
RESEARCH Open Access

Population dynamics of plateau pika under lethal
control and contraception control
Hanwu Liu1,2,3*, Zhen Jin2, Yuming Chen3,4 and Fengqin Zhang3

* Correspondence: liuhanwu-
china@163.com
1Electromechanical Engineering
College, North University of China,
Taiyuan 030051, China
Full list of author information is
available at the end of the article

Abstract

The overabundance of plateau pika brings a great damage to the alpine meadow.
Rodenticide and sterilant have been used to control this mammalian pest. In this
article, we proposed models to incorporate these controls and the seasonal cycle of
breeding and non-breeding. It is shown that when the basic reproduction number is
less than 1 then the trivial equilibrium is globally asymptotically stable; if the basic
reproduction number is greater than 1 then the trivial equilibrium is unstable and
there is a positive equilibrium which attracts all positive solutions. Then we study the
effects of controls on the existence of the positive equilibrium and the population
size. These theoretical results are supported by numerical simulations. We also
propose the possible strategies to be implemented in practice.
Mathematical Subject Classification: 39A30; 39A60; 92D25.
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1 Introduction
The plateau pika (Ochotona curzoniae) is a keystone species of the Qinghai-Tibet

plateau. Its presence of reasonable size is important for the healthy development and

the biodiversity of the alpine meadow. In the recent years, due to overgrazing and the

global climate change, the alpine meadow has degraded seriously. The degraded

meadow provides the plateau pika with a better habitat and results in the overabun-

dance of plateau pika. Now, plateau pika is regarded as a pest because its competition

with livestock for herbage and its burrowing activity which leads to soil erosion and

vegetation disturbances [1-4].

In order to manage rodent pests, a variety of methods have been used [5]. The com-

monly used one to control plateau pika is poisoning, which kills them with botulins of

models C and D [6]. Now, sterilants [7,8] have also been used to control plateau pika

[9,10]. Zhang [11] argued that culling and contraception combined will give better

result in controlling population numbers. In fact, some sterilants can also poison target

species [10].

Reproduction in mammals is likely affected by the resources available in its habitat to

sustain the energy demands of reproduction. Plateau pika is a native herbivorous spe-

cies inhabiting the Qinghai-Tibetan plateau. They have short spring-summer breeding

seasons typical to herbivorous small mammals inhabiting alpine environments [12].

Considered the seasonal reproduction of plateau pika, we proposed several discrete
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models to understand the dynamics of plateau pika. During the breeding and the non-

breeding seasons, the dynamics of plateau pika population satisfies different models.

This kind of model can describe the population dynamics in more detail. With this

kind of model, Burkey and Stenseth [13] studied the effects of resource patchiness and

the effects of a seasonally variable environment on the population dynamics of a herbi-

vore species, and Liu et al. [14] investigated the influence of environment change on

population dynamics.

This article is structured as follows. In Section 2, we model the population with nat-

ural growth. We take into account the seasonal cycle of breeding and non-breeding.

Then, in Section 3, we modify the model obtained in Section 2 to incorporate lethal

control and contraception control. It is shown that when the basic reproduction num-

ber is less than 1 then the trivial equilibrium is globally asymptotically stable; if the

basic reproduction number is greater than 1 then the trivial equilibrium is unstable

and there is a positive equilibrium which attracts all positive solutions. In Section 3,

we also study the effects of controls on the existence of positive equilibrium and the

population size. To support the theoretical results, numerical simulations are presented

in Section 4, and finally the article is concluded with a short discussion.

2 A model for natural growth
Assume that the breeding season of plateau pika is from April to August and the non-

breeding season is from September to the next March. Let xn and yn denote the popu-

lation size of the plateau pika in April and August of the nth year, respectively. During

the non-breeding season, the population size decreases gradually due to death. The

ratio of the population size in April to that in the previous August is called the over-

wintering survival rate. During the breeding season, some newborns are recruited and

some individuals will die. The ratio of the population size in August to that in April is

called the increasing rate. Note that the number of plateau pika in August is the sum

of the amount of newborns and the amount of survived individuals during the breed-

ing season. Indeed, the birth rate refers to the ratio of amount of newborns in August

to the population size in April and the survival rate during the breeding season refers

to the ratio of amount of survived overwintering individuals in August to the popula-

tion size in April.

