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Abstract

In this article, we are concerned with the oscillation of the fractional differential
equation

[
r(t)

(
Dα

−y
)η
(t)

]′ − q(t)f

⎛
⎝ ∞∫

t

(v − t)−αy(v)dv

⎞
⎠ = 0 for t > 0,

where Dα
−y is the Liouville right-sided fractional derivative of order a Î (0,1) of y and

h >0 is a quotient of odd positive integers. We establish some oscillation criteria for
the equation by using a generalized Riccati transformation technique and an
inequality. Examples are shown to illustrate our main results. To the best of author’s
knowledge, nothing is known regarding the oscillatory behavior of the equation, so
this article initiates the study.
MSC (2010): 34A08; 34C10.

Keywords: oscillation, fractional derivative, fractional differential equation

1 Introduction
The goal of this article is to obtain several oscillation theorems for the fractional differ-

ential equation

[
r(t)

(
Dα

−y
)η
(t)

]′ − q(t)f

⎛
⎝ ∞∫

t

(v − t)−αy(v)dv

⎞
⎠ = 0 for t > 0, (1:1)

where a Î (0, 1) is a constant, h > 0 is a quotient of odd positive integers, Dα
−y is

the Liou-ville right-sided fractional derivative of order a of y defined by

(Dα
−y)(t) :=

1
�(1−α)

d
dt

∫ ∞

t
(v − t)−αy(v)dv for t Î ℝ+ := (0, ∞), here Γ is the gamma

function defined by �(t) :=
∫ ∞
0 vt−1e−vdv for t Î ℝ+, and the following conditions are

assumed to hold:

(A) r and q are positive continuous functions on [t0, ∞) for a certain t0 > 0 and f :

ℝ ® ℝ is a continuous function such that f(u)/(uh) ≥ K for a certain constant K >

0 and for all u ≠ 0.

By a solution of (1.1) we mean a nontrivial function y Î C(ℝ+,ℝ) such that
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∫ ∞

t
(v − t)−αy(v)dv ∈ C1 (R+,R) , r(t)

(
Dα

−y
)η(t) ∈ C1 (R+,R) and satisfying (1.1) for

t > 0. Our attention is restricted to those solutions of (1.1) which exist on ℝ+ and

satisfy sup{|y(t)| : t >t*} > 0 for any t* ≥ 0. A solution y of (1.1) is said to be oscillatory

if it is neither eventually positive nor eventually negative. Otherwise it is nonoscillatory.

Equation (1.1) is said to be oscillatory if all its solutions are oscillatory.

The theory of fractional derivatives goes back to Leibniz’s note in his list to L’Hospi-

tal [1], dated 30 September 1695, in which the meaning of the derivative of order 1/2

is discussed. Leibniz’s note led to the appearance of the theory of derivatives and inte-

grals of arbitrary order, which by the end of nineteenth century took more or less fin-

ished form due primarily to Liouville, Grünwald, Letnikov, and Riemann. Recently,

there have been several books on the subject of fractional derivatives and fractional

integrals, such as the books [2-6].

For three centuries the theory of fractional derivatives developed mainly as a pure

theoretical field of mathematics useful only for mathematicians. However, in the last

few decades many authors pointed out that fractional derivatives and fractional inte-

grals are very suitable for the description of properties of various real problems.

The mathematical modeling and simulation of systems and processes, based on the

description of their properties in term of fractional derivatives, naturally leads to differ-

ential equations of fractional order and to the necessity to solve such equations. Frac-

tional differential equations are generalizations of classical differential equations of

integer order and have gained considerable popularity and importance during the past

three decades or so, due mainly to their demonstrated applications in numerous see-

mingly diverse and widespread fields of science and engineering. Nowadays the num-

ber of scientific and engineering problems involving fractional calculus is already very

large and still growing. It was found that various, especially interdisciplinary applica-

tions can be elegantly modeled with the help of the fractional derivatives. Fractional

differentials and integrals provide more accurate models of systems under considera-

tion. Some of the areas of present applications of fractional calculus include fluid flow,

rheology, dynamical processes in self-similar and porous structures, diffusive transport

Akin to diffusion, electrical networks, probability and statistics, control theory of dyna-

mical systems, viscoelasticity, electrochemistry of corrosion, chemical physics, optics,

and signal processing, economics, and so on; for example, see [7-12] and the references

cited therein.

