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Abstract

Recently, superconductivity was found on semiconductor surface reconstructions induced by metal adatoms,
promising a new field of research where superconductors can be studied from the atomic level. Here we measure the
electron transport properties of the Si(111)-(

√
7 × √

3)-In surface near the resistive phase transition and analyze the
data in terms of theories of two-dimensional (2D) superconductors. In the normal state, the sheet resistances (2D
resistivities) R� of the samples decrease significantly between 20 and 5 K, suggesting the importance of the
electron-electron scattering in electron transport phenomena. The decrease in R� is progressively accelerated just
above the transition temperature (Tc) due to the direct (Aslamazov-Larkin term) and the indirect (Maki-Thompson
term) superconducting fluctuation effects. A minute but finite resistance tail is found below Tc down to the lowest
temperature of 1.8 K, which may be ascribed to a dissipation due to free vortex flow. The present study lays the
ground for a future research aiming to find new superconductors in this class of materials.
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Background
Semiconductor surface reconstructions induced by metal
adatoms constitute a class of two-dimensional (2D) mate-
rials with an immense variety [1,2]. They are considered
one form of atomic layer materials which can possess
novel electronic properties and device applications [3,4].
Recently, superconductivity was measured by scanning
tunneling microscopy (STM) for atomically thin Pb films
[5,6] and three kinds of Si(111) surface reconstructions:
SIC-Pb, (

√
7 × √

3)-Pb, and (
√
7 × √

3)-In [7]. This dis-
covery was followed by a demonstration of macroscopic
superconducting currents on Si(111)-(

√
7 × √

3)-In by
direct electron transport measurements [8]. These find-
ings are important because they enable us to create super-
conductors from the atomic level using state-of-the-art
nanotechnology. In addition, the space inversion symme-
try breaking due to the presence of surface naturally leads
to the Rashba spin splitting [9,10] and may consequently
help realize exotic superconductors [11].
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In reference[8], we have unambiguously clarified the
presence of Si(111)-(

√
7 × √

3)-In (referred to as (
√
7 ×√

3)-In here) superconductivity. However, systematic
analysis on electron transport properties above and below
the transition temperature (Tc) is still lacking. For exam-
ple, 2D superconductors are known to exhibit the pre-
cursor of phase transition due to the thermal fluctuation
effects just above Tc [12-14]. Superconductivity is estab-
lished below Tc, but vortices can be thermally excited in
a 2D system. Their possible motions can cause the phase
fluctuation and limit the ideal superconducting property
of perfect zero resistance [15]. These fundamental proper-
ties should be revealed before one proceeds to search for
new superconductors in this class of 2D materials.
In this paper, the resistive phase transition of the (

√
7 ×√

3)-In surface is studied in detail for a series of samples.
In the normal state, the sheet resistances (2D resistivities)
R� of the samples decrease significantly between 20 and
5 K, which amounts to 5% to 15% of the residual resis-
tivity Rn,res. Their characteristic temperature dependence
suggests the importance of electron-electron scattering
in electron transport phenomena, which are generally
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marginal for conventional metal thin films. Tc is deter-
mined to be 2.64 to 2.99 K and is found to poorly cor-
relate with Rn,res. The decrease in R� is progressively
accelerated just above Tc due to the superconducting
fluctuation effects. Quantitative analysis indicates the par-
allel contributions of fluctuating Cooper pairs due to the
direct (Aslamazov-Larkin term) and the indirect (Maki-
Thompson term) effects. A minute but finite resistance
tail is found below Tc down to the lowest temperature of
1.8 K, which may be ascribed to a dissipation due to free
vortex flow.

Methods
The experimental method basically follows the procedure
described in reference [8] but includes some modifica-
tions. The whole procedure from the sample preparation
through the transport measurement was performed in a
home-built ultrahigh vacuum (UHV) apparatus without
breaking vacuum (see Figure 1a) [16,17]. First, the (

√
7 ×√

3)-In surface was prepared by thermal evaporation of
In onto a clean Si(111) substrate, followed by annealing
at around 300°C for approximately 10 s in UHV [18-20],
and was subsequently confirmed by low-energy electron
diffraction and STM. The sample was then patterned by
Ar+ sputtering through a shadow mask to define the
current path for four-terminal resistance measurements.
Typical STM images before and after sputtering are dis-
played in Figure 1b,c, respectively. The former shows a
clear periodic structure corresponding to the