We assume that both overwintering survival rate and increasing rate are density

dependent and they decrease as the population densities increase. More precisely, we

assume that the overwintering survival rate is f(x) = a/(b + x) and the increasing rate

is g(x) = c/(d + x), where a, b, c, and d are all positive. From the meanings of f and g,

we have max{f(x)} < 1 and max{g(x)} > 1, which imply 0 <a < b and 0 <d < c. In the

sequel, we always assume that 0 <a < b and 0 <d < c. We can also rewrite g(x) as

g(x) = B(x) + D(x), where B(x) = c(1 -ε)/(d + x) and D(x) = cε/(d + x) are the birth rate

and death rate during the breeding season, respectively. Again, from max{D(x)} < 1, we

get 0 <ε <d/c.

From the above discussion, we can propose the following model for natural growth,⎧⎪⎨
⎪⎩
yn =

cxn
d + xn

,

xn+1 =
ayn
b + yn

,
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or equivalently

xn+1 =
acxn

bd + (b + c)xn
� H(xn). (1)

From the view of biology, we assume that x0 ≥ 0. It is easy to see that xn ≥ 0 when

x0 ≥ 0, n Î N ≜ {0,1,...}. Moreover, if x0 > 0 then xn > 0 for all n Î N. In fact, the solu-

tion of (1) can be found by mathematical induction. If ac ≠ bd, then

xn =
(ac)n(ac − bd)x0

(bd)n(ac − bd) + (b + c)
[
(ac)n − (bd)n

]
x0

; (2)

while if ac = bd,

xn =
acx0

ac + n(b + c)x0
. (3)

Obviously, x* = 0 is always an equilibrium of (1), denoted by O1. If ac > bd, then (1)

has another unique positive equilibrium x* = (ac - bd)/(b + c), denoted by E1. The

following result follows directly from (2) and (3).

Theorem 1.

(i) If ac ≤ bd, then O1 is globally asymptotically stable.

(ii) If ac >bd, then O1 is unstable but E1 asymptotically attracts all positive

solutions.

When x = 0, f(x) takes the maximum value a/b, which is called the intrinsic overwin-

tering survival rate. Similarly, when x = 0, g(x) takes the maximum value c/d, which is

called the intrinsic increasing rate. As a result, we call (a/b)(c/d) = ac/bd the basic

reproduction number and is denoted by R0. Then, Theorem 1 tells us that if R0 ≤ 1

then the population dies out; otherwise, (1) possesses a globally asymptotically stable

positive equilibrium and hence the population exists persistently.

Moreover, at E1, the annual increasing rate equals one and the population size at

August is y* = (ac - bd)/(a + d). When the increasing rate during the breeding season

equals one, that is f(x) = 1, the population size at April is x# = c - d, which may be

called the carrying capacity. Clearly, x# >y* > x*. In other words, the population at the

annual positive equilibrium is smaller than that at the positive equilibrium of the

breeding season.

3 A model for the controlled population
3.1 Model formulation

Recall that when ac ≤ bd, the natural plateau pika population dies out gradually and

hence there is no need to control. But, when ac > bd, the population exists persistently

and is harmful after reaching high density. So, control should be implemented. In the

sequel, we always assume that ac > bd.

We assume that both the lethal and contraception controls are applied simulta-

neously at April of every h years. Let p and q denote the contraception rate and

removal (or killing) rate, respectively, i.e., p Î (0,1) is the percentage of fertile indivi-

duals become sterilized instantaneously and q Î (0,1) is the percentage of individuals

instantaneously killed. Under control, the population is divided into fertile and sterile
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sub-populations. Let fn and sn denote the densities of fertile and sterile individuals in

April at the nth year, respectively; Fn and Sn denote the densities of fertile and infertile

individuals in August at the nth year, respectively.

Based on (1), if control is implemented at the nth year then we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fn =
c(1 − q)(1 − p)fn
d + (1 − q)(fn + sn)

,

Sn =
cε(1 − q)(sn + pfn)
d + (1 − q)(fn + sn)

,

fn+1 =
aFn

b + Fn + sn
,

sn+1 =
aSn

b + Fn + Sn
,

or equivalently,

⎧⎪⎪⎨
⎪⎪⎩
fn+1 =

ac(1 − q)(1 − p)fn
bd + (1 − q)(b + c − cp + cεp)fn + (1 − q)(b + cε)sn

,

sn+1 =
acε(1 − q)(sn + pfn)

bd + (1 − q)(b + c − cp + cεp)fn + (1 − q)(b + cε)sn
;

(4)

if there was no control implemented at the nth year then we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fn =
cfn

d + fn + sn
,

Sn =
cεsn

d + fn + sn
,

fn+1 =
aFn

b + Fn + Sn
,

sn+1 =
aSn

b + Fn + Sn
,

or equivalently,

⎧⎪⎪⎨
⎪⎪⎩
fn+1 =

acfn
bd + (b + c)fn + (b + cε)sn

,

sn+1 =
acεsn

bd + (b + c)fn + (b + cε)sn
.

