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Abstract
The diffraction spectra of imaginary-part photonic crystal (IPPC) slabs are analyzed using the scattering-matrix
method. By investigating the thickness dependence of the diffraction, we find a remarkable red shift of central
wavelength of the diffraction spectrum, which obviously distinguishes from the phenomenon of spectral hole. We
observe that diffraction efficiency can be enhanced more than 20-fold by optimizing the geometry parameters. These
imply that the diffraction spectra of the IPPC slab can be controlled at will and used to guide the design to achieve
useful nanoscale devices.
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Background
Photonic crystals (PCs) [1,2] are composite nanostruc-
tures in which a periodic modulation of refractive index
forms photonic bandgaps of frequencies where light prop-
agation is fully suppressed. PCs can manipulate not only
the emission of light [3-5], but also the propagation of
light, the prominent examples of which are PC slab waveg-
uides [6-9] and resonant gratings [10-12].
In most cases, PCs are composed of mediums with dif-

ferent real dielectric constants. However, by embedding
an absorbing medium into the structure, novel physi-
cal phenomena and new types of optoelectronic devices
can be created [13,14]. Recently, Li et al. [15] propose
an innovative type of PCs, named imaginary-part pho-
tonic crystals (IPPCs). The new type of PCs is composed
of a selected dielectric medium with and without doping
agent of resonant absorption medium. This new struc-
ture provides a frequency-dependent character: the IPPCs
have periodic modulation of dielectric constant near the
resonant frequency, but off the resonant frequency, they
become ordinary structures with uniform dielectric con-
stant. In a word, the fundamental properties of IPPCs
result from the doping agent.
Since active mediums always have resonant enhance-

ment of nonlinear effect, fast response speed, and low
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working threshold, many intense applications of IPPCs,
such as fabrication of resonantly absorbing waveguide
arrays [16,17] and inverted nonlinear photonic crystals
[18], have been reported. Lately, the IPPCs were found to
have potential applications in display industry because of
their high efficiency of color separations.
It is well known that diffraction control of light field

is very important in holographic lithography, and the
IPPCs have been reported to be sensitive in controlling
the diffraction efficiency. Studying the diffraction prop-
erties and finding optimized diffraction efficiency in the
IPPCs become an interesting issue. Some diffraction prop-
erties have been reported by Li et al. [15] and Feng
et al. [17]; they present the wavelength-dependent diffrac-
tion efficiency in simple lattice structures and adopt the
paraxial approximation method. Up to now, the detail
dependences of diffraction efficiency on geometry param-
eters of the IPPCs have not been reported yet. Moreover,
developing a rigorous method to exactly and efficiently
investigate the fascinating characteristics of the IPPCs is
necessary.
In this paper, we develop and apply the scattering-

matrix method (SMM) [19] to exactly analyze the diffrac-
tive properties of two-dimensional (2D) IPPC slabs. With
increasing thickness, we find an interesting phenomenon
that the central wavelength of the diffraction spectrum
shifts towards to the red end of the spectrum, which dis-
tinguishes from the phenomenon of spectral hole [17].
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The roles and competition of imaginary and real part con-
tributions are investigated to understand these phenom-
ena. Besides, the dependence of diffraction efficiency on
the geometry parameters is investigated to find remark-
able enhancement effect of diffraction around resonant
wavelength. It offers us an approach to finely control the
diffraction spectra of the IPPC slabs at will. More than 20-
fold enhancement in the maximum diffraction efficiency
can be reached.

