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Abstract

Some new criteria for the oscillation of nth order nonlinear dynamic equations of the
form

x�n
(t) + q (t)

(
xσ (ξ (t))

)λ = 0

are established in delay ξ(t) ≤ t and non-delay ξ(t) = t cases, where n ≥ 2 is a
positive integer, l is the ratio of positive odd integers. Many of the results are new
for the corresponding higher order difference equations and differential equations
are as special cases.
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1. Introduction
Consider the nth order nonlinear delay dynamic equation

x�n
(t) + q (t)

(
xσ (ξ (t))

)λ = 0 (1:1)

on an arbitrary time-scale T ⊆ R with sup T = ∞ and 0 ∈ T , where n ≥ 2 is a posi-

tive integer, l is the ratio of positive odd integers, q : T → R+ = (0,∞) and

ξ : T → T are real-valued rd-continuous functions, ξ(t) ≤ t, ξΔ(t) ≥ 0, and limt®∞ξ(t) =

∞. Throughout the article by t ≥ s for t, s ∈ T we shall mean t ∈ [s,∞) ∩ T := [s,∞)T .

For the forward jump operator s, we use the usual notation xs = x ○ s.
We recall that a solution x of Equation (1.1) is said to be nonoscillatory if there

exists a t0 ∈ T such that x(t)x(s(t)) > 0 for all t ≥ t0; otherwise, it is said to be oscilla-

tory. Equation (1.1) is said to be oscillatory if all its solutions are oscillatory.

Recently, there has been an increasing interest in studying the oscillatory behavior of

first-and second-order dynamic equations on time-scales, see [1-7]. However, there are

very few results regarding the oscillation of higher order equations. Therefore, the pur-

pose of this article is to obtain new criteria for the oscillation of Equation (1.1). This

topic is fairly new for dynamic equations on time scales. For a general background on

time scale calculus, we may refer to [8,9].

The article is organized as follows: In Section 2, some preliminary lemmas and nota-

tions are given, while Section 3 is devoted to the study of Equation (1.1) via compari-

son with a set of second-order dynamic equations whose oscillatory character is
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known and have been investigated extensively in the literature. In Section 4, we estab-

lish new oscillation criteria for Equation (1.1) when ξ(t) = t for linear, sublinear, and

superlinear cases. Further results are presented in Section 5 when there is a special

restriction on the function q. We should note that many of our results of this article

are new for the corresponding higher order nonlinear differential and difference equa-

tions. In fact, the obtained results extend, unify and correlate many of the existing

results in the literature.

2. Preliminaries
We shall employ the following lemmas. The first lemma is the well-known Kiguradze’s

lemma.

Lemma 2.1. Let x ∈ Cm
rd ([t0,∞) ,R+) . If x�m

(t) is of constant sign on [t0,∞)Tand

not identically zero on [t1,∞)T for any t1 ≥ t0, then there exist a tx ≥ t0 and an integer

ℓ, 0 ≤ ℓ ≤ m with m + ℓ even for x�m
(t) ≥ 0 , or m + ℓ odd for x�m

(t) ≤ 0 such that

� > 0 implies x�k
(t) > 0 for t ≥ tx, k ∈ {1, 2, . . . , � − 1} (2:1)

and

� ≤ m − 1 implies (−1)�+kx�k
(t) > 0 for t ≥ tx, k ∈ {�, � + 1, . . . ,m − 1} . (2:2)

Lemma 2.2. If the inequality

x�� +Q (t) xλ ≤ 0, (2:3)

where Q is a positive real-valued, rd-continuous function on T , has an eventually

positive solution, then the equation

x�� +Q (t) xλ = 0 (2:4)

also has an eventually positive solution.

Proof. Let x(t) be an eventually positive solution of inequality (2.3). It is easy to see

that xΔ(t) > 0 eventually. Let t0 be sufficiently large so that x(t) > 0 and y(t) =: xΔ(t) >

0 for t ∈ [t0,∞)T. Then in view of

x (t) = x (t0) +

t∫
t0

y (s) �s,

(2.3) becomes

y� (t) +Q (t)

⎛
⎝x (t0) +

t∫
t0

y (s) �s

⎞
⎠

λ

≤ 0, t ∈ [t0,∞)T. (2:5)

Integrating (2.5) from t to u ≥ t ≥ t0 and letting u ® ∞, we have

y (t) ≥ F
(
t, y (t)

)
, t ∈ [t0,∞)T,
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where

F
(
t, y
)
:=

∞∫
t

Q (v)

⎛
⎝x (t0) +

v∫
t0

y (s) �s

⎞
⎠

λ

�v.

Next, we define a sequence of successive approximations {zj (t)} as follows:

z0 (t) = y (t)

zj+1 (t) = F
(
t, zj (t)

)
, j = 0, 1, 2, . . . .

It is easy to show that

0 < zj (t) ≤ y (t) and zj+1 (t) ≤ zj (t) , j = 0, 1, 2, . . . .