Many articles have investigated some aspects of fractional differential equations, such

as the existence and uniqueness of solutions to Cauchy type problems, the methods

for explicit and numerical solutions, and the stability of solutions, and we refer to

[13-20]. However, to the best of author’s knowledge very little is known regarding the

oscillatory behavior of fractional differential equations up to now. In particular, nothing

is known regarding the oscillation properties of (1.1) up to now. To develop the quali-

tative theory of fractional differential equations, it is of great interest to study the oscil-

lation of (1.1). In this article, we establish several oscillation criteria for (1.1) by

applying a generalized Riccati transformation technique and an inequality. Our results

are essential new. We also provide several examples to illustrate the results.
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2 Preliminaries and lemmas
In this section, we present the definitions of fractional integrals and fractional deriva-

tives, which are used throughout this article. More details can be found in [2-6]. We

also give several lemmas, which are useful in establishing our results.

There are several kinds of definitions of fractional integrals and fractional derivatives,

such as the Riemann-Liouville definition, the Caputo definition, the Liouville definition,

the Grünwald-Letnikov definition, the Erdélyi-Kober definition and the Hadamard

definition. We adopt the Liouville right-sided definition on the half-axis ℝ+ for the

purpose of this article.

Definition 2.1 (Kilbas et al. [5]) The Liouville right-sided fractional integral of order

b >0 of a function g : ℝ+ ® ℝ on the half-axis ℝ+ is given by

(
Iβ−g

)
(t) :=

1
�(β)

∞∫
t

(v − t)β−1g(v)dv for t > 0, (2:1)

provided the right-hand side is pointwise defined on ℝ+, where Γ is the gamma

function.

Definition 2.2 (Kilbas et al. [5]) The Liouville right-sided fractional derivative of

order b > 0 of a function g : ℝ+ ® ℝ on the half-axis ℝ+ is given by

(
Dβ

−g

)
(t) := (−1)�β� d

�β�

dt�β�
(
I�β�−β
− g

)
(t)

= (−1)�β� 1
� (�β� − β)

d�β�

dt�β�

∞∫
t

(v − t)�β�−β−1g(v)dv for t > 0,
(2:2)

provided the right-hand side is pointwise defined on ℝ+, where ⌈b⌉ := min{z Î ℤ : z ≥ b}
is the ceiling function.

Lemma 2.1 Let y be a solution of (1.1) and

G(t) :=

∞∫
t

(v − t)−αy(v)dv for α ∈ (0, 1) and t > 0, (2:3)

then

G′(t) = −�(1 − α)
(
Dα

−y
)
(t) for α ∈ (0, 1) and t > 0. (2:4)

Proof From (2.3) and (2.2), for a Î (0, 1) and t > 0 we obtain

G′(t) = �(1 − α)
1

�(1 − α)
d
dt

∞∫
t

(v − t)−αy(v)dv

= −�(1 − α)

⎡
⎣(−1)�α� 1

� (�α� − α)

d�α�

dt�α�

∞∫
t

(v − t)�α�−α−1y(v)dv

⎤
⎦

= −�(1 − α)
(
Dα

−y
)
(t).

The proof is complete.

Lemma 2.2 (Hardy et al. [21]) If X and Y are nonnegative, then

mXYm−1 − Xm ≤ (m − 1)Ym for m > 1,
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where the equality holds if and only if X = Y.

3 Main results
Theorem 3.1 Suppose that (A) and

∞∫
t0

r−1/η(t)dt = ∞ (3:1)

hold. Furthermore, assume that there exists a positive function b Î C1[t0, ∞) such

that

lim sup
t→∞

t∫
t0

[
Kb(s)q(s) − r(s)

[
b′
+(s)

]η+1

(η + 1)η+1
[
�(1 − α)b(s)

]η

]
ds = ∞, (3:2)

where b′
+(s) := max

{
b′(s), 0

}
. Then every solution of (1.1) is oscillatory.