Methods
Theory and formulation
We consider the IPPC slabs on a glass substrate with infi-
nite thickness and incident light with polar angle θ and
azimuth angle φ, as shown in Figure 1. We define the
dielectric constant of the dopedmedium as εD = εDr+iεDi
and the pristine medium as εP = εPr+ iεPi, where εDr (εPr)
and εDi (εPi) are the real part and the imaginary part of εD
(εP), respectively.
According to the diffraction theory, the nth-order

diffraction efficiency ηn is defined as the ratio of the nth-
order Fourier transform component of average diffraction
outgoing energy flux Psub⊥ to the incident average energy
flux Pair⊥ . It can be calculated by

ηn =
(
Psub⊥

)
n

/
Pair⊥ . (1)

Average energy flux can be calculated by P̄ =
1
2Re (E∗ × H). We can easily obtain Pair⊥ from the elec-
tromagnetic fields of incident light H0 and E0, and Psub⊥
according to the rigorous SMM. Moreover, the SMM
can be adopted to calculate diffraction because it ana-
lyzes problems in Fourier space. The outgoing diffractive
component of the nth order can be obtained by

(
Psub⊥

)
n

= −esuby,Gnh
sub
x,Gn + esubx,Gnh

sub
y,Gn , (2)

where esubx , esuby , hsubx , and hsuby are the in-plane electric
and magnetic Fourier components which are obtained by
the Fourier expansion of Ex, Ey, Hx, and Hy, respectively,
in the glass substrate layer;Gn is a reciprocal lattice vector
which corresponds to the nth diffraction order. Since esubx
and esuby can be obtained by hsubx and hsuby , we focus on
magnetic Fourier components.
On the other hand, for every single layer in z plane,

magnetic Fourier space vectors hx (z) and hy (z) can be
expanded in terms of the propagating modes which are
eigenvectors of the propagation eigen problem

h‖ (z) ≡
(
hx (z)
hy (z)

)
= �

[
f̂ (z) a + f̂ (d − z) b

]
, (3)

where the nth eigenvector is the nth column vector of
matrix �; f̂ (z) is a diagonal matrix with f̂(z)nn = eiqnz,
here, qn is the nth eigenvalue of the propagation eigen
problem in this layer; d is the thickness of this layer; a and
b are a couple of vectors whose coefficients correspond
to the amplitudes of forward and backward going wave as
shown in Figure 1, respectively. The details of the method
can be found in [19].
For the incident layer, the vector hair‖ should be sepa-

rated to incident part hair‖,inc = �airaair and reflective part
hair‖,ref = �airbair(for the incident plane, f̂ (z) = f̂ (0) = 1).
The amplitude vector of the incident light aair can be
obtained by the Fourier expansion of incidentH0 as

aair = (
�air)−1hair‖ . (4)

Because the electromagnetic field at the interfaces
between two layers satisfies boundary conditions, the vec-
tors of the transmission amplitude can be calculated by
the S-matrix which relates asub and bair to aair and bsub as
[19]

(
asub
bair

)
= S

(
aair
bsub

)
≡

(
S11 S12
S21 S22

) (
aair
bsub

)
. (5)

Figure 1 The structure of 2D IPPC slab. (a) Circular rods in square lattice on glass substrate. (b) Schematic and plan view of the structure, showing
the polar angle θ and the azimuth angle φ of incident light and the high symmetry along � − X and � − M directions.
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Since there is no incident light from the glass substrate
bsub = 0, the transmission amplitude becomes asub =
S11aair. Combining with Equations 3 and 4, we can obtain
the magnetic Fourier expansion (for the outgoing plane,
f̂ (z) = f̂ (0) = 1)

hsub‖ = �subS11
(
�air)−1hair‖ . (6)

Now, we can investigate any order of diffraction efficiency,
when we select the corresponding component of hsub‖ to
calculate

(
Psub⊥

)
n. Furthermore, this method also can be

extended to anisotropic medium [20].
The in-plane wave vector of transmission diffraction,

ksub‖ , can be obtained by

ksub‖ = k0 sin θ + n1t1 + n2t2, (7)

where k0 is the wave vector of incident light, t1 and t2 are
the reciprocal primitive vectors of a periodic structure, n1
and n2 are integers determining the diffraction propaga-
tion direction. This implied that Gn = n1t1 + n2t2. It is
noticeable that there are four first-order diffractions in 2D
PC slabs corresponding to (n1, n2) = (0,±1) and (±1, 0).
In the case of normal incident light (θ = 0°), because of the
symmetry, four diffraction efficiencies of the first order are
equivalent, so that one of them can stand for first-order
diffraction efficiency (FODE).