Thus the sequence {zj(t)} is nonincreasing and bounded for each t ≥ t0. This means

we may define z(t) = limj®∞zj(t) ≥ 0. Since 0 ≤ z(t) ≤ zj(t) ≤ y(t) for all j ≥ 0, we find

that

t∫
t0

zj (s)�s ≤
t∫

t0

y (s) �s.

By the Lebesgue dominated convergence theorem on time scales, one can easily

obtain

z (t) = F (t, z (t)) .

Therefore,

z� (t) = −Q (t)mλ (t) , (2:6)

where

m (t) = x (t0) +

t∫
t0

z (s)�s.

Then, m(t) > 0 and mΔ(t) = z(t). Equation (2.6) then gives

m�� (t) +Q (t)mλ (t) = 0.

Hence, Equation (2.4) has a positive solution m(t). This completes the proof. □
Lemma 2.3 ([4]). Suppose |x|Δ is of one sign on [t0,∞)Tand a > 0, a ≠ 1. Then

|x|�
(|xσ |)α ≤

(|x|1−α
)�

(1 − α)
≤ |x|�

(|x|α)
, t ≥ t0. (2:7)

It will be convenient to employ the Taylor monomials (see [[8], Sect. 1.6])

n ∈ N0 , n ∈ N0 , which are defined recursively as follows:

h0 (t, s) = g0 (t, s) = 1,
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hn+1 (t, s) =

t∫
s

hn (τ , s) �τ , gn+1 (t, s) =

t∫
s

gn (σ (τ ) , s)�τ , t, s ∈ T,n ∈ N0.

It is clear that h1(t, s) = g1(t, s) = t - s for any time-scales, but simple formulas in

general do not hold for n ≥ 2. It is also known that

hn (t, s) = (−1)ngn (s, t) .

3. Comparison criteria for delay dynamic equations
In this section, we shall consider the equation

x�n
(t) + q (t) xλ (ξ (t)) = 0. (3:1)

For t0 ∈ T and ℓ Î {1, 2, ..., n - 1}, we define

q� (t, t0) =

∞∫
t

τ−λQ� (τ , t, t0)�τ , t ∈ [t0,∞)T,

where

Q� (τ , t, t0) = gn−�−2 (σ (τ ) , t)Rλ
� (τ , t0) q (τ ) , τ ≥ t.

with

R� (τ , t0) =

⎧⎪⎨
⎪⎩

ξ(τ)∫
t0

sh�−2 (ξ (τ ) , σ (s) �s, � ≥ 2

ξ (τ ) , � = 1.

Theorem 3.1. Let t0 ∈ T . Suppose that for every ℓ Î {1, 2, ..., n - 1},

∞∫
Q� (τ , t0, t0) �τ = ∞. (3:2)

Then, Equation (3.1) is oscillatory if

(i) for n even, the equation

y�� + q� (t, t0) yλ = 0, (3:3)

for all ℓ Î {1, 3, ..., n - 1} is oscillatory;

(ii) for n odd, the Equation (3.3) for all ℓ Î {2, 4, ..., n - 1} is oscillatory, and

lim sup
t→∞

t∫
ξ(t)

hλ
n−1 (ξ (s) , ξ (t)) q (s)�s >

{
0 when 0 < λ < 1

1 when λ = 1.
(3:4)

Proof. Let x(t) be a nonoscillatory solution of Equation (3.1). Without loss of general-

ity, we may assume that x(t) > 0 and x(ξ(t)) > 0 for t ≥ t0, since otherwise the substitu-

tion w = -x transforms Equation (3.1) into an equation of the same form subject to the

assumptions of the theorem.
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By Lemma 2.1, there exist a t1 ≥ t0 and an integer ℓ Î {0, 1, ..., n} with n + ℓ odd

such that (2.1) and (2.2) hold for all t ≥ t1. We see that

x��−1
(t) > 0, x��

(t) > 0, x��+1
(t) < 0 for t ≥ t1,

and by Taylor’s formula

x (t) =
l−2∑
k=0

x�k
(t1) hk (t, t1) +

t∫
t1

h�−2 (t, σ (τ ))x��−1
(τ )�τ

≥
t∫

t1

h�−2 (t, σ (τ )) x��−1
(τ )�τ for � > 1.

(3:5)

We claim that

x��−1(t)

t
is strictly decreasing for t ≥ t1 and � > 0. (3:6)

To prove it, set X (t) = x��−1
(t) − tx��

(t) . Because

(
x��−1

t

)�

=
tx�� − x��−1

tσ (t)
= − X (t)

tσ (t)
,

it suffices to show that X(t) is strictly positive. Suppose on the contrary that X(t) < 0.

