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1 Introduction
In this paper, we study a nonlocal nonlinear boundary value problem (BVP) of third-

order q-difference equations given by{
D3

qu(t) = f (t, u(t)), t ∈ Iq,
u(0) = 0, Dqu(0) = 0, u(1) = αu(η),

(1:1)

where f Î C(Iq × ℝ,ℝ), Iq = {qn : n Î N} ∪ {0,1}, q Î (0,1) is a fixed constant, h Î {qn

: n Î N} and a ≠ 1/h2 is a real number.

The subject of q-difference equations has evolved into a multidisciplinary subject in

the last few decades. In fact, it is a truly operational subject and its operational formu-

las were often used with great success in the theory of classical orthogonal polynomials

and Bessel functions [1,2]. For some pioneer work on q-difference equations, we refer

the reader to [1,3-5], whereas the recent development of the subject can be found in

[6-17] and references therein. However, the theory of boundary value problems for

nonlinear q-difference equations is still in the initial stages and many aspects of this

theory need to be explored. In particular, the study of nonlocal boundary value pro-

blems for nonlinear q-difference equations is yet to be initiated.

The aim of our paper is to present some existence results for the problem (1.1). The

first result relies on the nonlinear alternative of Leray-Schauder type. In the second

result, we apply Banach’s contraction principle to prove the uniqueness of the solution

of the problem, while the third result is based on Krasnoselskii’s fixed point theorem.

The methods used are standard; however, their exposition in the framework of pro-

blem (1.1) is new. In Sect. 2, we present some basic material that we need in the

sequel and Sect. 3 contains main results of the paper. Some illustrative examples are

also discussed.
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2 Preliminaries
Let us recall some basic concepts of q-calculus [8,9].

For 0 <q < 1, we define the q-derivative of a real-valued function f as

Dqf (t) =
f (t) − f (qt)
(1 − q)t

, t ∈ Iq − {0}, Dqf (0) = lim
t→0

Dqf (t).

Note that

lim
q→1−

Dqf (t) = f ′(t).

The higher order q-derivatives are defined inductively as

D0
q f (t) = f (t), Dn

qf (t) = DqD
n−1
q f (t), n ∈ N.

For example, Dq(tk) = [k]qtk−1 , where k is a positive integer and the q-bracket [k]q =

(qk - 1)/(q - 1). In particular, Dq(t
2) = (1 + q)t.

For y ≥ 0, let us set Jy = {yqn : n ∈ N ∪ {0}} ∪ {0} and define the definite q-integral

of a function f : Jy → R by

Iqf (y) =

y∫
0

f (s)dqs =
∞∑
n=0

y(1 − q)qnf (yqn)

provided that the series converges. For

b1, b2 ∈ Jy(b1 = yqn1 , b2 = yqn2 for some n1,n2 ∈ N) , we define

b2∫
b1

f (s)dqs = Iqf (b2) − Iqf (b1) = (1 − q)
∞∑
n=0

qn[b2f (b2qn) − b1f (b1qn)].

Similarly, we have

I0q f (t) = f (t), Inq f (t) = IqI
n−1
q f (t), n ∈ N.

Observe that

DqIqf (x) = f (x), (2:1)

and if f is continuous at x = 0, then

IqDqf (x) = f (x) − f (0).

This implies that if Dqf(t) = s(t), then f(t) = Iqs(t) + c, where c is an arbitrary

constant.

In q-calculus, the product rule and integration by parts formula are

Dq(gh)(t) = Dqg(t)h(t) + g(qt)Dqh(t), (2:2)

x∫
0

f (t)Dqg(t)dqt =
[
f (t)g(t)

]x
0 −

x∫
0

Dqf (t)g(qt)dqt. (2:3)

Ahmad and Nieto Advances in Difference Equations 2012, 2012:81
http://www.advancesindifferenceequations.com/content/2012/1/81

Page 2 of 10



In the limit q ® 1-, the above results correspond to their counterparts in standard

calculus.

For f , g : Jy → R , it is possible to introduce an inner product

〈f , g〉 =
1∫

0

f (t)g(t)dqt

and the resulting Hilbert space is denoted by L2q(0, 1) .

As argued in [16], we can write the solution of the third-order q-difference equation

D3
qu(t) = v(t) in the following form:

u(t) =

t∫
0

(
α1(q)t2 + α2(q)ts + α3(q)s2

)
v(s)dqs + a0 + a1t + a2t

2, (2:4)

where a0, a1, a2 are arbitrary constants and a1(q), a2(q), a3(q) can be fixed

appropriately.