Proof Suppose that y is a nonoscillatory solution of (1.1). Without loss of generality,

we may assume that y is an eventually positive solution of (1.1). Then there exists t1 Î
[t0, ∞) such that

y(t) > 0 and G(t) > 0 for t ∈ [t1,∞) , (3:3)

where G is defined as in (2.3). Therefore, it follows from (1.1) that[
r(t)

(
Dα

−y
)η(t)

]′
= q(t)f (G(t)) > 0 for t ∈ [t1,∞) . (3:4)

Thus r(t)
(
Dα

−y
)η(t) is strictly increasing on [t1,∞) and is eventually of one sign. Since

r(t) > 0 for t Î [t0, ∞) and h > 0 is a quotient of odd positive integers, we see that(
Dα

−y
)
(t) is eventually of one sign. We now claim(
Dα

−y
)
(t) < 0 for t ∈ [t1,∞) . (3:5)

If not, then
(
Dα

−y
)
(t) is eventually positive and there exists t2 Î [t1, ∞) such that(

Dα
−y

)
(t2) > 0. Since r(t)

(
Dα

−y
)η(t) is strictly increasing on [t1, ∞), it is clear that

r(t)
(
Dα

−y
)η(t) ≥ r(t2)

(
Dα

−y
)η(t2) := c1 > 0 for t Î [t2, ∞). Therefore, from (2.4) we have

− G′(t)
�(1 − α)

=
(
Dα

−y
)
(t) ≥ c1/ηr−1/η

1 (t) for t ∈ [t2,∞) .

Integrating both sides of the last inequality from t2 to t, we get

t∫
t2

r−1/η(s)ds ≤ −G(t) − G(t2)

c1/η1 �(1 − α)
<

G(t2)

c1/η1 �(1 − α)
for t ∈ [t2,∞) .

Letting t ® ∞, we see
∫ ∞
t2

r−1/η(s)ds ≤ G(t2)

c1/η1 �(1 − α)
< ∞. This contradicts (3.1).

Hence, (3.5) holds. Define the function w by the generalized Riccati substitution

w(t) = b(t)
−r(t)

(
Dα

−y
)η
(t)

Gη(t)
for t ∈ [t1,∞) . (3:6)
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Then we have w(t) > 0 for t Î [t1,∞). From (3.6), (1.1), (2.4), and (A), it follows that

w′(t) = b′(t)
−r(t)

(
Dα

−y
)η(t)

Gη(t)
+ b(t)

[
−r(t)

(
Dα

−y
)η(t)

Gη(t)

]′

≤ b′
+(t)

−r(t)
(
Dα

−y
)η
(t)

Gη(t)
+ b(t)

[
−[

r(t)
(
Dα

−y
)η
(t)

]′

Gη(t)
+ r(t)

(
Dα

−y
)η(t)

ηGη−1(t)G′(t)
G2η(t)

]

= b′
+(t)

w(t)
b(y)

+ b(t)

[
−q(t)f (G(t))

Gη(t)
+ r(t)

(
Dα

−y
)η(t)

η
[−�(1 − α)

(
Dα

−y
)
(t)

]
Gη+1(t)

]

≤ b′
+(t)

w(t)
b(t)

− Kb(t)q(t) − η�(1 − α)b(t)r(t)
[

w(t)
b(t)r(t)

]1+1/η

= −Kb(t)q(t) +
b′
+(t)
b(t)

w(t) − η�(1 − α)
[
b(t)r(t)

]−1/η
w1+1/η(t) for t ≥ t1,

(3:7)

where b′
+ is defined as in Theorem 3.1. Taking

m = 1 +
1
η
, X =

[
η�(1 − α)

]1/m
w(t)[

b(t)r(t)
]1/(η+1) and Y =

[
b′
+(t)/b(t)

]η[
b(t)r(t)

]1/m
mη

[
η�(1 − α)

]η/m
,

from (3.7) and Lemma 2.2 we conclude that

w′(t) ≤ −Kb(t)q(t) +
r(t)

[
b′
+(t)

]η+1

(η + 1)η+1
[
�(1 − α)b(t)

]η for t ∈ [t1,∞) .

Integrating both sides of the last inequality from t1 to t, we obtain

t∫
t1

[
Kb(s)q(s) − r(s)

[
b′
+(s)

]η+1

(η + 1)η+1
[
�(1 − α)b(s)

]η

]
dx ≤ w(t1) − w(t) < w(t1) for t ∈ [t1,∞) .

Letting t ® ∞, we get

limsupt→∞

∫ t

t1

[
Kb(s)q(s) − r(s)

[
b′
+(s)

]η+1

(η + 1)η+1
[
�(1 − α)b(s)

]η

]
ds ≤ w(t1) < ∞, which con-

tradicts (3.2). The proof is complete.