√
7 × √

3
unit cell, while the latter shows a disordered bare silicon
surface.
We note that, although the nominal coverage of the

evaporated In is more than several monolayers (ML), post
annealing removes surplus In layers and establishes the
(
√
7 × √

3)-In surface. The In coverage of this surface
reconstruction was originally proposed to be 1 ML for the
‘hexagonal’ phase ((

√
7 × √

3)-In-hex) and 1.2 ML for the
‘rectangular’ phase ((

√
7 × √

3)-In-rect) [18], where 1 ML
corresponds to the areal density of the top-layer Si atoms
of the ideal Si(111) surface. However, recent theoretical
studies point to the coverages of 1.2ML for the (

√
7×√

3)-
In-hex and of 2.4 ML for the (

√
7 × √

3)-In-rect [21,22].
For our experiments, the dominant phase is likely to be
the (

√
7×√

3)-In-hex judging from the resemblance of the
obtained STM images (Figure 1b) to the simulated image
of the (

√
7×√

3)-In-hex (Figure two, panel b in [22]). The
relation between the surface structure and the supercon-
ducting properties is intriguing and will be the subject of
future work.
In the previous study, van der Pauw’s measurement was

adopted to check the anisotropy of electron conduction
and to exclude the possibility of spurious supercurrents.
In this setup, however, transport characteristics should be
analyzed with care because the spatial distribution of bias

current is not uniform. To circumvent this problem, in the
present study, we adopted a configuration with a linear
current path between the voltage terminals (Figure 1d).
The black regions represent the area sputtered by Ar+
ions through the shadow mask. The figure also shows
the current density distribution calculated by the finite
element method in color scale, which confirms that it is
homogeneous between the voltage probes. This allows us
to determine the sheet resistance R� of the sample in a
more straightforward way: R� = (V/I) × (W/L), where
V is the measured voltage, I is the bias current, W =
0.3 mm is the width of the current path, and L = 1.2
mm is the distance between the voltage probes. Figure 1e
shows the optical microscope image of a sample, con-
firming the clear boundary between the shadow-masked
and sputtered regions. Although the sputtering was very
light, the resulting atomic-scale surface roughening was
enough to make an optical contrast between the two
regions.
Following the sample preparation, four Au-coated

spring probes were brought into contact with the cur-
rent/voltage terminal patterns in a UHV-compatible cryo-
stat. Four-terminal zero bias sheet resistance R� was
measured with a DC bias current I = 1 μA, and the off-
set voltage was removed by inverting the bias polarity. To
access the electron conduction only through the (

√
7 ×√

3)-In surface at low temperatures, Si(111) substrates
without intentional doping (resistivity R > 1, 000� cm)
were used. Leak currents through the substrate and the
Ar+-sputtered surface region were undetectably small
below 20 K, which allowed precise measurements in this
temperature region.

Results and discussion
Electron transport properties above Tc
In the present study, we investigated seven samples
referred to as S1, S2,... and S7. They were prepared
through the identical procedure as described above, but
due to subtle variations in the condition, they exhibit
slightly different electron transport properties. As rep-
resentative data, the temperature dependences of sheet
resistance R� for S1 and S2 are displayed in Figure 2 (red
dots, S1; blue dots, S2). R� drops to zero at Tc ≈ 2.6 K
for S1 and at Tc ≈ 3.0 K for S2, consistent with the pre-
vious study on the superconducting phase transition [8].
The rest of the samples show the same qualitative behav-
iors. As shown below, S1 and S2 exhibit the lowest and the
highest Tc, respectively, among all the samples. Here we
note two distinctive features: (i) For the high-temperature
region of 5K < T < 20K, R� decreases with decreas-
ing T, i.e., dR�/dT > 0. The temperature dependence
of R� is slightly nonlinear with a concave curvature, i.e.,
d2R�/dT2 > 0. (ii) The decrease in R� is progressively
accelerated as T approaches Tc.