Results and discussions
In this section, we investigate not only the red shit of
the central wavelength, but also the influence of differ-
ent geometry parameters with normal incident light and
different incident angle. In the following calculation, 625
plane waves are used to guarantee the favorable conver-
gence and high accuracy.
To validate the theoretical analysis methods, we firstly

consider the identical structure of IPPC as [15], with the

Figure 2 Comparing experimental and numerical results.
Experimental (black solid line) and numerical (red dash line)
diffraction spectra of the IPPC slab.
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Figure 3 Red shift of central wavelength. The FODE spectra of the
IPPC slab with circular rod in square lattice, with different slab
thickness. The dash-dot-dot vertical line is the resonant absorption
wavelength λ0 of doping agent.

dielectric constant of the pristine medium εPr = 2.62,
εPi = 0 and resonant absorption wavelength λ0 = 564 nm
of doping agent. Good agreement of first-order diffraction
efficiency is shown, between our simulation and the exper-
imental result offered by [15], as illustrated in Figure 2. So,
SMM is verified as a suitable method to further analyze
and investigate characters of IPPCs.

The red shift of resonant diffraction
We now apply SMM to investigate the influence of the
slab thickness on the diffraction by keeping the other
parameters unchanged. The results are shown in Figure 3.
It is very interesting to find red shift phenomenon of
central wavelength of the diffraction spectrum from res-
onant absorption wavelength λ0 of doping agent when
varying the slab thickness. To explain this interesting
phenomenon, the individual contributions from real and
imaginary parts of the dielectric constant to the diffrac-
tion is investigated by neglecting the Kramers-Kronig
relation [21].
Firstly, we consider identical IPPC as [15] whose thick-

ness is 2.6 μm and filling factor is 15.2%. We define
	ε = εD − εP. For investigating the real part contribu-
tion, we assume εDi = εPi, where only the real part of
	ε exists. The spectrum of real contribution is shown in
Figure 4a. The FODE curve of the real part contribution
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Figure 4 Real and imaginary part contributions to total diffraction efficiency. Contributions to diffraction efficiency by (a) real part 	ε and (b)
imaginary part 	ε of the IPPC slab, independently. The blue dash-dot lines denote the real/imaginary part 	ε . The black solid lines denote
real/imaginary part contributions. The red dash lines denote total FODE calculated by using original εD and εP. The dash-dot-dot vertical line is the
resonant absorption wavelength λ0 of doping agent.

synchronously responds to the absolute value of the real
part 	ε . Furthermore, around λ0, the real part contribu-
tion vanishes because the real part 	ε gets through zero
from negative minimum to positive maximum sharply.
Secondly, we turn to investigate the influence of the
imaginary part on diffraction efficiency by assuming
εDr = εPr, then the 	ε only changes in the imaginary
part. The FODE curve of the imaginary part contribu-
tion is in the same pace with the imaginary part 	ε , as
shown in Figure 4b. At λ0, the imaginary part contribution
reaches its maximum since the imaginary part 	ε reaches
its maximum.

It is noticeable that the imaginary part contribution
takes charge of total FODE curve at λ0 while the real part
contribution dominates around λ0 and results in the red
shift of central wavelength of total FODE. Because the
imaginary part of the dielectric constant not only con-
tributes diffraction but also absorbs the propagating light,
the ratio of real part contribution to imaginary part con-
tribution grows with increasing thickness and the red shift
phenomenon becomes remarkable (Figure 3).
Another interesting phenomenon is that an diffrac-

tion spectral hole appears at the absorption center at
thickness larger than about 10 μm [17], which results
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Figure 5 Dependence of diffraction on lattice constant. By keeping a filling factor of 15.2%, the FODE at λ0 with (a) circular rod in different
lattice types and (b) different rod shapes in square lattice.



