue problem as in [9, Section 6], and not to a

Sturm-Liouville eigenvalue problem as in Sections 1 and 2 in this article. Therefore,

the statement of Theorem 3.1 extends–indirectly via [9, Theorem 6.1]–to boundary

conditions (3.7) as follows. Consider the eigenvalue problem

(SLλ), λ ∈ R, (3.7) (3:9)

and define the quantity


(λ) := γ x̄N+1(λ) + δrN(λ)�x̄N(λ), λ ∈ R,

where x̄(λ) is the natural solution of (SLl), i.e., (3.3) holds. We say that l0 Î ℝ is a

finite eigenvalue of the eigenvalue problem (3.9), if Λ(l0) = 0 and Λ(l) ≠ 0 in some left

neighborhood of l0. Note that for boundary conditions (3.1) we have 
(λ) = x̂N+1(λ),

and for Dirichlet endpoints we have 
(λ) = x̂N+1(λ), so that the above definition of

finite eigenvalues of (3.9) agrees with the corresponding definitions for problems (3.2)

and (E0). Note that similarly to (2.17) the difference

n2(λ) − n2(λ−) = h(λ−) − h(λ), where h(λ) := rank
(λ), (3:10)

indicates a finite eigenvalue of problem (3.9). Denote by

n2(λ) := the number of finite eigenvalues of (3.9) in (−∞,λ], (3:11)

s(λ) :=
{
1, when δ �= 0, x̄N+1(λ) �= 0, and δx̄N+1(λ)
(λ) ≤ 0,
0, otherwise.

(3:12)

The following result is an extension of Theorem 3.1 to problem (3.9).

Theorem 3.3 (Global oscillation theorem) Assume (1.1) and (3.8) are satisfied.

Then with n1(l), n2(l), s(l) defined in (3.4), (3.11), (3.12) conditions (2.18) and

n2(λ+) − n2(λ−) = n1(λ+) − n1(λ−) + s(λ+) − s(λ−) ∈ {0, 1} (3:13)
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hold for all l Î ℝ, and there exist m Î [0, N + 2]ℤ and l0 < 0 such that

n1(λ) + s(λ) = n2(λ) +m for all λ ∈ R, (3:14)

n2(λ) ≡ 0 and n1(λ) + s(λ) ≡ m for all λ ≤ λ0. (3:15)

Proof. We define for all l Î ℝ

SN+1(λ) :=
(
aN+1(λ) bN+1(λ)
cN+1(λ) dN+1(λ)

)
≡

(
γ δ

−δ γ

)
. (3:16)

Then the matrix SN+1(l) is symplectic and independent of l. We extend the natural

solution x̄(λ) to k = N + 2 by setting

x̄N+2(λ) := 
(λ), ūN+2(λ) := −δx̄N+1(λ) + γ ūN+1(λ), (3:17)

where ūN+1(λ) = ūN(λ) = rN(λ)�x̄N(λ) , see Remark 2.1. Then (3.17) is the unique

extension of x̄(λ) to k = N + 2, given the coefficient matrix SN + 1(l) in (3.16). It fol-

lows that l0 Î ℝ is a finite eigenvalue of problem (3.9) if and only if it is a finite eigen-

value of the extended symplectic eigenvalue problem

(Sλ), λ ∈ R, αx0 + βu0 = 0, xN+2 = 0,

where (Sl) is the discrete symplectic system zk+1 = Sk(l)zk for k Î [0, N + 1]ℤ corre-

sponding to (SLl) and (3.17), i.e., the matrix Sk(l) is defined by (2.2) for all k Î [0,N]ℤ
and SN + 1(l) is given by (3.16). Let mk(l) for k Î [0, N + 1]ℤ denote the number of

focal points of (x̄(λ), ū(λ)) in (k, k + 1] according to [15, Definition 1], see also [9,

Equation (3.9)]. Then, by (2.2) and (1.3), the number mk(l) indicates a generalized zero

in (k, k + 1] when k Î [0, N]ℤ. Hence, by Theorem 2.6, Equations (2.8) and (2.9) hold

for every k Î [0, N]ℤ. Moreover, since the coefficient bN+1(l) ≡ δ is constant in l, it
follows by [9, Theorem 6.1] that Equations (2.8) and (2.9) hold also for k = N + 2,

where

hN+2(λ) := rank x̄N+2(λ) = rank
(λ) = h(λ).