Uchihashi et al. Nanoscale Research Letters 2013, 8:167 Page 3 of 7
http://www.nanoscalereslett.com/content/8/1/167

(a)

transport
measurement
unit

STM LEED

sputter
gun

(c)(b)

2 nm 20 nm

(d) (e)

V

1.2 mm
0.3 mm

Figure 1 Instrumentation and sample preparation. The whole procedure from the sample preparation through the transport measurement was
performed in a home-built UHV apparatus without breaking vacuum (a). Typical STM images of a (

√
7×√

3)-In sample before (b) (Vsample=−0.015 V)
and after (c) (Vsample = 2.0 V) are displayed. (d) The design of sample patterning in the black area shows the Ar+-sputtered region. The color
indicates the degree of calculated current density (green, high; purple, low). (e) Optical microscope image of a patterned sample.

The data were analyzed to deduce characteristic param-
eters as follows. Feature (i) can be phenomenologically
expressed by the 2D normal state conductivityG�,n of the
following form:

G�,n = (Rn,res + CTa)−1 (1)

where Rn,res is the residual resistance in the normal
state, C is the prefactor, and a is the exponent of the
power-law temperature dependence. Feature (ii) is natu-
rally attributed to the superconducting fluctuation effects
[14]. Just above Tc, parallel conduction due to thermally
excited Cooper pairs adds to the normal electron con-
duction (Aslamazov-Larkin (AL) term), and this effect

is enhanced in a 2D systems [12]. The 2D conductiv-
ity due to the Cooper pair fluctuation G�,sf takes the
following form:

G�,sf = 1
R0

T
T − Tc

(2)

where R0 is a temperature-independent constant. In addi-
tion to this direct effect, another indirect contribution
may be important near Tc, which originates from the
inertia of Cooper pairs after decaying into pairs of quasi-
particles (Maki-Thompson (MT) term) [13]. Since its tem-
perature dependence is similar to Equation 2 but involves
more material-dependent parameters, we combine these
two effects and adopt Equation 2. Importantly, for the
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Figure 2 Electron transport properties aboveTc. The red and blue
dots represent the temperature dependences of sheet resistance R�
for sample S1 and S2, respectively, while the yellow and green lines
are the results of fitting analysis using Equations 1 to 3. �R� is
defined as the decrease in R� between 20 and 5 K. The inset shows Tc
as a function of Rn,res, revealing no clear correlation between them.

pure AL term, R0 = 16�/e2 = 65.8 k� regardless of the
thickness. Then the total sheet resistance aboveTc is given
by the following equation:

R� = (G�,n + G�,sf)
−1. (3)

The experimental data were fitted excellently using
Equations 1 to 3 with Rn,res, C, a, R0, and Tc being fitting
parameters, as shown in Figure 2 (yellow line, S1; green
line, S2). Since Equation 2 is only valid for T > Tc, the
data of the normal state region (defined as R� > 50�)
were used for the fitting. All parameters thus determined
are listed in Table 1 for the seven samples. We note that
the obtained values for R0 are all smaller by a factor of
2.4 to 5.4 than R0 = 65.8 k� for the AL term. This
indicates that the observed fluctuation-enhanced conduc-
tivities originate from both AL and MT terms. We also
tried to fit the data by explicitly including the theoretical
form for theMT term [13], but this resulted in poor fitting
convergence.
The determined Tc ranges from 2.64 to 2.99 K. This is

in reasonable agreement with the previously determined
value of Tc = 2.8 K, but there are noticeable variations
among the samples. The normal residual resistance Rn,res
also shows significant variations, ranging from 108 to
394 �. These two quantities, Tc and Rn,res, could be corre-
lated because a strong impurity electron scattering might
cause interference-driven electron localization and sup-
press Tc [23]. However, they are poorly correlated, as
shown in the inset of Figure 2. This is ascribed to possible

different impurity scattering mechanisms determining
Rn,res and Tc as explained in the following. Electron scat-
tering should be strong at the atomic steps because the
surface layer of (

√
7 × √

3)-In is severed there. There-
fore, they contribute to most of the observed resistance
[8,24]. However, the interference between scatterings at
the atomic steps can be negligibly weak if the average sep-
aration between the atomic steps dav is much larger than
the phase relaxation length Lφ . This is likely to be the case
because dav ≈ 400 nm for our samples, and Lφ is several
tens of nanometer for typical surfaces [25]. In this case,
electron localization and resultant suppression of Tc are
dominated by other weaker scattering sources within the
size of Lφ , not by the atomic steps that determine Rn,res.
The exponent a was determined to be 1.48 to 1.85

in accordance with feature (i). This might be seen as a
typical metallic behavior due to the electron-phonon scat-
tering. However, this mechanism would lead to Re-ph ∝
T for T > �D and Re-ph ∝ T5 for T � �D [26],
neither of which is consistent with the observed tempera-
ture dependence. (Here Re-ph is the resistance due to the
electron-phonon scattering, and �D is the Debye temper-
ature.) Considering the exponent a to be slightly smaller
than 2, we attribute its origin to the electron-electron scat-
tering. In a 2D Fermi liquid, it leads to a resistivity Re−e
with the following form [27],