Then x��−1
/
t is strictly increasing and hence

x��−1
(t) ≥ ct for t ≥ t1, (3:7)

where c = x��−1
(t1)

/
t1 > 0. Using (3.7) in (3.5), we have

x (ξ (t)) ≥ c

ξ(t)∫
t1

τh�−2 (ξ (t) , σ (τ )) �τ . (3:8)

Let ℓ = 1, then (3.7) gives x(ξ(t)) ≥ cξ(t) for t ≥ t1 by increasing the size of t1 if neces-

sary. Thus, we obtain

x (ξ (t)) ≥ cR� (t, t1) for t ≥ t1 and � > 0. (3:9)

On the other hand, by Taylor’s formula we may write that

x�l+1
(t) =

n−�−2∑
k=0

x��+k+1
(s) hk (t, s) +

s∫
t

hn−�−2 (t, σ (τ ))
(−x�n

(τ )
)
�τ

=
n−�−2∑
k=0

x��+k+1
(s) (−1)kgk (s, t) +

s∫
t

(−1)n−�−2gn−�−2 (σ (τ ) , t)
(−x�n

(τ )
)
�τ

≤ −
∞∫
t

gn−�−2 (σ (τ ) , t) q (τ ) xλ (ξ (τ ))�τ .

(3:10)
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From (3.9) and (3.10), we have

−x��+1
(t1) ≥ cλ

∞∫
t1

gn−�−2 (σ (τ ) , t1) q (τ )Rλ
� (τ , t1) �τ , (3:11)

which contradicts (3.2), and hence completes the proof of the claim.

Now in view of (3.6) it follows from (3.5) that

x (t) ≥ x��−1
(t)

t

t∫
t1

τh�−2 (t, σ (τ )) �τ , t ≥ t1. (3:12)

Replacing t by ξ(t) in (3.12) and using (3.6), we have

x (ξ (t)) ≥ x��−1
(t)

ξ(t)∫
t1

τ

t
h�−2 (ξ (t) , σ (τ )) �τ , � > 1 (3:13)

for all t ≥ t2 for some t2 ≥ t1.

If ℓ = 1, then we may write that

x (ξ (t)) =
x��−1

(ξ (t))
ξ (t)

ξ (t) ≥ x��−1
(t)

t
ξ (t) , t ≥ t2. (3:14)

Thus, from (3.13) and (3.14) for all t ≥ t2,

x (ξ (t)) ≥ x��−1
(t)

t
R� (t, t1) , � > 0. (3:15)

Substituting (3.15) into (3.10) gives

−x��+1
(t) ≥

(
x��−1

(t)
)λ

∞∫
t

τ−λgn−�−2 (σ (τ ) , t)Rλ
� (τ , t1) q (τ ) �τ , t ≥ t2. (3:16)

Set w (t) = x��−1
(t) in (3.16), then w(t) > 0 satisfies

w�� + q� (t, t1)wλ ≤ 0, t ≥ t2.

By Lemma 2.2, the equation

w�� + q� (t, t1)wλ = 0

has a nonoscillatory solution. But this is impossible by the hypothesis.

Finally, we let ℓ = 0. This is the case, when n is odd. By applying Taylor’s formula

and using (2.2) with ℓ = 0, we can easily find

x (u) ≥ hn−1 (u, v) x�n−1
(v) (3:17)

for v ≥ u ≥ t1, which implies that

x (ξ (s)) ≥ hn−1 (ξ (s) , ξ (t)) x�n−1
(ξ (t)) , t > s ≥ t3. (3:18)
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for some t3 ≥ t1. Integrating equation (3.1) from ξ(t) ≥ t3 to t ≥ t, we get

x�n−1
(ξ (t)) ≥

t∫
ξ(t)

q (s) xλ (ξ (s))�s. (3:19)

Using (3.18) in (3.19), we have

x�n−1
(ξ (t)) ≥

(
x�n−1

(ξ (t))
)λ

t∫
ξ(t)

hλ
n−1 (ξ (s) , ξ (t)) q (s) �s

or

(
x�n−1

(ξ (t))
)1−λ

≥
t∫

ξ(t)

hλ
n−1 (ξ (s) , ξ (t)) q (s) �s

Taking the lim sup as t ® ∞, we obtain a contradiction to condition (3.4). □
The following immediate result can be extracted from Theorem 3.1.

Corollary 3.1. Let n be an odd and condition (3.4) hold. Then every bounded solution

of Equation (3.1) is oscillatory.

Next, we claim that inequality (3.15) can be replaced by

x (ξ (t)) ≥ 1
t
h� (ξ (t) , t1) x��−1

(t) . (3:20)

To prove this, we write that

x��−2
(t) ≥

t∫
t1

x��−1
(s) �s =

t∫
t1

s

(
x��−1

(s)
s

)
�s

and hence by (3.6) we find

x��−2
(t) ≥ h2 (t, t1)

(
x��−1

(t)
t

)
.

Integrating this inequality (ℓ - 2)-times from t1 to t ≥ t1 and using (3.6), we obtain

x (t) ≥ h� (t, t1)

(
x��−1

(t)
t

)
.

Thus, there exists a t2 ≥ t1 such that

x (ξ (t)) ≥ h� (ξ (t) , t1)
x��−1

(ξ (t)
ξ (t))

≥ 1
t
h� (ξ (t) , t1) x��−1

(t) , t ≥ t2.

This completes the proof of our claim.

Set

Q∗
� (τ , t, t0) = gn−�−2 (σ (τ ) , t) hλ

l (ξ (τ ) , t0) q (τ ) , τ ≥ t
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and

q∗
� (t, t0) =

∞∫
t

τ−λQ∗
� (τ , t, t0) �τ , t ≥ t0.