Jiang et al. Nanoscale Research Letters 2012, 7:335 Page 5 of 8
http://www.nanoscalereslett.com/content/7/1/335

Figure 6 Dependence of diffraction on thickness. By keeping a filling factor of 15.2%, the FODE at λ0 with (a) circular rod in different lattice types
and (b) different rod shapes in square lattice. The magenta dash-dot line in (a) corresponds to FODE which is calculated by assuming εD = 2.9 with
square lattice.

from the weakness of imaginary part contributions in
the competition in the cases with large thickness. It is
noticeable that the red shift phenomenon appears in
the structures with small filling factor, while the spec-
tral hole phenomenon appears in the ones with large
filling factor.
In a word, the red shift phenomenon and the spec-

tral hole phenomenon can be reasonably explained by the
competition between real and imaginary part contribu-
tions, and the specified central wavelength of diffraction

spectral can be obtained by modulating the thickness
of IPPC.

Remarkable enhancement effect of diffraction
To achieve lager diffraction efficiency, we investigate the
dependence of diffraction on each geometry parameter
including lattice constant, slab thickness, filling factor,
lattice type, and rod shape at the resonant absorption
wavelength λ0 of doping agent with normal incident light.
We focus on the IPPC slabs with different rod shapes
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Figure 7 Dependence of diffraction on filling factor. The FODE at λ0 with (a) circular rod in different lattice types and (b) different rod shapes in
square lattice.
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including circular rod (CR), square rod (SR), and hexagon
rod (HR), and with different lattice types including square
lattice (SL), triangle lattice (TL), and honeycomb lattice
(HL) [22]. Furthermore, the dependence of diffraction on
incident angler and polarization is discussed in detail.
Finally, we obtain significant enhancement in diffraction
efficiency.
First of all, we investigate the dependence of diffraction

on the lattice constant at λ0, as shown in Figure 5a, b.With
the increasing lattice constant, FODE rises rapidly until
reaching its maximum around 2, 000 nm, where lattice
constant is several times larger than incident wavelength,
and then FODE declines slightly. Therefore, a sufficiently
large lattice constant is desirable to obtain high FODE. In
practice, a large lattice constant may bring convenience
to fabrication but lead to difficulties for detection and
application, since the diffraction angle will decrease while
enlarging the lattice constant.
Figure 5a shows that lattice type plays much more

important role on the diffraction. Square lattice and trian-
gle lattice result in much higher FODE than honeycomb

lattice does, so they are widely adopted experimentally.
In contrast, the shape of rods bears little or no relation-
ship to the FODE. The FODEs at resonant wavelength of
the three rod shapes for the square lattice type are almost
identical, as shown in Figure 5b, which is also evident for
the other two lattice types. So, the circular rod is widely
adopted due to easy fabrication.
Secondly, the thickness of the IPPC slab can strongly

influence the diffraction efficiency, as shown in
Figure 6a, b. For each lattice type and rod shape, the FODE
can reach its maximum at certain slab thickness, like the
one-dimensional resonantly absorbing waveguide array
in [17]. When the IPPC slab is very thin, the propagation
light almost transmits through in zero-order diffraction.
In contrast, when the IPPC slab is sufficiently thick,
due to the absorption of the medium, the propagation
light cannot pass through the slab. So, the maximum of
FODE appears at an appropriate thickness in IPPC slabs.
This characteristic is quite different from that of the PC
slab composed with the non-absorption medium, illus-
trated by the magenta dash-dot line in Figure 6a, whose
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Figure 8 Dependence of four first-order diffractions on incident angle and polarization. Four first-order diffractions (0, 1), (0,−1), (1, 0), and
(−1, 0) with TM and TE incident light on incident angle. (a) and (b) show the FODE at λ0 with incident light in the � − X direction with different θ ,
while (c) and (d) show it with different φ at θ = 60°.
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diffraction spectrum oscillates along with thickness.
For the non-absorptive-medium PC slab, large contrast
of dielectric constant between two mediums would be
selected to obtain a remarkable diffraction effect. How-
ever, for the IPPC slab, the diffraction efficiency is hard to
enhance because of the absorption of light and the small
difference of dielectric constant between pristine medium
and doped medium with small saturated concentration
of doping. Moreover, Figure 6a, b shows the FODEs of
different lattice types with circular rod and different rod
shapes in square lattice, which can be concluded again
that the lattice type plays an important role and the rod
shape takes unimportant part in the diffraction. Square
lattice results the highest FODE in all these lattice types.
Thirdly, filling factor is a sensitive parameter to influ-