Theorem 3.2 Suppose that (A) and (3.1) hold. Furthermore, suppose that there exist a

positive function b Î C1[t0, ∞) and a function H ∈ C(D,R), whereD :=
{
(t, s) : t ≥ s ≥ t0

}
,

such that

H(t, t) = 0 for t ≥ t0, H(t, s) > 0 for (t, s) ∈ D0,

where D0 :=
{
(t, s) : t > s ≥ t0

}
, and H has a nonpositive continuous partial derivative

D0on D0with respect to the second variable and satisfies

lim sup
t→∞

1
H(t, t0)

t−1∫
t0

[
b(s)q(s)H(t, s) − b(s)r(s)hη

+(t, s)

K(η + 1)η+1
[
�(1 − α)H(t, s)

]η

]
ds = ∞, (3:8)

where h+(t, s) := max
{
0,H′

s(t, s) +H(t, s) b
′
+(s)
b(s)

}
for (t, s) ∈ D0, here b′

+is defined as

in Theorem 3.1. Then all solutions of (1.1) are oscillatory.

Proof Suppose that y is a nonoscillatory solution of (1.1). Without loss of generality,

we may assume that y is an eventually positive solution of (1.1). We proceed as in the
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proof of Theorem 3.1 to get that (3.7) holds. Multiplying (3.7) by H(t, s) and integrat-

ing from t1 to t - 1, for t Î [t1 + 1, ∞) we obtain

t−1∫
t1

Kb(s)q(s)H(t, s)ds ≤ −
t−1∫
t1

H(t, s)w′(s)ds +
t−1∫
t1

H(t, s)
b′
+(s)
b(s)

w(s)ds

−
t−1∫
t1

H(t, s)η�(1 − α)[b(s)r(s)]−1/ηw1+1/η(s)ds.

(3:9)

Using the integration by parts formula, for t Î [t1 + 1, ∞) we get

−
t−1∫
t1

H(t, s)w′(s)ds = − [−H(t, s)w(s)
]s=t−1
s=t1

+

t−1∫
t1

H′
s(t, s)w(s)ds

< H(t, t1)w(t1) +

t−1∫
t1

H′
s(t, s)w(s)ds.

(3:10)

Substituting (3.10) in (3.9), for t Î [t1 + 1, ∞) we have

K

t−1∫
t1

b(s)q(s)H(t, s)ds

≤ H(t, t1)w(t1) +

t−1∫
t1

{[
H′

s(t, s) +H(t, s)
b′
+(s)
b(s)

]
w(s) − η�(1 − α)H(t, s)

[b(s)r(s)]1/η
w1+1/η(s)

}
ds

≤ H(t, t1)w(t1) +

t−1∫
t1

[
h+(t, s)w(s) − η�(1 − α)H(t, s)

[b(s)r(s)]1/η
w1+1/η(s)

]
ds,

(3:11)

where h+ is defined as in Theorem 3.2. Taking

m = 1 +
1
η
, X =

[
η�(1 − α)H(t, s)

]1/m
w(s)

[b(s)r(s)]1/(η+1)
and Y =

hη
+(t, s)[b(s)r(s)]

1/m

mη
[
η�(1 − α)H(t, s)

]η/m
,

by using Lemma 2.2 in (3.11) we obtain for t Î [t1 + 1, ∞),

t−1∫
t1

b(s)q(s)H(t, s)ds ≤ K−1H(t, t1)w(t1) + K−1

t−1∫
t1

b(s)r(s)hη
+(t, s)

(η + 1)η+1[�(1 − α)H(r, s)]η
ds. (3:12)

Since H′
s(t, s) ≤ 0 for t >s ≥ t0, we have 0 >H(t,t1) ≤ H(t,t0) for t >t1 ≥ t0. Therefore,

from (3.12) we get for t Î [t1 + 1, ∞),

t−1∫
t1

[
b(s)q(s)H(t, s) − b(s)r(s)hη

+(t, s)

K(η + 1)η+1[�(1 − α)H(t, s)]η

]
ds

≤ K−1H(t, t1)w(t1) ≤ K−1H(t, t0)w(t1).

