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Abstract
We study the scalar p-degree functional

J(x) = RN+1|xN+1|p +
N∑
k=0

[
Rk|�xk|p – Ck|xk+1|p

]

over the class of sequences with zero boundary condition at the left endpoint and
free right endpoint. We extend the linear concept of coupled intervals to give a
necessary and sufficient condition for nonnegativity and positivity of this functional.
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1 Introduction
In this article, we study the p-degree functional

J(x) = RN+|xN+|p +
N∑
k=

[
Rk|�xk|p –Ck|xk+|p

]
, ()

where N ≥ , Rk �=  for k ∈ [,N] and p > . (Note that as usual, under the interval we
actually mean the intersection of the interval of real numbers with the set of all integers.)
The domain of the functional J (the class of admissible functions) is supposed to be the set
of functions x defined on [,N + ] which satisfy x = . The functional is said to be non-
negative over the class of admissible functions if J(x)≥  for every admissible x. Similarly,
J is said to be positive if J(x) >  for every admissible x which is not equal zero identically
on [,N + ].
This article can be considered as a continuation of the article [] dealing with the p-

degree functional () over the class of the functions satisfying x =  = xN+ and the article
[], where the functional

A|x|p +
N∑
k=

[
Rk|�xk|p –Ck|xk+|p

]
,

defined over the class of nontrivial sequences satisfying xN+ =  has been studied. It turns
out that the concept of conjugate intervals which has been used in [, ] is no more suf-
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ficient to prove nonnegativity and/or positivity of the functional (). For this reason, we
use a different concept in this article - the concept of coupled intervals developed for the
quadratic functional

I =

(
η

ηN+

)T

�

(
η

ηN+

)
+

N∑
k=

{
ηT
k+Pkηk+ + ηT

k+Qk�ηk +�ηT
k Rk�ηk

}
()

in a series of papers written by Šimon Hilscher and Zeidan, see [–] and the references
therein. Note that the theory of coupled points for differential equations has been de-
veloped in a series of articles written by Došlá, Došlý, Zeidan and Zezza, see [–] and
the references therein. The extension of the continuous coupled points theory from the
quadratic to the p-degree functional is described in [].
The quadratic functional () defined over various classes of admissible functions is stud-

ied extensively in the literature because of the connection with the second variation: () is
a second variation of the functional

K(x,xN+) +
N∑
k=

g(k,xk+,�xk),

see [] for details. Note that in contrast to [], we deal with the p-degree functional and
for this reason we work with the scalar case only. In this case, the matrix products in ()
reduce to the products and powers of real numbers.
The corresponding Euler-Lagrange equation to the functional () is the half-linear dif-

ference equation

�
(
Rk�(�zk)

)
+Ck�(zk+) = , ()

where �(t) = |t|p–t. Equation () has the property that a constant multiple of every solu-
tion is also a solution of this equation. See also [, Chapter ] for basic results concerning
equation (). If p = , then the p-degree functional reduces to the quadratic functional and
the half-linear equation () reduces to the linear equation.
There are many similarities between equation () and the linear second-order differen-

tial or difference equations. Among others, many results from the comparison and oscil-
lation theory of the linear second-order difference equation extend to (). Recall that in
the oscillation theory of the second-order difference equations, we replace the zeros of
continuous functions by the so-called generalized zeros, defined as follows:

Definition . (Generalized zero) Let z be a solution of (). The interval (m,m+ ] is said
to be a generalized zero of the solution z if zm �=  and Rmzmzm+ ≤ .

Definition . (Conjugate interval) The interval (m,m + ] is said to be conjugate to  if
(m,m + ] is a generalized zero of the solution z which satisfy z = , r�(z) = .

The functional () defined over the class of functions satisfying x =  = xN+ is known
to be positive definite if and only if there is no conjugate interval to the point  (i.e. there
is no generalized zero of the solution which satisfies x = , r�(x) = ) on the interval
(,N + ], see [, Theorem ..]. Since the class of sequences with the zero boundary
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conditions on both x and xN+ is a subset of the class of sequences with zero boundary
condition at , the nonnegativity (positivity) of the functional () over the class of functions
which satisfy x =  implies the nonnegativity (positivity) of this functional over the class
of functions which satisfy x =  = xN+. Hence, the positivity of the functional () also
implies the nonexistence of the interval conjugate to the point  on (,N + ].
The following definition is motivated by []. For a deeper insight and a motivation for

this definition, see also Remark ..