In view of Theorem 3.1 and inequality (3.20) we may state the following theorem.

Theorem 3.2. In Theorem 3.1, let qℓ and Qℓ be replaced by q∗
� and Q∗

� , respectively.

Then the conclusions of Theorem 3.1 hold.

Let T = R , i.e., the continuous case. Here Equation (3.1) becomes

x(n) (t) + q (t) xλ (ξ (t)) = 0 (3:21)

and the functions q∗
� and Q∗

� take the form

qc� (t, t0) =

∞∫
t

τ−λQc
� (τ , t, t0) dτ

and

Qc
�(τ , t, t0) =

(ξ(τ ) − t0)
λ�

(�!)λ
(τ − t)n−�−2

(n − � − 2)!
q(τ ).

From Theorem 3.2 we have the following theorem.

Theorem 3.3. Let t0 ∈ T . Suppose that for ℓ Î {1, 2, ..., n - 1},

∞∫
Qc

� (τ , t0, t0) dτ = ∞. (3:22)

Then, Equation (3.21) is oscillatory if

(i) for n even, the equation

y′′ + qc� (t, t0) y = 0, (3:23)

for all ℓ Î {1, 3, ..., n - 1} is oscillatory;

(ii) for n odd, the Equation (3.23) for all ℓ Î {2, 4, ..., n - 1} is oscillatory and

lim sup
t→∞

t∫
ξ(t)

(
(ξ (s) − ξ (t))n−1

(n − 1)!

)λ

q (s) �s >

{
0 when 0 < λ < 1

1 when λ = 1.
(3:24)

Next, we let T = Z , i.e., the discrete case. Then, Equation (3.1) reads as

�nx (m) + q (m) xλ (ξ (m) = 0 (3:25)

and the functions q∗
� and Q∗

� become

qd� (m,m0) =
∞∑
j=m

j−λQd
�

(
j,m,m0

)
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and

Qd
�

(
j,m,m0

)
=

[(
ξ
(
j
)− m0

)(�)]λ
(�!)λ

(
j − m + n − � − 2

)(n−�−2)

(n − � − 2)!
q
(
j
)
,

where t(m) = t(t - 1)(t - 2) ... (t - m + 1) is the usual factorial function.

Theorem 3.4. Let m0 ∈ Z . Suppose that for ℓ Î {1, 2, ..., n - 1}

∞∑
j=m0

Qd
�

(
j,m0,m0

)
= ∞. (3:26)

Then, Equation (3.25) is oscillatory if

(i) for n even, the second-order difference equation

�2y (m) + qd� (m,m0) y
λ (m) = 0, (3:27)

for all ℓ Î {1, 3, ..., n - 1} is oscillatory;

(ii) for n odd, the Equation (3.27) for all ℓ Î {2, 4, ..., n - 1} is oscillatory and

lim sup
m→∞

m∑
j=ξ(m)

((
ξ
(
j
)− ξ (m)

)(n−1)

(n − 1)!

)λ

q
(
j
)

>

{
0 when 0 < λ < 1

1 when λ = 1.
(3:28)

Remark 1. The oscillation of Equation (3.1) is obtained via a comparison with a set

of second-order dynamic equations whose oscillatory behavior has been studied exten-

sively in the literature. In fact, there are many sufficient conditions for the oscillation of

Equation (3.3) which can be employed rather easily.

4. Even order dynamic equations without delay
In this section, we present new oscillation criteria for (3.1) when n is even. That is, we

consider

x�2n
+ q (t)

(
xσ
)λ = 0. (4:1)

For t ∈ T , we define

Q̂� (t) =

∞∫
t

∞∫
s2n−�−1

. . .

∞∫
s1

q (s)�s�s1 . . . �s2n−�−1, � ∈ {1, 3, . . . , 2n − 1} . (4:2)

Theorem 4.1. Let l > 1 and t0 ∈ T . If for every integer ℓ Î {1, 3, ..., 2n - 1},

∞∫
t0

h�−1 (s, t0) Q̂� (s) �s = ∞, (4:3)

then Equation (4.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of Equation (4.1), say, x(t) > 0 for t ≥ t0.

From Equation (4.1), we see that x�2n
(t) ≤ 0 for t ≥ t0, where x�2n

(t) is not identi-

cally zero for all large t. Using Lemma 2.1 there exist a t1 ≥ t0 and an integer ℓ Î {1, 3,

..., 2n - 1} such that (2.1) and (2.2) hold for all t ≥ t1. From (2.1), we see that

x��

(t) > 0 and decreasing on [t1,∞)T . Now,
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x��−1
(s) − x��−1

(t1) =

s∫
t1

x��

(τ ) �τ ≥ h1 (s, t1) x��

(s),

or

x��−1
(s) ≥ h1 (s, t1) x��

(s) , s ≥ t1. (4:4)

Integrating (4.4) (ℓ - 2)-times from t1 to s ≥ t1, we have

x� (s) ≥ h�−1 (s, t1) x��

(s) , s ≥ t1. (4:5)

Next, we integrate Equation (4.1) from s1 ≥ t1 to v ≥ s1 and let v ® ∞ to get

x�2n−1
(s1) ≥

∞∫
s1

q (τ ) xλ (σ (τ ))�τ ≥
⎛
⎝ ∞∫

s1

q (τ )�τ

⎞
⎠ xλ (σ (s1)) .