(5)

Suppose that the control is implemented in April at the nhth year (n Î N, h ≥ 1).

We use f̄n, s̄n, F̄n, S̄n for fnh, snh, Fnh, Snh respectively. Then it follows from (4) and (5)

that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
f̄n+1 =

Af̄n
B + Cfn +Ds̄n

,

s̄n+1 =
E(s̄n + pf̄n)

B + Cf̄n +Ds̄n
,

(6)
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where

A = (1 − q)(1 − p)(ac)h,

B = (bd)h,

C =
(1 − q)(1 − p)(b + c)

bd − ac

[
(bd)h − (ac)h

]
+
p(1 − q)(b + cε)

bd − acε

[
(bd)h − (acε)h

]
,

D =
(1 − q)(b + cε)

bd − acε

[
(bd)h − (acε)h

]
,

E = (1 − q)(acε)h.

Note that E<B as acε < ac · d
c
= ad < bd .

3.2 Model analysis

As before, we only need to consider solutions with non-negative initial conditions.

Obviously, O2 = (0, 0) is always an equilibrium of (6). Let R2 = (1 - q)(1 - p)(ac)h -

(bd)h and Q2 = 1 - p - εh. Then when R2 > 0 (at that time Q2 > 0) (6) has another

unique positive equilibrium E2 = (f̄ ∗,
εhpf̄ ∗

1 − p − εh
),, where f̄ ∗ =

(A − B)(A − E)
AC − EC + pDE

..

Note that, for a solution (f̄n, s̄n) of (6), if f̄n0 = 0 for some n0 Î N then f̄n = 0 for n Î

N and if f̄0 �= 0 then f̄n �= 0 for n Î N. First, for a solution of (6) with f̄0 �= 0, dividing

the second equation of (6) by the first one yields

s̄n+1
f̄n+1

=
E

A
· s̄n
f̄n

+
pE

A
·

The above equation can be solved inductively to obtain

s̄n
f̄n

=
s̄0
f̄0

+ np (7)

if Q2 = 0 (equivalently A = E) or

s̄n
f̄n

=

(
s̄0
f̄0

− pE
A − E

) (
E
A

)n

+
pE

A − E
(8)

if Q2 ≠ 0. Then, the first equation of (6) combined with (7) or (8) gives

f̄n =
f̄0[

1 +
Ds̄0 + Cf̄0
B − A

+
pADf̄0

(B − A)2

] (
B

A

)n

+
npDf̄0
A − B

+
Ds̄0 + Cf̄0
A − B

− pADf̄0
(B − A)2

(9)

if Q2 = 0 (at this time we have A = E < B) or

f̄n =
f̄0

D

E − A

(
s̄0 − pEf̄0

A − E

) (
E

A

)n n(AC − EC + PDE)f̄0
A(A − E)

+ 1 +
D

A − E

(
s̄0 − pEf̄0

A − E

)
(10)

if R2 = 0 (at this time we have A = B > E and hence Q2 >0) or

f̄n =
f̄0[

1 +
Ds̄0
B − E

+
(EC − BC + pDE)f̄0
(E − B)(B − A)

](
B

A

)n

−
[

Ds̄0
B − E

− pDEf̄0
(B − E)(A − E)

] (
E

A

)n

+
(AC − EC + pDE)f̄0
(A − B)(A − E)

(11)
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if Q2 ≠ 0 and R2 ≠ 0. With the help of (9)-(10), we can obtain the following result.

Theorem 2.

(i) If R2 ≤ 0 then O2 is asymptotically stable.

(ii) If R2 >0 then every solution with f̄0 = 0tends to O2 but every solution with

f̄0 �= 0tends to E2.

Proof. We only prove the case where R2 > 0 since the proofs for the other cases are

similar. In this case, we have A > B > E. First, assume that f̄0 = 0. Then f̄n = 0 for n Î
N and hence

s̄n+1 =
Es̄n

B +Ds̄n

by (6). It follows that

s̄n =
s̄0(

1 +
Ds̄0
B − E

)(
B
E

)n

− Ds̄0
B − E

→ 0 as n → ∞.