Choosing a1(q) = 1/(1 + q), a2(q) = -q, a3(q) = q3/(1 + q) and using (2.1) and (2.2),

we find that

Dqu(t) =

t∫
0

tv(s)dqs −
t∫

0

qsv(s)dqs, D2
qu(t) =

t∫
0

v(s)dqs,D3
qu(t) = v(t).

Thus, the solution (2.4) of D3
qu(t) = v(t) takes the form

u(t) =

t∫
0

(
t2 + q3s2

1 + q
− qts

)
v(s)dqs + a0 + a1t + a2t

2. (2:5)

Lemma 2.1 The BVP (1.1) is equivalent to the integral equation

u(t) =

t∫
0

(
t2 + q3s2

1 + q
− qts

)
f (s, u(s))dqs +

t2
1 − αη2

×
⎡
⎣α

η∫
0

(
η2 + q3s2

1 + q
− qηs

)
f (s, u(s))dqs −

1∫
0

(
1 + q3s2

1 + q
− qs

)
f (s, u(s))dqs

⎤
⎦ .

(2:6)

Proof. In view of (2.5), the solution of D3
qu = f (t, u) can be written as

u(t) =

t∫
0

(
t2 + q3s2

1 + q
− qts

)
f (s, u(s))dqs + a0 + a1t + a2t

2, (2:7)

where a1, a2, a2 are arbitrary constants. Using the boundary conditions of (1.1) in

(2.7), we find that a0 = 0, a1 = 0 and

a2 =
1

1 − αη2

⎡
⎣α

η∫
0

(
η2 + q3s2

1 + q
− qηs

)
f (s, u(s))dqs −

1∫
0

(
1 + q3s2

1 + q
− qs

)
f (s, u(s))dqs

⎤
⎦ .
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Substituting the values of a0, a1 and a2 in (2.7), we obtain (2.6). This completes the

proof.

We define

G1 = maxt∈Iq

∥∥∥∥∥∥
t∫

0

(t − s)2

2
dqs +

t2

1 − αη2

⎡
⎣α

η∫
0

(η − s)2

2
dqs −

1∫
0

(1 − s)2

2
dqs

⎤
⎦

∣∣∣∣∣∣
= max

{
|γ | (1 + q)q2

(1 + q + q2)4
,

|α| η2(1 − η)∣∣1 − αη2
∣∣ (1 + q)(1 + q + q2)

}
,

(2:8)

where

γ = η +
1 − η

1 − αη2
.

Remark 2.1 For q ® 1-, equation (2.6) takes the form

u(t) =

t∫
0

(t − s)2

2
f (s, u(s))ds +

t2

1 − αη2

⎡
⎣α

η∫
0

(η − s)2

2
f (s, u(s))ds

−
1∫

0

(1 − s)2

2
f (s, u(s))ds

⎤
⎦ .

which is equivalent to the solution of a classical third-order nonlocal boundary value

problem

u′′′(t) = f (t, u(t)), u(0) = 0, u′(0) = 0, u(1) = αu(η), 0 ≤ t ≤ 1, 0 < η < 1. (2:9)

3 Existence results

Let Cq = C(Iq,R) denote the Banach space of all continuous functions from Iq ® ℝ

endowed with the norm defined by ∥x∥ = sup{|x(t)| : t Î Iq}.

Theorem 3.1 Assume that there exist constants M1 ≥ 0 and M2 > 0 such that M1G1

< 1 and |f(t, u)| ≤ M1|u| + M2 for all t Î Iq, u Î ℝ, where G1 is given by (2.8). Then

the problem (1.1) has at least one solution.

Proof. Let BR ⊂ Cq be a suitable ball with radius R > 0. Define an operator

� : B̄R − Cq as

[�u](t) =

t∫
0

(
t2 + q3s2

1 + q
− qts

)
f (s, u(s))dqs

+
t2

1 − αη2

⎡
⎣α

η∫
0

(
η2 + q3s2

1 + q
− qη2

)
f (s, u(s)) dqs

−
1∫

0

(
1 + q3s2

1 + q
− qs

)
f (s, u(s))dqs

⎤
⎦ .

In view of Lemma 2.1, we just need to prove the existence of at least one solution

u ∈ Cq such that u = �u . Thus, it is sufficient to show that the operator � satisfies
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u �= λ�u, ∀u ∈ ∂BR and ∀λ ∈ [0, 1]. (3:1)

Let us define

H(λ, y) = λ�u, u ∈ Cq, λ ∈ [0, 1].