Integrating this inequality from s2 ≥ t1 to v ≥ s2 and then letting v ® ∞ and using

(2.2), we get

−x�2n−2
(s2) ≥

⎛
⎝ ∞∫

s2

∞∫
s1

q (τ )�τ�s1

⎞
⎠ xλ (σ (s2)) .

Continuing this process, one can easily find

x��

(s) ≥
⎛
⎝ ∞∫

s

∞∫
s2n−�−1

· · ·
∞∫

s1

q (τ )�τ�s1 . . . �s2n−�−1

⎞
⎠ xλ (σ (s)) ,

or

x��

(s) ≥ Q̂� (s) xλ (σ (s)) , s ≥ t1. (4:6)

From (4.5) and (4.6), we find

x−λ (σ (s)) x� (s) ≥ h�−1 (s, t1) Q̂� (s) , s ≥ t1,

and hence

t∫
t1

x−λ (σ (s)) x� (s) �s ≥
t∫

t1

h�−1 (s, t1) Q̂� (s)�s.

By employing the first inequality in Lemma 2.3, we get

t∫
t1

(
x1−λ (s)

)�
1 − λ

�s ≥
t∫

t1

h�−1 (s, t1) Q̂� (s) �s,

and so

∞∫
t1

h�−1 (s, t1) Q̂� (s) �s ≤ x1−λ (t1)
λ − 1

< ∞.
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But this contradicts condition (4.3). The proof is complete. □
Theorem 4.2. Let l > 1 and t0 ∈ T . If for every integer ℓ Î {1, 3, ..., 2n - 1},

∞∫
t0

h�−1 (s, t0)

⎛
⎝ ∞∫

s

g2n−�−1 (σ (τ ) , s) q (τ )�τ

⎞
⎠�s = ∞, (4:7)

then Equation (4.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of Equation (1.1), say, x(t) > 0 for t ≥ t0.

By Taylor’s formula, we see that

x��

(s) ≥ −
∞∫
s

g2n−�−1 (σ (τ ) , s) x�2n
(τ )�τ , s ≥ t1. (4:8)

Using Equation (4.1) in (4.8), we get

x��

(s) ≥
∞∫
s

g2n−�−1 (σ (τ ) , s) q (τ ) xλ (σ (τ )) �τ

≥
⎛
⎝ ∞∫

s

g2n−�−1 (σ (τ ) , s) q (τ )�τ

⎞
⎠ xλ (σ (s)) , s ≥ t1.

(4:9)

Combining (4.8) with (4.9), we find

x� (s) ≥ h�−1 (s, t1)

⎛
⎝ ∞∫

s

g2n−�−1 (σ (τ ) , s) q (τ ) �τ

⎞
⎠ xλ (σ (s)) , s ≥ t1.

Dividing both sides by xl(s(s)) and integrating from t1 to t ≥ t1, we have

t∫
t1

x−λ (σ (s)) x� (s) �s ≥
t∫

t1

h�−1 (s, t1)

∞∫
s

g2n−�−1 (σ (τ ) , s) q (τ )�τ�s.

The rest of the proof is similar to that of Theorem 4.1 and hence it is omitted. This

completes the proof. □
Next, we apply Theorems 4.1 and 4.2 to obtain oscillation criteria for Equation (4.1)

when l ≤ 1.

Theorem 4.3. Let l ≤ 1 and t0 ∈ T . Assume that there exists a positive constant a
such that a + l > 1. If for every ℓ Î {1, 3, ..., 2n - 1}, condition (4.3) or (4.7) holds with

q(t) replaced by cq (t) h−α
� (t, 0) , where c is any positive constant, then Equation (4.1) is

oscillatory.

Proof. Let x(t) be a nonoscillatory solution of Equation (4.1) and assume that there

exists a t0 > 0 such that x(t) > 0 for t ≥ t0 and (2.1) and (2.2) hold for t ≥ t0. From

(2.1) and the decreasing nature of x��

(t) , there exists a constant c1 > 0 such that

x��

(t) ≤ c1 for t ≥ t0. Integrating this inequality ℓ -times from t0 to t, we have

x (t) ≤ ch� (t, 0) , t ≥ t0, (4:10)
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where c is a positive constant. Now, from Equation (4.1), we have

0 = x�2n
(t) + q (t) x−α (σ (t)) xλ+α (σ (t))

≥ x�2n
(t) + c−αq (t) h−α

� (σ (t) , 0) xλ+α (σ (t)) , t ≥ t0.
(4:11)

By applying Theorems 4.1 and 4.2 with inequality (3.20), we arrive at the desired

conclusion. This completes the proof. □
Theorem 4.4. Let l < 1 and t0 ∈ T . If for every ℓ Î {1, 3, ..., 2n - 1},

∞∫
t0

q (t)

⎛
⎝ t∫

t0

h�−1 (t, σ (u)) g2n−�−1 (t, u) �u

⎞
⎠

λ

�t = ∞, (4:12)

then Equation (4.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of Equation (4.1), say, x(t) > 0 for t ≥ t0.