ence the FODE of the IPPC slab, illustrated in Figure 7a, b.
It can be found that FODE increases first, but after reach-
ing the maximum, it decreases fast. Besides, the lattice
types affect FODE strongly, and the IPPC slab in square
lattice results in the highest diffraction efficiency; rod
shapes still have little influence on FODE, except for the
IPPC slab with square rod in square lattice due to its
lowest symmetry.
From the above investigation, we obtain the dependent

properties of diffraction on geometry parameters and con-
clude that lattice type strongly influences the FODE while
the influence of rod type is negligible. Moreover, among
the three lattice types, square lattice is found to be the best
structure for large diffraction efficiency.
Fourthly, we turn to reveal the relation between incident

angle and diffraction efficiency of the IPPC slab with cir-
cular rod in square lattice by varying θ and φ of transverse
magnetic (TM) and transverse electric (TE) polarization
incident light, respectively.
When θ �= 0°, the four diffraction efficiencies of the first

order are no longer the same. Figure 8a,b shows the FODE
of the resonant wavelength as a function of θ , from which
we can find that the energy of diffraction redistributes.
With increasing θ , the curves fall into two categories:
those of (±1, 0) decrease tonelessly, while those of (0,±1)
tend to increase and then decrease dramatically with
TM/TE polarization incident light after large θ . On the
other hand, FODEs of the four first-order diffractions as a
function of φ reach their maximum and minimum alter-
nately, illustrated in Figure 8c, d. The incident light along
the � − X direction leads to a large difference among the
first-order diffractions, while that along the � − M direc-
tion leads to much smaller in square lattice. So, choosing
a proper polar angle is the key to obtain larger FODE, and
adjusting the azimuth angle is necessary to select which
first-order diffraction efficiency to be enhanced.
Finally, by modulating these geometry parameters and

incident angle, we can obtain more than 20-fold FODE
enhancement than that reported in [15] in a 2D IPPC slab

with TM polarization incident light, as shown in Figure 9.
It is noticeable that the large thickness and filling fac-
tor of the slab not only strongly enhance the diffraction
efficiency, but also lead to deformation with red shift or
spectral hole phenomenon. We select a filling factor of
15.2% to avoid spectral hole phenomenon.
It is clear that we can obtain remarkable enhancement

of diffraction efficiency and desirable shape of diffraction
spectrum by utilizing the dependences of diffraction on
geometry parameters and incident angle.

Conclusions
We employ and develop the scattering-matrix method to
investigate the diffractive characteristics of 2D IPPC slabs
rigorously. An interesting red shift of central wavelength
of the diffraction spectrum in large thickness is observed
and explained by analyzing the competition of imaginary
and real part contributions. On the other hand, we obtain
more than 20-fold enhancement of maximum FODE by
investigating the dependences of diffraction on geometry
parameters. To obtain remarkably large FODE, a suffi-
ciently large lattice constant and an appropriate thickness
and filling factor are necessary. Besides, lattice types play
a significant role while rod shapes only slightly influence
FODE. Among all lattice types, the highest diffraction effi-
ciency can be obtained by the IPPC slab of square lattice.
In the dependence of diffraction on incident angle, polar
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Figure 9 Optimized diffraction spectrum. Spectrum of FODE with
a lattice constant of 4 μm, a thickness of 20 μm, a filling factor of
15.2%, θ = 60°, φ = 0°, and circular rod in square lattice with TM
polarization incident light.
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and azimuth angles can strongly influence and adjust the
distribution of four diffraction efficiencies, respectively.
As a result, the diffractive properties of IPPC can be used
to guide the design to achieve useful nanoscale devices.
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