Definition . (Coupled interval) Consider functional () and let m ≤ N . The interval
(m,m + ] is said to be coupled with  if there exists a solution z of () on [,m – ] and a
real number α which satisfy z = , r�(z) = , zm �= ,

dm := Rmzm�(�zm) + Rm|α – zm|p + |α|p
(
RN+ –

N∑
k=m

Ck

)
≤  ()

and if m �= N then also z �≡ α on [m + ,N + ]. If the strict inequality dm <  holds, then
(m,m + ] is said to be strictly coupled with .

Remark . Note that from the condition z =  �= zm, it follows that (, ] cannot be cou-
pled with . The quantity dm from () is closely related to the value of the functional along
an admissible function which follows the solution starting with zero value and which is
extended as a constant sequence from some index. To show this connection let z be a
nontrivial solution of () on [,N – ] such that z = , R�(z) =  and for m ≤ N con-
sider the sequence x defined by

xk =

⎧⎨
⎩zk , k ∈ [,m],

α, k ∈ [m + ,N + ],
()

i.e. x is a solution on [,m– ], �xm = α – zm and �xk =  for k ∈ [m+ ,N]. Now a direct
computation shows

J(x) = RN+|α|p +
m–∑
k=

(
Rk|�zk|p –Ck|zk+|p

)
+ Rm|α – zm|p –

N∑
k=m

Ck|α|p.

Using summation by parts, z =  and in view of the fact that z is a solution on [,m – ]
we have

m–∑
k=

(
Rk|�zk|p –Ck|zk+|p

)

= Rmzm�(�zm) – Rz�(�z) –
m–∑
k=

(
�

(
Rk�(�zk)

)
+Ck�(zk+)

)
zk+

= Rmzm�(�zm)

and hence J(x) = dm.
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Remark . If not explicitly stated otherwise, in connection with functional () we con-
sider equation () on the interval [,N –], i.e. the solution z of () is defined on [,N +].
Note that if we compare the coefficients from the functional and the coefficients from the
equation, both RN+ and CN are present in the functional, but neither of them appears in
() on [,N – ]. However, for every m ≤ N both RN+ and CN appear in the definition of
coupled point in the quantity dm. In some cases, it is desirable to extend the solution to
the interval [,N], see Remark . hereafter.

2 Preliminary results
In the article, we show that the coupled intervals are convenient for characterization of
nonnegativity or positivity of the functional (). Since the functional () contains also a
functional with zero boundary conditions on both ends as a subset, the nonnegativity
(positivity) of () is broken as soon as the nonnegativity (positivity) of the functional with
zero boundary conditions is broken. Thus, it is natural to expect that an existence of a
conjugate interval implies the existence of a coupled interval. This fact is proved in the
following lemma.

Lemma . Consider equation () on [,N – ] and the corresponding functional (). Let
m ≤ N. If the interval (m,m + ] is conjugate to , then (m,m + ] is coupled with .

Proof Denote by z the solution of () on [,m – ] which satisfies z =  and r�(z) = .
Suppose that (m,m + ] is conjugate to , i.e. zm �=  and Rmzmzm+ ≤ . If α = , then dm
reduces to

dm = Rmzm�(�zm) + Rm|zm|p = Rm|zm|p
[
�

(
zm+

zm
– 

)
+ 

]
.

Graphing the function f (x) = �(x – ) +  we easily find that �(x – ) +  ≤  if and only if
x ≤ . Hence, Rmzmzm+ ≤  is equivalent to dm ≤ . If m = N then (m,m + ] is coupled
with . To finish the proof in the casem <N we have to show that z �≡ α on [m + ,N + ].
However, since α =  and the solution z is not trivial, the relation zk = α cannot hold for
two consecutive indices k, k + . �

A representation of the functional () by a certain tridiagonal matrix has been used in
[–] in the original proof of necessary and sufficient conditions for nonnegativity and
positivity of (). However, we lack this representation for the p-degree functional and we
have to look for another method. A convenient tool for the study of this functional is the
so called Picone-type identity, which has been proved in [], see also [, Theorem ..].
Using this identity we derive the following alternative representation of the functional J .
Note that this representation relies on the existence of the solution of () which satisfies
z =  and zk �=  for k ∈ , , . . . ,N + .