As in the proof of Theorem 4.1, we see that (2.1) and (2.2) hold for t ≥ t1 ≥ t0. It is

easy to see that

x (t) ≥
t∫

t1

h�−1 (t, σ (u)) x��

(u)�u

and

x��

(u) ≥ g2n−�−1 (t, u) x�2n−1
(t) , t ≥ u ≥ t1.

Therefore,

x (t) ≥
⎛
⎝ t∫

t1

h�−1 (t, σ (u)) g2n−�−1 (t, u) �u

⎞
⎠ x�2n−1

(t) for t ≥ t1.

Using this inequality in Equation (4.1), we get

−
(
x�2n−1

(t)
)�

= q (t) xλ (σ (t)) ≥ q (t) xλ (t)

≥ q (t)

⎛
⎝ t∫

t1

h�−1 (t, σ (u)) g2n−�−1 (t, u) �u

⎞
⎠

λ(
x�2n−1

(t)
)λ

, t ≥ t1.

Set w (t) = x�2n−1
(t) , then

−wλ (t)w� (t) ≥ q (t)

⎛
⎝ t∫

t1

h�−1 (t, σ (u)) g2n−�−1 (t, u) �u

⎞
⎠

λ

, t ≥ t1.

Finally, in view of a chain rule, we integrate the last inequality from t1 to t to get

∞ >
w1−λ (t1)
1 − λ

≥
t∫

t1

q (s)

⎛
⎝ s∫

t1

h�−1 (s, σ (u)) g2n−�−1 (s, u) �u

⎞
⎠

λ

�s,

a contradiction with condition (4.12). □
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As an example, we shall reformulate some of the above results for the case T = Z, i.

e., the discrete case. The Equation (4.1) takes the form

�2nx (m) + q (t) xλ (m + 1) = 0 (4:13)

and establish new criteria for the oscillation of Equation (4.13).

We let

Q̂d
� (m) =

∞∑
s2n−�−1=t

· · ·
∞∑

s1=s2

∞∑
u=s1

q (u), � ∈ {1, 3, . . . , 2n − −1} , m ≥ m0.

Theorem 4.5. Let l > 1 and m0 ∈ Z . If for every ℓ Î {1, 3, ..., 2n - 1},

∞∑
s=m0

s(�−1)Q̂d
� (s) = ∞, (4:14)

then Equation (4.13) is oscillatory.

Theorem 4.6. Let l > 1 and m0 ∈ Z . If for every ℓ Î {1, 3, ..., 2n - 1},

∞∑
s=m0

s(�−1)

∞∑
τ=s

(τ − s + 1)(2n−�−1)q (τ ) = ∞, (4:15)

then Equation (4.13) is oscillatory.

Theorem 4.7. Let l < 1 and m0 ∈ Z . If

∞∑
s=m0

(
sλ
)(2n−1)

q (s) = ∞, (4:16)

then Equation (4.13) is oscillatory.

Theorem 4.8. Let l ≤ 1 and m0 ∈ Z . Assume that there exists a positive constant a
such that a + l > 1. If for every ℓ Î {1, 3, ..., 2n - 1} condition (4.14) or (4.15) holds

with q(t) be replaced by c q(t)(t)(ℓ)/ℓ!)-a, where c is any positive constant, then Equation

(4.13) is oscillatory.

Remark 2. For Equation (4.1) of odd order, one may obtain results for the oscillatory

and asymptotic behavior, while for complete oscillation, we may consider Equation (1.1)

and employ the technique given in Theorem 3.1. The details are left to the reader.

5. Further oscillation criteria
In this section, we consider

x�n
+ q (t)

(
xσ
)λ = 0, (5:1)

subject to the condition

∞∫
t0

∞∫
v

∞∫
u

q (s) �s�u�v = ∞. (5:2)

Note that if x(t), t ≥ t0 is a positive solution of Equation (5.1), then by Lemma 2.1,

Equations (2.1), and (2.2) hold for t ≥ t1. Here, we claim that ℓ = n - 1. Otherwise, we

find x�n−1
(t) > 0, x�n−2

(t) < 0 and x�n−3
(t) > 0 on [t1,∞)T . Integrating Equation
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(5.1) from t ≥ t1 to u ≥ t and letting u ® ∞, we have

x�n−1
(t) ≥

∞∫
t

q (s) xλ (σ (s)) �s. (5:3)

Since x is increasing on [t1,∞)T , there exists a constant c > 0 such that

x (t) ≥ c, t ∈ [t1,∞)T. (5:4)

Using (5.4) in (5.3), we get

−x�n−1
(t) ≤ −cλ

∞∫
t

q (s) �s.