Then, by Arzela-Ascoli theorem, hλ(u) = u − H(λ, u) = u − λ�u is completely con-

tinuous. If (3.1) is true, then the following Leray-Schauder degrees are well defined and

by the homotopy invariance of topological degree, it follows that

deg(hλ,BR, 0) = deg(I − λ�,BR, 0) = deg(h1,BR, 0)

= deg(h0,BR, 0) = deg(I,BR, 0) = 1 �= 0, 0 ∈ BR,

where I denotes the unit operator. By the nonzero property of Leray-Schauder

degree, h1(t) = u − λ�u = 0 for at least one u Î BR. Let us set

BR =
{
u ∈ Cq : ‖u‖ < R

}
,

where R will be fixed later. In order to prove (3.1), we assume that u = λ�u for

some l Î [0,1] and for all t Î Iq so that

∣∣u(t)∣∣ = ∣∣λ[�u](t)
∣∣ ≤

∣∣∣∣∣∣
t∫

0

(
t2 + q3s2

1 + q
− qts

)
f (s, u(s))dqs

+
t2

1 − αη2

⎡
⎣α

η∫
0

(
η2 + q3s2

1 + q
− qηs

)
f (s, u(s)) dqs

−
1∫

0

(
1 + q3s2

1 + q
− qs

)
f (s, u(s))dqs

⎤
⎦

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
t∫

0

(
t2 + q3s2

1 + q
− qts

) (
M1

∣∣u(s)∣∣ +M2
)
dqs

+
t2

1 − αη2

⎡
⎣α

η∫
0

(
η2 + q3s2

1 + q
− qηs

) (
M1

∣∣u(s)∣∣ +M2
)
dqs

−
1∫

0

(
1 + q3s2

1 + q
− qs

) (
M1

∣∣u(s)∣∣ +M2
)
dqs

⎤
⎦

∣∣∣∣∣∣
≤ (M1 ‖u‖ +M2)max

t∈Iq

∣∣∣∣∣∣
t∫

0

(
t2 + q3s2

1 + q
− qts

)
dqs

+
t2

1 − αη2

⎡
⎣α

η∫
0

(
η2 + q3s2

1 + q
− qηs

)
dqs −

1∫
0

(
1 + q3s2

1 + q
− qs

)
dqs

⎤
⎦

∣∣∣∣∣∣
≤ (M1 ‖u‖ +M2)G1,

which implies that

‖u‖ ≤ M2G1

1 − M1G1
.
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Letting R =
M2G1

1 − M1G1
+ 1 , (3.1) holds. This completes the proof.

Theorem 3.2 Let f : Iq × ℝ ® ℝ be a jointly continuous function satisfying the

Lipschitz condition∣∣f (t, u) − f (t, v)
∣∣ ≤ L |u − v| , ∀t ∈ Iq, u, v ∈ R,

where L is a Lipschitz constant. Then the boundary value problem (1.1) has a unique

solution provided L < 1/G1, where G1 is given by (2.8).

Proof. Let us define an operator � : Cq → Cq by

[�u](t) =

t∫
0

(
t2 + q3s2

1 + q
− qts

)
f (s, u(s))dqs

+
t2

1 − αη2

⎡
⎣α

η∫
0

(
η2 + q3s2

1 + q
− qηs

)
f (s, u(s))dqs

−
1∫

0

(
1 + q3s2

1 + q
− qs

)
f (s, u(s))dqs

⎤
⎦ .

Let us set maxt∈Iq
∣∣f (t, 0)∣∣ = M and choose

r ≥ MG1

1 − LG1
(3:2)