Now, assume that f̄0 �= 0. Then f̄n is given by (11) and hence

f̄n → (A − C)(A − E)
AC − EC + pDE

= f̄ ∗ as n ® ∞. This, combined with the first equation of (6)

implies that lim
n→∞ s̄n exists, say s̄. Taking limits of both sides of the two equations in (6)

yields,⎧⎪⎪⎪⎨
⎪⎪⎪⎩
f̄ ∗ =

Af̄ ∗

B + Cf̄ ∗ +Ds̄
,

s̄ =
E(s̄ + pf̄ ∗)

B + Cf̄ ∗ +Ds̄
.

This gives s̄ =
εhpf̄ ∗

1 − p − εh
. In summary, we have proved (f̄n, s̄n) → E2 as n ® ∞ and

hence the proof is complete.

Note that the intrinsic increasing rate of the fertile individuals is

A
B

=
(1 − q)(1 − p)(ac)h

(bd)h
, which is called the basic reproduction number with control

and is denoted by R̃0. It is easy to see that R̃0 > 1 (respectively, = 1, < 1) is equivalent

to R2 >0 (respectively, = 0, < 0). Then Theorem 2 can be rephrased as follows. If

R̃0 ≤ 1 then O2 is globally asymptotically stable while if R̃0 > 1 then O2 is unstable

and E2 attracts all positive solutions.

3.3 Parameter analysis

In this section, based on (6), we study the effects of control strategies on the existence

of E2 and the (total) population size in April at E2.

Recall that E2 exists when R2 > 0 or equivalently (1 - q)(1 - p) > (bd/ac)h. This

reveals the fact that the contraception rate p and the removal rate q have the same
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effect on determining whether the plateau pika population dies out. Moreover, for the

existence of E2, larger control period h requires larger p and/or q.

Now, under the assumption of the existence of E2, we study the effects of control

parameters on the population size in April at E2, which is

� =
(1 − εh)

[
(1 − q)(1 − p)(ac)h − (bd)h

]
(1 − q)(1 − p)� + (1 − q)�

,

where

� =
(b + c)

[
(bd)h − (ac)h

]
bd − ac

−
(b + cε)

[
(bd)h − (acε)h

]
bd − acε

,

� =
(b + cε)

[
(bd)h − (acε)h

]
bd − acε

−
εh(b + c)

[
(bd)h − (ac)h

]
bd − ac

.

Clearly, the lethal and contraception controls have different roles in determining Π.

Other effects are summarized below.

3.3.1 Contraception control is better than the lethal control

In particular, if p = 0 (i.e., only lethal control is implemented) then the population size

at E2 is

�L =

[
(ac)h(1 − q) − (bd)h

]
(bd − ac)[

(bd)h − (ac)h
]
(b + c)(1 − q)

while if q = 0 (i.e., only contraception control is implemented) then the population

size at E2 is

�S =
(1 − εh)

[
(ac)h(1 − p) − (bd)h

]
p(b + cε)
bd − acε

[
(bd)h − (acε)h

]
+
(1 − p − εh)(b + c)

bd − ac

[
(bd)h − (ac)h

] .

Thus, if p = q then

�S

�L
=

1 − p − εh + pεh

1 − p − εh +
p(b + cε)(ac − bd)

[
(bd)h − (acε)h

]
(bd − acε)(b + c)

[
(ac)h − (bd)h

]
.

This, combined with the fact that
(b + cε)(ac − bd)

[
(bd)h − (acε)h

]
(bd − acε)(b + c)

[
(ac)h − (bd)h

] > εh, implies

ΠS < ΠL. Therefore, with only one control being implemented with the same rate, the

contraception control is better than the lethal control.

3.3.2 Increasing p or q will decrease Π

Note that

∂�

∂p
=

�(1 − εh)(1 − q)
[
(1 − q)(ac)h − (bd)h

]
−[

(1 − q)(1 − p)� + (1 − q)�
]2 < 0.
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Similarly, we have
∂�

∂p
< 0. It follows that increasing efficiency of either contracep-

tion control or lethal control will decrease the population size, which agrees with our

intuition. Further increasing the rates will results the extinction of the population.

Note that �(p, q) < �(0, 0) =
ac − bd
b + c

This implies that with control being implemen-

ted, the population size is always less than that in the natural growth.