Integrating this inequality twice, once from v ≥ t to w ≥ v and letting w ® ∞ and

then from t1 to t ≥ t1, we have

x�n−3
(t) ≤ −cλ

t∫
t1

∞∫
v

∞∫
s

q (u) �u�s�v → ∞ as t → ∞,

which contradicts (5.2). Thus, we must have ℓ = n - 1, i.e.,

Thus, we have

x�n−2
(t) = x�n−2

(t1) +

t∫
t1

x�n−1
(s) �s ≥ h1 (t, t1) x�n−1

(t), t ≥ t1.

Integrating this inequality (n - 2)-times from t1 to t, we obtain

x (t) ≥ hn−1 (t, t1) x�n−1
(t) , t ≥ t1. (5:5)

Now, by making use of earlier results in [6], we obtain the following interesting

theorems.

Theorem 5.1. Let condition (5.2) hold. If there exists a positive nondecreasing, differ-

entiable function η ∈ Crd (T,R+) such that for any t1 ≥ t0,

lim sup
t→∞

t∫
t1

[
η (s) q (s) − η� (s)

A (s, t0)
hn−1 (s, t0)

]
�s = ∞, (5:6)

where

A (t, t0) =

⎧⎨
⎩
c1, c1 is any positive constant, when λ > 1
1, when λ = 1
c2h

1−λ
n−1 (t, t0) , c2 is any positive constant, when λ < 1,

then Equation (5.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of Equation (5.1), say, x(t) > 0 for t ≥ t1 ≥

t0.
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Define

w (t) = η (t)
x�n−1

(t)
xλ (t)

, t ≥ t1. (5:7)

It is easy to see that for t ≥ t1,

w� =
( η

xλ

)�(
x�n−1

)σ

+
( η

xλ

) (
x�n)

= −ηq
(
xσ

x

)λ

+
(
x�n−1

)σ

[
η�xλ − η

(
xλ
)
�

xλ(xσ )λ

]
.

(5:8)

By [[8], Theorem 1.90],

(
xλ
)�

= λx�

1∫
0

[
x + μhx�

]λ−1
dh > 0. (5:9)

Using (5.9) in (5.8) we have

w� (t) ≤ −η (t) q (t) + η� (t)

(
x�n−1

(t)
)σ

(xσ (t))λ
≤ −η (t) q (t) + η� (t)

x�n−1
(t)

xλ (t)
, t ≥ t1,

and hence in view of (5.5), we find

w� (t) ≤ −η (t) q (t) +
η� (t)

hn−1 (t, t1)
x1−λ (t) , t > t1. (5:10)

Let l > 1. Since there exist c > 0 and t2 ≥ t1 such that x(t) ≥ c for all t ≥ t2, we have

x1-l(t) ≤ c1-l : = c1 for all t ≥ t2. If l = 1, then x1-l(t) = 1 for all t ≥ t1. If l < 1, then

there exist b > 0 and t3 ≥ t1 such that x�n−1
(t) ≤ b for all t ≥ t3, and hence

x1−λ (t) ≤ c2h
1−λ
n−1 (t, t1) for all t ≥ t3, where c2 : = b1-l. Combining all these we see that

x1−λ (t) ≤ A (t, t1) , t ≥ t4 (5:11)

for some t4 ≥ max{t2, t3}. From (5.10) and (5.11),

w� (t) ≤ −η (t) q (t) + η� (t)
A (t, t1)

hn−1 (t, t1)
, t ≥ t4.

Integrating this inequality from t4 to t, we find

t∫
t4

[
η (s) q (s) − η� (s)

A (s, t1)
hn−1 (s, t1)

]
�s ≤ w (t4).

Taking limit superior as t ® ∞, we obtain a contradiction to condition (5.6). This

completes the proof. □
In the following result, we employ the lemma below, see [10].

Lemma 5.1. If X and Y are nonnegative and a > 1, then

Xα − αXYα−1 + (α − 1)Yα ≥ 0, (5:12)

where equality holds if and only if X = Y.
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Theorem 5.2. Let condition (5.2) hold. If there exists a positive, nondecreasing, differ-

entiable function η ∈ Crd (T,R+) such that for any t1 ≥ t0,

lim sup
t→∞

t∫
t1

[
η (s) q (s) −

(
η� (s)

)λ+1
(λ + 1)λ+1(hn−2 (s, t0) η (s)B (s, t0))

λ

]
�s = ∞, (5:13)

where

B (t, t0) =

⎧⎨
⎩
c1, c1 is any positive constant, when λ > 1
1, when λ = 1
c2
(
hσ
n−1 (t, t0)

)λ+1
, c2 is any positive constant, when λ < 1,

(5:14)

then Equation (5.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of Equation (5.1), say, x(t) > 0 for t ≥ t0.