Upon analyzing [15, Definition 1], it is not difficult to see that mN+1(l) Î {0, 1} and

that it is nonzero only when the three conditions δ ≠ 0 and x̄N+1(λ) �= 0 and

δx̄N+1(λ)
(λ) ≤ 0 are simultaneously satisfied. That is, we have mN + 1(l) = s(l). By
telescope summation for k Î [0, N + 1]ℤ, we then obtain as in the proof of Theorem

2.7 the formulas

n1(λ+) + s(λ+) = n1(λ) + s(λ), (3:18)

n1(λ+) + s(λ+) − n1(λ−) − s(λ−) = h(λ−) − h(λ). (3:19)

Combining (3.19) with (3.10) now yields the statement in (3.13). Since by (3.18) and

(3.13) the function n1(l) + s(l) is right continuous and nondecreasing in l on ℝ with

values in [0,N + 2]ℤ, it follows that its limit m at -∞ exists with m Î [0, N + 2]ℤ and

n1(l) + s(l) ≡ m for all l ≤ l0 for a suitable l0 < 0. Moreover, from (3.13) we know

that the jumps in n2(l) and n1(l) + s(l) are always the same, which yields that identity

(3.14) holds. This in turn implies that n2(l) ≡ 0 for all l ≤ l0. The proof is complete.
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4 Examples
In this section we analyze one illustrative example with the finite eigenvalues and the

finite eigenfunctions for problem (E0). We shall utilize Remark 2.15 in our examples

below.

We consider the interval [0,4]ℤ, i.e., we take N = 3. With the parameter a Î (0,2),

which will be specified later, we define the coefficients rk(l) and qk(l) as follows:

qk(λ) :=

⎧⎨
⎩
a, for λ ∈ (−∞, a),
λ, for λ ∈ [a, 2],
2, for λ ∈ (2,∞),

rk(λ) :=
1

qk(λ)
.

Then, with respect to Remark 2.15, the main assumptions in (1.1) are satisfied, since

ṙk(λ) = q̇k(λ) = 0 for l Î (-∞, a) ∪ (2, ∞) and ṙk(λ) = −1/λ2 and q̇k(λ) = 1 for l Î

(a, 2). Equation (SLl) has therefore the form

�2xk + a2xk+1 = 0, �2xk + λ2xk+1 = 0, �2xk + 4xk+1 = 0 (4:1)

for k Î [0,2]ℤ depending on whether l < a, l Î [a, 2], or l > 2. Let us find the princi-

pal solution x̂(λ) = {x̂k(λ)}4k=0 of the middle equation in (4.1). The initial conditions

x̂0(λ) = 0 and r0(λ)�x̂0(λ) = 1 imply that for l Î [a, 2]

x̂0(λ) = 0, x̂2(λ) = λ(2 − λ2),
x̂1(λ) = λ, x̂3(λ) = λ[(2 − λ2)2 − 1],

x̂4(λ) = w(λ),

⎫⎬
⎭

where the function w(l) is defined by

w(λ) := λ(2 − λ2)[(2 − λ2)2 − 2], λ ∈ R. (4:2)

Now we can easily calculate the critical value x̂4(λ) of the principal solution x̄(λ) of

(SLl) for every l Î ℝ as

x̂4(λ) =

⎧⎨
⎩
w(a), for λ ∈ (−∞, a),
w(λ), for λ ∈ [a, 2],
w(2), for λ ∈ (2,∞).

(4:3)

The candidates for the finite eigenvalues are the zeros of the function x̂4(λ) in (4.3).

First of all, the zeros of w(l) are 0, ±√
2, ±

√
2 − √

2 , and ±
√
2 +

√
2 , see the graph

of w(l) in Figure 1 below.