3.3.3 Increasing the control period h will increase Π

The derivative of Π with respect to h is

∂�

∂h
=

(1 − ε)(a + d)bcpεh ln ε

(bd − acε)(bd − ac)(1 − εh)2

[
z(εh) − z((bd/ac)h)

](
bd
ac

)h

ln
bd
ac

(1 − q)

{
p(b + cε)
bd − acε

+
[

b + c
bd − ac

− bcp(1 − ε)(a + d)
(bd − acε)(bd − ac)(1 − εh)

][(
bd
ac

)h

− 1

]}2 ,

where z(x) =
h(1 − x)

[
(1 − p)(1 − q) − x

]
x ln x

. When R2 > 0, we have 0 < εh < (bd/ac)h

< (1 - p)(1 - q). For 0 <x < (1 - p)(1 - q), z(x) is an increasing function of x since

z′(x) =
h(1 − x + ln x)

[
x − (1 − p)(1 − q)

]
+ x(x − 1) ln x

(x ln x)2
> 0.

Therefore, ∂Π/∂h > 0. This means that increase the control period will increase the

population size. This again agrees with our expectation. Note that, as

h → ∞,� → ac − bd
b + c

, the population size with no control.

3.3.4 Increasing ε will decrease Π

For this purpose, for n Î N, we define a function �n: (0, ∞) ∋x® 1 + x+... xn. Then

one can easily show that for a > 1 and n ≥ 1, �n(ax)/�n(x) is an increasing function

of x. Note that we can rewrite Π as

� =
(1 − p)(1 − q)(ac)h − (bd)h

(1 − q)

{
b + c

ac − bd

[
(1 − p)(ac)h − (bd)h

]
+
pbc(a + d)(bd)h−1ϕh−1(acε/bd)

(ac − bd)ϕh−1(ε)

} .

Since ac > bd, one conclude that if h > 1 then Π is a decreasing function of ε and if

h = 1 then � =
(1 − p)(1 − q)ac − bd
(1 − q)(b + c − pc)

and hence ε has no effect on Π.

Note that the parameters p, h, and ε affect not only the population size at E2, but

also the ratio of fertile individuals to sterile individuals at E2. This can easily be seen

from
s̄∗

f̄ ∗ =
εhp

1 − p − εh

4 Numerical simulations
From April 2007 to September 2008, Liu et al. [15] executed field contraception

experiment of plateau pika at Dawu Town, Maqin County of Qinghai Province. They

selected 16 sample plots of 100 ha which are more than 0.5 km apart. Four replications

of four treatments (quinestrol, levonorgestrel, EP-1 (quinestrol:levonorgestrel = 3:6),

and control) were randomly assigned to the 16 sample plots. Control ware conducted
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at every April. Fitting with their experimental data, they found that a = 70.4, b = 71.7,

c = 58.3, and d = 17.1. They pointed out the contraception rate with quinestrol is

about 0.78. From experience, ε = 0.24.

The symmetrical effect of the contraception rate p and the removal rate q on deter-

mining whether the plateau pika population dies out is reflected in Figure 1. However,

the effects of p and q on the behavior of approaching equilibrium are not symmetrical

(see Figure 2).

We know that if only one control is implemented with the same control rate then

the contraception control has better effect than the lethal control. Figures 3 and 4

show the dynamics of the population subject to the contraception control (dashed line)

or the lethal control (solid line) with the same control rate 0.8. In Figure 3, control is

implemented every 2 years and in Figure 4 control is implemented every year. We can

see that the population with contraception control declines successively while the

population with lethal control changes abruptly.

Usually, when the controlled population declines to a reasonable size, the harm is

considered to be eliminated and no management is taken. In practice, it is impossible

to eradicate all plateau pika completely in a relatively large area. A very small part of

remnant population still exists. After all managements were stopped, the remnant

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

p

q

D0

D2

D1

D4

D3

Figure 1 The symmetrical effect of p and q on determining whether the plateau pika population
dies out. If (p,q) locates in the domain D0 then the population will persist and E2 exists always, otherwise
the population may die out. When h = 1, if (p,q) locates in D1∪D2∪D3∪D4 then the population will die
out. When h = 2, if (p,q) locates in D2 ∪ D3 ∪ D4 then the population will die out. Similar explanations can
be given to h = 3 and 4.
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population would recover rapidly to high density (see Figure 5). Here, we take f̄0 = 1
and s̄0 = 0.1.