Let w be as in (5.7). Then (5.8) and (5.9) hold. We also have

w� ≤ −ηq +
η�

η
wσ − λη

(
x�

x

) (
w/η

)σ . (5:15)

Using the fact that ℓ = n - 1 and

x�n−1

x
≥
((

w
η

)σ)1/λ(
xσ
)λ−1

in (5.15), we obtain

w� ≤ −ηq +
η�

η
wσ − ληhn−2

((
w
η

)σ)1+1/λ(
xσ
)λ−1. (5:16)

If l > 1, then from xs(t) ≥ xs(t1) for t ≥ t1, we have (xs(t))l-1 ≥ c1 = (xs(t1))
l-1. In

case l = 1, (xs(t))l-1 = 1 for all t ≥ t1. Finally, let l < 1. We see that there exist t2 ≥ t1

and b > 0 such that x�n−1
(t) ≤ b for all t ≥ t2. It follows that x(t) ≤ bhn-1(t, t1) for all t

≥ t2, and hence
(
xσ (t)

)λ−1 ≥ bλ−1(hσ
n−1 (t, t1)

)λ−1 for all t ≥ t2, where c2 = bl-1. Putting

all these together, we have

(
xσ (t)

)λ−1 ≥ B (t, t1) , t ≥ t2. (5:17)

In view of (5.17) and (5.16), we find

w� (t) ≤ −η (t) q (t)+
η� (t)
η (t)

wσ (t)−λη (t) hn−2 (t, t1)B (t, t1)
((

w(t)
η(t)

)σ)1+1/λ

, t ≥ t2. (5:18)

Now, setting

X = (ληhn−2B)
λ/(λ+1)

(
w

η

)σ

and Y =
(

λ

λ + 1

)λ(
η�
)λ(( 1

λhn−2B

)λ/(λ+1)
)λ

and a = (l + 1)/l > 1 in Lemma 5.1, we have

ληhn−2B
((

w
η

)σ)1+1/λ

− η�

(
w
η

)σ

+

(
η�
)λ+1

(λ + 1)λ+1(ηhn−1B)
λ

≥ 0.
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Therefore, from (5.18)

w� ≤ −ηq +
1

(λ + 1)λ+1
−

(
η�
)λ+1

(ηhn−1B)
λ
, t ≥ t2.

Integrating this inequality from t2 to t results in

t∫
t2

[
η (s) q (s) − 1

(λ + 1)λ+1

(
η� (s)

)λ+1
(η (s) hn−2 (s, t1)B (s, t1))

λ

]
�s ≤ w (t2),

which contradicts (5.15). This completes the proof. □
Finally, we present the following result.

Theorem 5.3. Let condition (5.2) hold. If there exists a positive, nondecreasing differ-

entiable function h such that for any t1 ≥ t0,

lim sup
t→∞

t∫
t1

[
η (s) q (s) −

(
η� (s)

)λ
4λη (s)B (s, t0) hn−2 (s, t0)

(
hσ
n−1 (s, t0)

)λ
]

�s = ∞, (5:19)

where B(t, t0) is as in (5.14), then Equation (5.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of Equation (5.1), say, x(t) > 0 for t ≥ t0.

Proceeding as in the proof of Theorem 5.2, we obtain

w� ≤ −ηq + η�

(
w
η

)σ

− ληhn−2B
((

w
η

)σ)1+1/λ

= −ηq + η�

(
w
η

)σ

− ληhn−2B
(wσ )1/λ−1

(ησ )1/λ+1

(
wσ
)2
,

where B = B(t, t1) and hn-2 = hn-2(t, t1). Since

w1/λ−1 (t) = λ1/λ−1

(
x�n−1

(t)
x (t)

)1−λ

≥ η1/λ−1 (t) hλ−1
n−1 (t, t1) ,

it follows that

w� ≤ −ηq + η�

(
w
η

)σ

− ληBhn−1
(
hσ
n−1

)λ−1
(
wσ

ησ

)2

= −ηq −

⎡
⎢⎣(ληBhn−2

(
hσ
n−1

)λ−1
)1/2(w

η

)σ

− η�

2
(
ληBhn−2

(
hσ
n−1

)λ−1
)1/2

⎤
⎥⎦

2

+

(
η�
)2

4ληBhn−2
(
hσ
n−1

)λ−1

≤ −ηq +

(
η�
)2

4ληBhn−2
(
hσ
n−1

)λ−1 , t ≥ t2.
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Integrating this inequality from t2 to t, we have

t∫
t2

[
η (s) q (s) −

(
η� (s)

)2
4λη (s)B (s, t1) hn−2 (s, t1)

(
hσ
n−1 (s, t1)

)λ−1

]
�s ≤ w (t2),

which contradicts (5.19). This completes the proof. □
Remark 3. We note that the oscillation criteria given in this article are new for the

corresponding difference equations and some of these results are new for the correspond-

ing differential and/or delay differential equations. The results can be extended easily

to equations of the form

x�n
(t) + f (t, x (ξ (t)) = 0,

when f : T × R → R is continuous and f is strongly superlinear or f is strongly sub-

linear, see [4].

As examples, we have reformulated some of the obtained results for the time-scales

T = R (i.e., the continuous case) and T = Z (i.e., the discrete case). One may obtain

more results by employing other types of time scales such as T = hZ with h > 0,

T = qN0 with q > 1, and T = N2
0 , see [8]. The details are left to the reader.
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