Since a > 0, the nonpositive zeros of w(l) are disregarded, which yields the three

candidates

z1 :=
√
2 −

√
2 ≈ 0.77, z2 :=

√
2 ≈ 1.41, z3 :=

√
2 +

√
2 ≈ 1.85

for the finite eigenvalues of (E0). The final disposition of the finite eigenvalues will now

depend on the particular value of the parameter a Î (0, 2). We specify several choices

of a in the examples below. For the finite eigenfunction x(λ) = {xk(λ)}4k=0 we shall use

the notation

x(λ) = {x0(λ), x1(λ), x2(λ), x3(λ), x4(λ)}.
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Example 4.1 Let a Î (0, z1). The critical value x̂4(λ) of the principal solution x̄(λ)

of (SLl) is of the form displayed in Figure 2 (shown for a = 0.15). In this case, there

are three finite eigenvalues l1 = z1, l2 = z2, and l3 = z3 with the finite eigenfunctions

x̂(1) = {0, z1, z1z2, z1, 0}, x̂(2) = {0, z2, 0, −z2, 0},
x̂(3) = {0, z3, −z2z3, z3, 0}.

The finite eigenfunction x(1) has one generalized zero in (0, 4], namely in (3, 4], x(2) has

two generalized zeros in (0,4], namely in (1, 2] and (3, 4], and x(3) has three generalized

zeros in (0,4], namely in (1,2], (2,3], and (3,4]. This shows that equality (2.20) in Theo-

rem 2.8 holds with the number m = 0.

Example 4.2 Let a = z1 =
√
2 − √

2. Then x̂4(λ) has the form

x̂4(λ) =

⎧⎨
⎩
0, for λ ∈ (−∞, z1),
w(λ), for λ ∈ [z1, 2],
−8, for λ ∈ (2,∞),

(4:4)

see Figure 3. In this case there are only two finite eigenvalues l1 = z2 and l2 = z3 with

the finite

y

2

0

-2

-4

-6

l

-8

210-1-2

Figure 1 The graph of w(l) from (4.2).
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Figure 2 The graph of x̂4(λ) for a = 0.15.
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Figure 3 The graph of x̂4(λ) from (4.4).
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eigenfunctions

x̂(1) = {0, z2, 0,−z2, 0}, x̂(2) = {0, z3,−z2z3, z3, 0}.

Note that λ = z1 =
√
2 − √

2 is not now a finite eigenvalue of (E0), since the function

x̂4(λ) in Figure 3 is identically zero in the left neighborhood of z1. The finite eigen-

function x(1) has two generalized zeros in (0,4] and x(2) has three generalized zeros in

(0,4]. Therefore, equality (2.20) in Theorem 2.8 is satisfied with the number m = 1.

Example 4.3 Let a Î (z1, z2). This situation is similar to Example 4.2. In this case,

x̂4(λ) has the form shown in Figure 4, there are two finite eigenvalues l1 = z2 and l2
= z3, and equality (2.20) in Theorem 2.8 holds with m = 1.

Example 4.4 Let a = z2 =
√
2 . Then x̂4(λ) has the form (4.4) in which z1 is replaced

by z2, see Figure 5. In this case, there is only one finite eigenvalue l1 = z3 with the

finite eigenfunction

x̂(1) = {0, z3,−z2z3, z3, 0}.

Again, λ = z2 =
√
2 is not a finite eigenvalue of (E0), since the function x̂4(λ) in Figure 5

is identically zero in the left neighborhood of z2. The finite eigenfunction x(1) has three

generalized zeros in (0,4] and equality (2.20) in Theorem 2.8 holds with m = 2.

0

-2

-4

-6

-8

3210-1

2

Figure 4 The graph of x̂4(λ) for a = 1.
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Example 4.5 Similar analysis as in Examples 4.1-4.4 reveals the fact that for a Î (z2, z3)

equality (2.20) is satisfied with m = 2 as in Example 4.4. For a Î [z3,2) equality (2.20)

holds with m = 3, as in this case there are no finite eigenvalues of (E0) at all.
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