(3:13)

Since 0 <H(t, s) ≤ H(t, t0) for t >s ≥ t0, we have 0 <
H(t,s)
H(t,t0)

≤ 1 for t >s ≥ t0. Hence, it

follows from (3.13) that
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1
H(t, t0)

t−1∫
t0

[
b(s)q(s)H(t, s) − b(s)r(s)hη

+(t, s)

K(η + 1)η+1[�(1 − α)H(t, s)]η

]
ds

=
1

H(t, t0)

t1∫
t0

[
b(s)q(s)H(t, s) − b(s)r(s)hη

+(t, s)

K(η + 1)η+1[�(1 − α)H(t, s)]η

]
ds

+
1

H(t, t0)

t−1∫
t1

[
b(s)q(s)H(t, s) − b(s)r(s)hη

+(t, s)

K(η + 1)η+1[�(1 − α)H(t, s)]η

]
ds

≤ 1
H(t, t0)

t1∫
t0

b(s)q(s)H(t, s)ds +
1

H(t, t0)
K−1H(t, t0)w(t1)

≤
t1∫

t0

b(s)q(s)ds + K−1w(t1) for t ∈ [t1 + 1,∞) .

Letting t ® ∞, we have

lim sup
t→∞

1
H(t, t0)

t−1∫
t0

[
b(s)q(s)H(t, s) − b(s)r(s)hη

+(t, s)

K(η + 1)η+1[�(1 − α)H(t, s)]η

]
ds

≤
t1∫

t0

b(s)q(s)ds + K−1w(t1) < ∞,

which is a contradiction to (3.8). The proof is complete.

Next, we consider the case

∞∫
t0

r−1/η(t)dt < ∞, (3:14)

which yields (3.1) doesn’t hold. In this case, we have the following results.

Theorem 3.3 Suppose that (A) and (3.14) hold and that there exists a positive func-

tion b Î C1[t0,∞) such that (3.2) holds. Furthermore, assume that for every constant C

≥ t0,

∞∫
C

⎡
⎣ 1
r(t)

t∫
C

q(s)ds

⎤
⎦

1/η

dt = ∞. (3:15)

Then every solution y of (1.1) is oscillatory or satisfies limt→∞
∫ ∞
t (v − t)−αy(v)dv = 0.

Proof Assume that y is a nonoscillatory solution of (1.1). Without loss of generality,

assume that y is an eventually positive solution of (1.1). Proceeding as in the proof of

Theorem 3.1, we obtain that (3.3) and (3.4) hold. Then there are two cases for the sign

of
(
Dα

−y
)
(t). The proof when

(
Dα

−y
)
(t) is eventually negative is similar to that of Theo-

rem 3.1 and hence is omitted.

Next, assume that
(
Dα

−y
)
(t) is eventually positive. Then there exists t2 ≥ t1 such that(

Dα
−y

)
(t) > 0 for t ≥ t2. From (2.4) we get G’(t) < 0 for t ≥ t2. Thus we get limt®∞ G(t)

:= L ≥ 0 and G(t) ≥ L. We now claim L = 0. Assume not, i.e., L > 0, then from (3.4)
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we get[
r(t)

(
Dα

−y
)η(t)

]′
= q(t)f (G(t)) ≥ q(t)KGη(t) ≥ KLηq(t) for t ∈ [t2,∞) .

Integrating both sides of the last inequality from t2 to t, we have

r(t)
(
Dα

−y
)η
(t) ≥ r(t2)

(
Dα

−y
)η
(t2) + KLη

t∫
t2

q(s)ds > KLη

t∫
t2

q(s)ds for t ∈ [t2,∞) .

Hence, from (2.4) we get

− G′(t)
�(1 − α)

=
(
Dα

−y
)
(t) > K1/ηL

⎡
⎣ 1
r(t)

t∫
t2

q(s)ds

⎤
⎦

1/η

for t ∈ [t2,∞) .

Integrating both sides of the last inequality from t2 to t, we obtain

G(t) ≤ G(t2) − �(1 − α)K1/ηL

t∫
t2

⎡
⎣ 1
r(u)

u∫
t2

q(s)ds

⎤
⎦

1/η

du for t ∈ [t2,∞).

Letting t ® ∞, from (3.15) we get limt®∞ G(t) = -∞. This contradicts (3.3). There-

fore, we have L = 0, i.e., limt®∞ G(t) = 0. In view of (2.3), we see that the proof is

complete.