Then we show that �Br ⊂ Br , where Br = {u ∈ Cq : ‖u‖ ≤ r} . For u Î Br, we have

‖�u‖ = maxt∈Iq

∣∣∣∣∣∣
t∫

0

(
t2 + q3s2

1 + q
− qts

)
f (s, u(s))dqs

+
t2

1 − αη2

⎡
⎣α

η∫
0

(
η2 + q3s2

1 + q
− qηs

)
f (s, u(s))dqs

−
1∫

0

(
1 + q3s2

1 + q
− qs

)
f (s, u(s))dqs

⎤
⎦

∣∣∣∣∣∣
= maxt∈Iq

∣∣∣∣∣∣
t∫

0

(
t2 + q3s2

1 + q
− qts

)
[(f (s, u(s)) − f (s, 0)) + f (s, 0)]dqs

+
t2

1 − αη2

⎡
⎣α

η∫
0

(
η2 + q3s2

1 + q
− qηs

)
[(f (s, u(s)) − f (s, 0)) + f (s, 0)]dqs

−
1∫

0

(
1 + q3s2

1 + q
− qs

)
[(f (s, u(s)) − f (s, 0)) + f (s, 0)]dqs

⎤
⎦

∣∣∣∣∣∣
≤ (L ‖u‖ + M|)maxt∈Iq

∣∣∣∣∣∣
t∫

0

(
t2 + q3s2

1 + q
− qts

)
dqs

+
t2

1 − αη2

⎡
⎣α

η∫
0

(
η2 + q3s2

1 + q
− qηs

)
dqs −

1∫
0

(
1 + q3s2

1 + q
− qs

)
dqs

⎤
⎦

∣∣∣∣∣∣
≤ G1(Lr +M) ≤ r.
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where we have used (3.2).

Now, for u, v Î ℝ, we obtain

‖�u − �v‖
= maxt∈Iq

∣∣[�u](t) − [�v](t)
∣∣

≤ maxt∈Iq

∣∣∣∣∣∣
t∫

0

(
t2 + q3s2

1 + q
− qts

)
f (s, u(s))dqs

+
t2

1 − αη2

⎡
⎣α

η∫
0

(
η2 + q3s2

1 + q
− qηs

)
f (s, u(s))dqs

−
1∫

0

(
1 + q3s2

1 + q
− qs

)
f (s, u(s))dqs

⎤
⎦

∣∣∣∣∣∣
≤ L maxt∈Iq

∣∣∣∣∣∣
t∫

0

(
t2 + q3s2

1 + q
− qts

)
dqs

+
t2

1 − αη2

⎡
⎣α

η∫
0

(
η2 + q3s2

1 + q
− qηs

)
dqs −

1∫
0

(
1 + q3s2

1 + q
− qs

)
dqs

⎤
⎦

∣∣∣∣∣∣ ‖u − v‖

≤ LG1 ‖u − v‖ .
As L < 1/G1, therefore � is a contraction. Thus, the conclusion of the theorem fol-

lows by Banach’s contraction mapping principle. This completes the proof.

To prove the next existence result, we need the following known fixed point theorem

due to Krasnoselskii [18].

Theorem 3.3 Let M be a closed convex and nonempty subset of a Banach space X.

Let A, B be the operators such that (i) Ax + By ∈ M whenever x, y ∈ M ; (ii) A is com-

pact and continuous; (iii) B is a contraction mapping. Then there exists z ∈ M such

that z = Az + Bz.

Theorem 3.4 Assume that f : Iq × ℝ ® ℝ is a continuous function such that∣∣f (t, u) − f (t, v)
∣∣ ≤ L |u − v| , ∀t ∈ Iq, u, v ∈ R. (3:3)

Furthermore, |f(t, u)| ≤ μ(t), ∀(t, u) Î Iq × ℝ, with μ Î C(Iq, ℝ
+). Then the boundary

value problem (1.1) has at least one solution on Iq if∣∣1 − αη3
∣∣∣∣1 − αη2

∣∣ (1 + q)(1 + q + q2)
< 1. (3:4)

Proof. Letting supt∈Iq
∣∣μ(t)∣∣ = ‖μ‖ , we fix r̄ ≥ ‖μ‖G1 (G1 is given by (2.8) and con-

sider Br̄ = {u ∈ R : ‖u‖ ≤ r̄}. We define the operators P1 and P2 on Br̄ as

[P1u](t) =

t∫
0

(
t2 + q3s2

1 + q
− qts

)
f (s, u(s))dqs,

[P2u](t) =
t2

1 − αη2

⎡
⎣α

η∫
0

(
η2 + q3s2

1 + q
− qηs

)
f (s, u(s))dqs

−
1∫

0

(
1 + q3s2

1 + q
− qs

)
f (s, u(s))dqs

⎤
⎦ .
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For u, v ∈ Br̄ , we find that

‖P1u + P2v‖

≤ ‖μ‖maxt∈I

∣∣∣∣∣∣
t∫

0

(
t2 + q3s2

1 + q
+ qts

)
dqs

+
t2

1 − αη2

⎡
⎣α

η∫
0

(
η2 + q3s2

1 + q
− qηs

)
dqs −

1∫
0

(
1 + q3s2

1 + q
− qs

)
dqs

⎤
⎦

∣∣∣∣∣∣
= ‖μ‖G1 ≤ r̄.

Thus, P1u + P2v ∈ Br̄ . It follows from (3.3) and (3.4) that P2 is a contraction map-

ping. Continuity of f implies that the operator P1 is continuous. Also, P1 is uniformly

bounded on Br̄ as

‖P1u‖ ≤ 1
(1 + q)(1 + q + q2)

.