Lemma . Let zk be a solution of () on [,N – ] and suppose that z =  and zk �=  for
k ∈ [,N + ]. For k ∈ [,N] define

Gk(x, z) =
zk+
zk

|�xk|p – zk+�(�zk)
zk�(zk+)

|xk+|p + zk+�(�zk)
zk�(zk)

|xk|p.
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Then Gk(x, z) ≥  and

J(x) = |xN+|p
(
RN+ + RN�

(
�zN
zN+

)
–CN

)
+

N∑
k=

Rkzk
zk+

Gk(x, z). ()

Proof The nonnegativity of Gk(x, z) follows from [], see also [, Theorem ..]. From
zk �=  for k ∈ [,N] and from [, Theorem ..] we have

Rk|�xk|p –Ck|xk+|p = �

{
|xk|pRk

�(�zk)
�(zk)

}
+
Rkzk
zk+

Gk(x, z) (P)

for k ∈ [,N – ]. Hence,

J(x) = |xN+|pRN+ + RN |�xN |p –CN |xN+|p + R|�x|p –C|x|p

+
N–∑
k=

[
Rk|�xk|p –Ck|xk+|p

]
= |xN+|p(RN+ –CN ) + RN |�xN |p + R|x|p –C|x|p

+ |xN |pRN�

(
�zN
zN

)
– |x|pR�

(
�z
z

)
+

N–∑
k=

Rkzk
zk+

Gk(x, z).

Since z is a solution of () for k =  which satisfies z = , we have

R�

(
�z
z

)
= R�

(
�z
z

)
–C = R –C

and

J(x) = |xN+|p(RN+ –CN ) + |�xN |PRN + |xN |pRN�

(
�zN
zN

)
+

N–∑
k=

Rkzk
zk+

Gk(x, z).

Using the definition of Gk and zN �= , zN+ �=  we see that

RNzN
zN+

GN (x, z) =
RNzN
zN+

(
zN+

zN
|�xN |p

–
zN+�(�zN )
zN�(zN+)

|xN+|p + zN+�(�zN )
zN�(zN )

|xN |p
)

= RN |�xN |p – RN�

(
�zN
zN+

)
|xN+|p + RN�

(
�zN
zN

)
|xN |p

and () follows immediately. �

As shown in (), the functional () can be written in the form of a sum of two terms. The
second term is nonnegative, since it is a sum of other nonnegative terms. The nonnega-
tivity (positivity) of the first term is tied with the nonnegativity (positivity) of the quantity
dN from the definition of the coupled interval, as the following lemma shows.
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Lemma . Let z be a solution of () on [,N –]which satisfies z = , R�(z) = , zN �= 
and zN+ �= . The interval (N ,N + ] is coupled with  if and only if

RN+ + RN�

(
�zN
zN+

)
–CN ≤ . ()

The interval (N ,N + ] is strictly coupled with  if and only if the strict inequality holds in
().

Proof Let dN be defined by () with m =N . For α = zN+, we have

dN = RNzN�(�zN ) + RN |�zN |p + |zN+|p(RN+ –CN )

= RN�(�zN )zN+ + |zN+|p(RN+ –CN )

= zN+
[
RN�(�zN ) + RN+�(zN+) –CN�(zN+)

]
= |zN+|p

[
RN+ + RN�

(
�zN
zN+

)
–CN

]
.

Since (N ,N + ] is coupled (strictly coupled) with  if and only if dN ≤  (dN < ), the
lemma follows. �

Remark . If we extend the solution z from Lemma . up to N , the condition () can
be written in the form

RN+ + RN+�

(
�zN+

zN+

)
≤ .

The second term on the left-hand side is closely related with the so called generalized
Riccati difference equation

�wk +Ck +wk

(
 –

Rk

�(�–(Rk) +�–(wk))

)
= . ()

Really, if zk is solution of (), then wk = Rk�(�zk/zk) is solution of (). Thus, the
(non)existence of the coupled interval can be characterized with the Riccati equation. For
more details related to the Riccati equation technique see [, Chapter ] which summa-
rizes known results up to  and also a series of papers by Došlý and Fišnarová [–]
for some further recent extensions (modified Riccati technique).

3 Main results
In this section, we present a necessary and sufficient condition for nonnegativity and pos-
itivity of the functional () over the class of admissible functions, i.e. functions with zero
left endpoint and free right endpoint.