Theorem 3.4 Suppose that (A) and (3.14) hold. Let b(t) and H(t,s) be defined as in

Theorem 3.2 such that (3.8) holds. Furthermore, assume that for every constant C ≥ t0,

(3.15) holds. Then every solution y of (1.1) is oscillatory or satisfies

limt→∞
∫ ∞
t (v − t)−αy(v)dv = 0.

Proof Assume that y is a nonoscillatory solution of (1.1). Without loss of generality,

assume that y is an eventually positive solution of (1.1). Proceeding as in the proof of

Theorem 3.1, we obtain that (3.3) and (3.4) hold. Then there are two cases for the sign

of
(
Dα

−y
)
(t). The proof when

(
Dα

−y
)
(t) is eventually negative is similar to that of Theo-

rem 3.2 and hence is omitted. The proof when
(
Dα

−y
)
(t) is eventually positive is similar

to that of the proof of Theorem 3.3 and thus is omitted. The proof is complete.

Remark 3.1 From Theorems 3.1-3.4, we can derive many different sufficient condi-

tions for the oscillation of (1.1) with different choices of the functions b and H.

4 Examples
Example 4.1 Consider the fractional differential equation

[
tη−1(Dα

−y
)η
(t)

]′ − 1
t2

⎛
⎝ ∞∫

t

(v − t)−αy(v)dv

⎞
⎠

η

= 0, t > 0, (4:1)

where a Î (0,1), h > 0 is a quotient of odd positive integers and (h + 1)h+1[Γ(1 - a)]
h > 1. In (4.1), r(t) = th-1, q(t) = 1

t2 and f(u) = uh. Take t0 > 0 and K = 1. Since

∞∫
t0

r−1/η(t)dt =

∞∫
t0

1

t
1− 1

η

dt = ∞,
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we find that (A) and (3.1) hold. We will apply Theorem 3.1, and it remains to satisfy

the condition (3.2). Taking b(s) = s, we obtain

lim sup
t→∞

t∫
t0

[
Kb(s)q(s) − r(s)[b′

+(s)]
η+1

(η + 1)η+1[�(1 − α)b(s)]η

]
ds

= lim sup
t→∞

t∫
t0

1
s

[
1 − 1

(η + 1)
η+1
[�(1 − α)]η

]
ds

= ∞,

which implies that (3.2) holds. Therefore, by Theorem 3.1 every solution of (4.1) is

oscillatory.

Example 4.2 Consider the fractional differential equation

[
tη+1

(
Dα

−y
)η
(t)

]′−2t

⎡
⎣3 + exp

⎛
⎝ ∞∫

t

(v − t)−αy(v)dv

⎞
⎠

⎤
⎦

⎛
⎝ ∞∫

t

(v − t)−αy(v)dv

⎞
⎠

η

= 0, t > 0, (4:2)

where a Î (0,1) and h > 0 is a quotient of odd positive integers. In (4.2), r(t) = th+1,

q(t) = 2t and f(u) = (3 + eu)uh. Take t0 > 0 and K = 3. Since

∞∫
t0

r−1/η(t)dt =

∞∫
t0

1

t
1+ 1

η

dt < ∞,

we see that (A) and (3.14) hold 3.3, it remains. To apply Theorem to satisfy the con-

ditions (3.2) and (3.15). Take b(s) = 1, then we get

lim sup
t→∞

t∫
t0

[
Kb(s)q(s) − r(s)[b′

+(s)]
η+1

(η + 1)η+1[�(1 − α)b(s)]η

]
ds = lim sup

t→∞

t∫
t0

6sds = ∞,

which implies that (3.2) holds. For every constant C ≥ t0, we can find 0 <M < 1 and

tM ≥ C such that t - C ≥ Mt for t Î [tM, ∞). Thus, we conclude

∞∫
C

⎡
⎣ 1
r(t)

t∫
C

q(s)ds

⎤
⎦

1/η

dt =

∞∫
C

⎡
⎣ 1
tη+1

t∫
C

2sds

⎤
⎦

1/η

dt

=

∞∫
C

(
t2 − C2

tη+1

)1/η

dt =

∞∫
C

[
(t + C)(t − C)

tη+1

]1/η

dt

≥ (2CM)
1
η

∞∫
tM

1
t
dt = ∞,

which yields that (3.15) holds. Hence, by Theorem 3.3 every solution y of (4.2) is

oscillatory or satisfies limt→∞
∫ ∞
t (v − t)−αy(v)dv = 0.
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