Re−e = C′T2 ln
εF
kBT

(4)

where C′ is a proportional constant, εF is the Fermi
energy, and kB is the Boltzmann constant. The log term
in Equation 4 results in a weaker temperature dependence
than that in a 3D Fermi liquid (∝ T2). Fitting the data with
Equation 4 instead of the CTa term in Equation 1 gives
εF ≈ 0.1 eV, although the uncertainty is quite large.
We note that a decrease in resistance in a conventional

metal film is usually very small in this temperature range.
For example, it is less than 1% within the range of 2 <

T < 20 K for 2-nm-thick single-crystal Nb films, although
R� = 122� of the film is comparable to the observed
Rn,res in the present experiment [28]. For a metal thin film

Table 1 Summary of the fitting analysis on the resistive
transition of the (

√
7 × √

3)-In surface

Sample R0 (k�) Rn,res (�) Tc (K) b �R�/Rn,res (%)

S1 12.1 293 2.64 1.80 8.0

S2 20.0 171 2.99 1.54 10.8

S3 15.6 146 2.81 1.78 12.6

S4 17.6 108 2.76 1.67 15.3

S5 27.7 394 2.76 1.86 5.0

S6 14.3 160 2.67 1.69 11.5

S7 20.9 124 2.88 1.48 13.7
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with a large resistance, R� even increases slightly with
decreasing T as a consequence of the electron localiza-
tion [29]. In clear contrast, a decrease in R� between 20
and 5 K in our samples, �R�, amounts to as much as 5%
to 15% of Rn,res (see Figure 2 and Table 1). In this sense,
the observed temperature dependence is rather unusual.
The (

√
7 × √

3)-In surface studied here has an atomic-
scale dimension in the normal direction and may thus
have an enhanced electron-electron interaction because
of insufficient electrostatic screening. In comparison, the
contribution from the electron-phonon interaction can be
smaller because it decreases rapidly at low temperatures
as Re-ph ∝ T5.

Residual resistance in the superconducting phase below Tc
The superconducting fluctuation theories state that R�
becomes exactly zero at Tc, as indicated by Equation 2.
However, a close inspection into the magnified plots
(Figure 3a) reveals that R� has a finite tail below Tc.
To examine whether R� becomes zero at sufficiently low
temperatures, we have taken the current-voltage (I-V )
characteristics of sample S1 below Tc down to the lowest

temperature of 1.8 K. Figure 3b displays the data in the
log-log plot form. Although the I-V characteristics exhibit
strong nonlinearity at the high-bias current region, they
show linear relations around the zero bias at all temper-
atures. The sheet resistances R� determined from the
linear region of the I-V curves are plotted in Figure 3c as
red dots. R� decreases rapidly as temperature decreases
from Tc, but it becomes saturated at approximately 2 ×
10−2 � below 2 K.
This residual resistance can be attributed to dissipation

due to free vortex flow, which is caused by the Lorentz
force between the magnetic flux and the current [15],
since the stray magnetic field is not shielded in the experi-
ment. The sheet resistance due to the free vortex flow R�,v
is given by the following equation:

R�,v = 2πξ2R�,nB/	0 (5)

where ξ is the Ginzburg-Landau coherence length, R�,n is
the normal sheet resistance of the sample, B is the mag-
netic field perpendicular to the suface plane, and 	0 =
h/2e is the fluxoid quantum. A crude estimation using
ξ = 49 nm,R�,n = 290�, and B = 3 × 10−5 T gives

(c)

(a)
(b)

S1

S2

Figure 3 Residual resistance in the superconducting phase below Tc. (a) Magnified view of Figure 2 around Tc . The broken circles indicate the
presence of residual resistances below Tc . (b) Temperature dependence of the I-V characteristics of sample S1 below Tc . The data are plotted in the
log-log scales. The measured temperatures are indicated in the graph. (c) Red dots show the sheet resistance determined from the low-bias linear
region of the I-V characteristics of sample S1. The blue line shows the result of the fitting analysis using Equation 6 within the range of 2.25 K <