Now we prove the compactness of the operator P1 .

In view of (H1), we define sup(t,u)∈Iq×Br

∣∣f (t, u)∣∣ = f̄ , and consequently we have

∣∣[P1u](t1) − [P1u](t2)
∣∣

=

∣∣∣∣∣∣
t1∫

0

(
t21 + q3s2

1 + q
− qt1s

)
f (s, u(s))dqs −

t2∫
0

(
t22 + q3s2

1 + q
− qt2s

)
f (s, u(s))dqs

+
(t21 + t22)
1 − αη2

⎡
⎣α

η∫
0

(
η2 + q3s2

1 + q
− qη2

)
f (s, u(s))dqs −

1∫
0

(
1 + q3s2

1 + q
− qs

)
f (s, u(s))dqs

⎤
⎦

∣∣∣∣∣∣
≤ f̄

∣∣∣∣∣∣
t1∫

0

(t1 − t2)[t1 + t2 − q(1 + q)s]
1 + q

dqs −
t2∫

t1

(
t22 + q3s2

1 + q
− qt2s

)
dqs

+
(t21 − t22)
1 − αη2

⎡
⎣α

η∫
0

(
η2 + q3s2

1 + q
− qηs

)
dqs −

1∫
0

(
1 + q3s2

1 + q
− qs

)
dqs

⎤
⎦

∣∣∣∣∣∣ ,

which is independent of u and tends to zero as t2 ® t1. So P1 is relatively compact

on Br̄ . Hence, by the Arzelá-Ascoli Theorem, P1 is compact on Br̄ . Thus all the

assump tions of Theorem 3.3 are satisfied. So the conclusion of Theorem 3.3 implies

that (1.1) has at least one solution on Iq. This completes the proof.

Remark 3.1 In the limit q ® 1-, our results reduce to the ones for a classical third-

order nonlocal nonlinear boundary value problem (2.9).

Example 3.1. Consider the following problem⎧⎨
⎩
D3

1
2

u(t) = M1
(2π) sin(2πu) + |u|

1+|u| + t2, t ∈ [0, 1]1/2,

u(0) = 0, D1
2
u(0) = 0, u(1) = 2u(1/2).

(3:5)

Here q = 1/2 and M1 will be fixed later. Observe that

∣∣f (t, u)∣∣ = ∣∣∣∣ M1

(2π)
sin(2πu) +

|u|
1 + |u| + t2

∣∣∣∣ ≤ M1 |u| + 2,
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and

G1 = max

{
|γ | (1 + q)q2

(1 + q + q2)4
,

|α| η2(1 − η)∣∣1 − αη2
∣∣ (1 + q)(1 + q + q2)

}

=
|α| η2(1 − η)∣∣1 − αη2
∣∣ (1 + q)(1 + q + q2)

= 4/21.

Clearly M2 = 2 and we can choose M1 <
1
G1

= 21/4 . Thus, Theorem 3.1 applies to

the problem (3.5).

Example 3.2. Consider the following problem with unbounded nonlinearity⎧⎨
⎩
D3

1
2

u(t) = 5u + cosu + (u2/(1 + u2)), t ∈ [0, 1]1/2,

u(0) = 0, D1
2
u(0) = 0, u(1) = 2u(1/2).

(3:6)

Clearly∣∣f (t, u)∣∣ = ∣∣5u + cosu + (u2/(1 + u2))
∣∣ ≤ 5 |u| + 2,

with M1 = 5 < 1/G1 = 21/4 (G1 is given in Example 3.1) and M2 = 2. Thus, by the

conclusion of Theorem 3.1, the problem (3.6) has a solution.

Example 3.3. Consider⎧⎨
⎩
D3

3
4

u(t) = L
(
cos t + tan−1u

)
, t ∈ [0, 1]3/4,

u(0) = 0, D3
4
u(0) = 0, u(1) = u(1/4).

(3:7)

With f(t, u) = L (cos t + tan-1 u), we find that∣∣f (t, u) − f (t, v)
∣∣ ≤ L

∣∣tan−1u − tan−1v
∣∣ ≤ L |u − v|

and

G1 = max

{
|γ | (1 + q)q2

(1 + q + q2)4
,

|α| η2(1 − η)∣∣1 − αη2
∣∣ (1 + q)(1 + q + q2)

}

=
|γ | (1 + q)q2

(1 + q + q2)4
=

86704128
2398926080

.

Fixing L <
1
G1

≈ 27.668 , it follows by Theorem 3.2 that the problem (3.7) has a

unique solution.
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