5 Discussion
In this article, discrete models of the plateau pika are formulated to account for the

effects of the lethal and the contraception controls. In the models, we also

The first year The second year The third year The fourth year
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Figure 2 Non-symmetrical effects of p and q on the behavior of approaching equilibrium. The

control was done at every April and the value of f̄n and s̄n at the initial April are 22.14 and 0,

respectively. The black and the grey lines, respectively, represent the population size and the amount of
the sterile individuals in the case where p = 0.4 and q = 0.8, while the black dashed line and the grey
dashed line, respectively, stand for the population size and the amount of sterile individuals in the case
where p = 0.8 and q = 0.4.
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Figure 3 Comparison of the contraception control (dashed line) and the lethal control (solid line)
when h = 2 and p or q = 0.8.
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incorporated the seasonal cycle of breeding and non-breeding. The dynamics is com-

pletely studied and the impacts of the controls are analyzed.

For a better effect of control, we need larger contraception rate, or larger removal

rate, or shorter control period. This makes the population small or even extinct.
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Figure 4 Comparison of the contraception control (dashed line) and the lethal control (solid line)
when h = 1 and p or q = 0.8.
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Figure 5 After all managements were stopped, the remnant population would recover rapidly
where f̄0 = 1 and s̄0 = 0.1.
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Though the contraception rate and the removal rate have the same effect on determin-

ing whether the population dies out, their effects do not superimpose. Moreover, the

two controls are combined, will give better result than only one control is

implemented.

Among various methods to control rodent pests, the contraception and lethal con-

trols possess distinct features. With contraception control, the population declines con-

tinuously, whereas with lethal control it reaches a small size after abrupt decreasing

and increasing repeatedly. Plateau pika is an important component of the alpine mea-

dow ecosystem. On the one hand, abrupt change of its population size would result in

turbulence of material flow, energy flow, and information flow in the ecosystem. When

the fragile ecosystem cannot endure this kind of disturbance it maybe disintegrate. So,

it is preferable to let the plateau pika population reduce gradually. On the other hand,

recovery of degraded alpine meadow is a lengthy process. Plateau pika, as the leading

pest, accelerates the degradation of the alpine meadow. Therefore, it is urgent to let

the plateau pika population reduce rapidly. This contradiction can be solved by imple-

menting contraception control and lethal control simultaneously. Despite the better

final effect of contraception control, the contraception and lethal controls cannot

replace with each other. Combined implementation will give more reasonable result.

With certain control strategy, the plateau pika population will decline to a small size.

Some occasional accidents may cause the small size population to die out. However,

one should not be optimistic. Even if the plateau pika population died out, the left

degraded alpine meadow is still a favorable habitat of plateau pika. In practice, when

the plateau pika population is too small to cause damage, control will be stopped

because of concerns about manpower, finance and material. The remaining and immi-

gratory plateau pika will recover rapidly (see Figure 5). In this sense, contraception

control or lethal control can only control the harm caused by overabundant plateau

pika for a while but cannot root out the harm.

The degraded alpine meadow provides the plateau pika with a suitable habitat while

the overabundant plateau pika population aggravates the degradation of the alpine

meadow [2]. The long-term degradation of the alpine meadow will greatly reduce its

ecological function, whereas the temporary reduction of plateau pika is helpless for the

recovery of the degraded alpine meadow. Therefore, alternate methods like establishing

artificial or semiartificial grassland are applied to manage the degraded alpine meadow

[4]. After restoring the vegetation, the alpine meadow is no longer a suitable habitat

for plateau pika, namely, the carrying capacity of plateau pika decreases. From the ana-

lysis in Sections 2 and 3, no matter whether there is control or not, the population

size at the positive equilibrium reduces as long as the carrying capacity decreases.

Therefore, restoring vegetation is the fundamental method to root out plateau pika.

The models formulated in this article bear strong practicability. All parameters can

be estimated from data collected from field experiments. The population size at April

and August can be calculated from (6). The population size at other months can be

obtained through interpolating with an appropriate interpolation function like aexp(bt).

Besides its own law, the dynamics of plateau pika is also affected by climatic factors

such as precipitation and temperature. Because of the randomness of climatic factors,

the amount of plateau pika may experience big annual variation [16]. As a result, we
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should frequently monitor plateau pika. When the population size reaches a threshold,

we should take control strategies in time.
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