T < 2.61 K while Tc = 2.64 K is fixed.
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R�,v = 6.3 × 10−2 �, which is in the same order of mag-
nitude as the observed value of approximately 2× 10−2 �.
We note that ξ = 49 nm was adopted from the value for
the Si(111)-SI-Pb surface [7], and ξ is likely to be smaller
here considering the difference in Tc for the two surfaces.
The present picture of free vortex flow at the lowest tem-
perature indicates that strong pinning centers are absent
in this surface superconductor. This is in clear contrast
to the 2D single-crystal Nb film [28], where the zero
bias sheet resistance was undetectably small at sufficiently
low temperatures. In accordance with it, the presence of
strong vortex pinning was concluded from the observa-
tion of vortex creep in [28]. This can be attributed to likely
variations in local thickness of the epitaxial Nb film at the
lateral scale of vortex size [30]. The absence of ‘local thick-
ness’ variation in the present surface system may be the
origin of the observed free vortex flow phenomenon.
As mentioned above, R� rapidly decreases just below

Tc. This behavior could be explained by the Kosterlitz-
Thouless (KT) transition [31,32]. In a relatively high-
temperature region close to Tc, thermally excited free
vortices cause a finite resistance due to their flowmotions.
As temperature decreases, however, a vortex and an anti-
vortex (with opposite flux directions) make a neutral
bound-state pair, which does not move by current any-
more. According to the theory, all vortices are paired at
TK , and resistance becomes strictly zero for an infinitely
large 2D system. The temperature dependence of R� for
TK < T < Tc is predicted as follows:

R� = C′′ exp
{

−2
[
b(Tc − T)

T − TK

]1/2}
(6)

where C′′ is a prefactor, and b a material-dependent con-
stant. For this transition to be observable, the transverse
penetration depth λ⊥ for magnetic field must be larger
than the sample size so that vortices can interact with each
other logarithmically as a function of the mutual distance.
The ultimate atomic-scale thickness of the present system
leads to a very large λ⊥ in the order of millimeters [8], thus
making it a candidate for observing the KT transition. We
fitted the experimental data of R� using Equation 6 within
the range of 2.25K < T < 2.61K while Tc = 2.64K
is fixed. The result is shown in Figure 3c as a blue line.
The reasonable fitting over two orders of magnitude in R�
points to the precursor of the KT transition. The obtained
value of TK = 1.69K is deviated from the relation [31]

TK/Tc ≈ (1 + 0.17R�,n/Rc)
−1 (7)

where Rc = �/e2 = 4.11 k� and R�,n are identified with
Rn,res = 293 � of sample S1 here. However, Equation 7
is derived from the assumption of the dirty-limit BCS
superconductor, which is not applicable to the (

√
7 ×√

3)-In surface with high crystallinity. Unfortunately, the

present experimental setup does not allow us to observe
the expected temperature dependence of Equation 6 down
to TK because of the presence of the stray magnetic field.
Furthermore, the predicted I-V characteristics V ∝ Ia
where the exponent a jumps from 1 to 3 at TK should be
examined to conclude the observation of the KT transi-
tion [31,32]. Construction of a UHV-compatible cryostat
with an effective magnetic shield and a lower achievable
temperature will be indispensible for such future studies.

Conclusions
We have studied the resistive phase transition of the
(
√
7 × √

3)-In surface in detail for a series of samples. In
the normal state, the sheet resistances R� of the samples
decrease significantly between 20 and 5 K, which amounts
to 5% to 15% of the residual resistivity Rres. Their charac-
teristic temperature dependence suggests the importance
of electron-electron scattering in electron transport phe-
nomena. The poor correlation between the variations in
Tc and Rres indicate different mechanisms for determin-
ing these quantities. The decrease in R� was progressively
accelerated just above Tc due to the superconducting fluc-
tuation effects. Quantitative analysis indicates the parallel
contributions of fluctuating Cooper pairs corresponding
to the AL and MT terms. A minute but finite resistance
tail was found below Tc down to the lowest temperature of
1.8 K, which may be ascribed to a dissipation due to free
vortex flow. The interpretation of the data based on the
KT transition was proposed, but further experiments with
an improved cryostat are required for the conclusion.
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