Theorem . Functional () is nonnegative over the class of admissible functions if and
only if there is no interval (m,m + ] ⊆ (,N] coupled with  and the interval (N ,N + ] is
not strictly coupled with .
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Proof Suppose that there is no interval (m,m+ ] ⊆ (,N] coupled with  and the interval
(N ,N + ] is not strictly coupled with . Let z be the solution of () which satisfies z = 
and R�(z) = . Then Rkzkzk+ >  for all k ∈ [,N]. Really, if there exists k ∈ [,N] such
that Rkzkzk+ ≤  then (k,k + ] ⊆ (,N + ] is coupled with  according to Lemma .. By
Lemma ., the functional () allows representation () and the nonnegativity of () follows
from Lemma . and from the nonnegativity of the terms Gk and Rkzkzk+ for k ∈ [,N].
To prove the opposite implication, suppose, by contradiction, that J is nonnegative and

(m,m+ ]⊆ (,N] is coupled with . Let z and α be the corresponding solution and num-
ber from the definition of coupled interval, i.e. z = , R�(z) = , zm �= , dm ≤  and
zk �≡ α on [m + ,N + ] if m �=N . Define an admissible function x as in Remark .. Simi-
larly, as in Remark . we have J(x) = dm ≤ . Since J is nonnegative, the relation J(x) = 
holds and J attains its minimum at x. Consequently, x satisfies the corresponding Euler-
Lagrange equation () on [,N – ] and hence x ≡ z on [,N + ]. However, xk ≡ α on
[m + ,N + ] and hence also zk ≡ α on [m + ,N + ] which contradicts the definition of
the coupled interval. In a similar way, if J is nonnegative and (N ,N + ] is strictly coupled,
then the function defined in Remark . satisfies J(x) = dN <  which contradicts nonneg-
ativity of J . �

Remark . The sum
∑N

k=
Rkzk
zk+

Gk(x, z) which appears on the right-hand side of () equals
zero if and only if x is a constant multiple of z on [,N + ] (see [] for details). The re-
maining part from the right hand side can be written in the form

|xN+|pRN+

(
 +�

(
�zN+

zN+

))
,

where �zN+ is evaluated by extending the solution z from the interval [,N – ] to [,N].
Now it is easy to see that this expression equals zero if and only if xN+ =  or zN+ = .
These conditions together characterize the case when a nonnegative functional becomes
zero.

The following theorem presents a necessary and sufficient condition for the positivity
of (). Note that the difference between positivity and nonnegativity is only at (N ,N + ].
The interval (N ,N + ] is allowed to be coupled with  but not strictly coupled in Theo-
rem ., i.e. dN ≥ . This condition is sharpened and the possibility dN =  is excluded in
a necessary and sufficient condition for positivity of ().

Theorem . Functional () is positive over the class of admissible functions if and only if
there is no interval (m,m + ] ⊆ (,N + ] coupled with .

Proof If there is no interval (m,m + ] ⊆ (,N + ] coupled with , then (N ,N + ] is not
strictly coupled and the functional () is nonnegative by Theorem .. To prove the pos-
itivity we have to show that J(x) equals zero if and only if x equals zero on [,N + ]. By
Lemma ., there is no interval (m,m+]⊆ (,N +] conjugate with  and hence a solution
which satisfies z = , R�(z) =  satisfies Rkzkzk+ >  for k ∈ [,N]. By Lemma ., the
functional J(x) possesses representation in the form (). This representation consists of
two nonnegative terms (see also Lemma .) and to finish the proof we have to show that
both terms equal zero if and only if x equals zero on [,N + ]. Since zk �=  on [,N + ],

http://www.advancesindifferenceequations.com/content/2012/1/100


Mařík Advances in Difference Equations 2012, 2012:100 Page 8 of 8
http://www.advancesindifferenceequations.com/content/2012/1/100

the second term in () vanishes only if all the terms Gk(x, z) vanish on [,N] which means
that x is a constant multiple of z on [,N + ] (see [, Theorem ..]). Since (N ,N + ] is
not coupled with , by Lemma . we have

RN+ + RN�

(
�zN
zN+

)
–CN > .

Hence, J(x) =  implies xN+ = . Since x is a constant multiple of z and zN+ �= , we have
xk =  for all k ∈ [,N + ] and the functional is positive definite.
To prove the other implication, suppose that the functional () is positive. Then it is also

nonnegative and by Theorem . there is no interval (m,m + ] ⊆ (,N] coupled with 
and (N ,N +] is not strictly coupled with . To finish the proof it is sufficient to prove that
(N ,N +] is not coupled. However, if z is a solution which satisfies z = , R�(z) = , and
for some α we have dN = , then the function x defined by () is nontrivial and J(x) = dN =
, which contradicts positivity of J . �

Remark . If we consider linear case p =  in Theorems ., . and the scalar case with
zero boundary condition at the left endpoint in [, Theorems ., .], then the corre-
sponding statements, i.e. the equivalence between the nonnegativity of the functional and
nonexistence of the coupled point, coincide.
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