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Abstract

Background: CTLA-4 (Cytotoxic T lymphocyte antigen-4) is traditionally known as a negative regulator of T cell
activation. The blocking of CTLA-4 using human monoclonal antibodies, such as Ipilimumab, is currently used to
relieve CTLA-4-mediated inhibition of anti-tumor immune response in metastatic melanoma. Herein, we have
analyzed CTLA-4 expression and Ipilimumab reactivity on melanoma cell lines and tumor tissues from cutaneous
melanoma patients. Then, we investigated whether Ipilimumab can trigger innate immunity in terms of antibody
dependent cellular cytotoxicity (ADCC) or Tumor Necrosis Factor (TNF)-α release. Finally, a xenograft murine model
was set up to determine in vivo the effects of Ipilimumab and NK cells on melanoma.

Methods: CTLA-4 expression and Ipilimumab reactivity were analyzed on 17 melanoma cell lines (14 primary and 3
long-term cell lines) by cytofluorimetry and on 33 melanoma tissues by immunohistochemistry. CTLA-4 transcripts
were analyzed by quantitative RT-PCR. Soluble CTLA-4 and TNF-α were tested by ELISA. Peripheral blood
mononuclear cells (PBMC), NK and γδT cells were tested in ADCC assay with Ipilimumab and melanoma cell lines.
TNF-α release was analyzed in NK-melanoma cell co-cultures in the presence of ipilimumab. In vivo experiments of
xenotransplantation were carried out in NOD/SCID mice. Results were analyzed using unpaired Student’s t-test.

Results: All melanoma cell lines expressed mRNA and cytoplasmic CTLA-4 but surface reactivity with Ipilimumab was
quite heterogeneous. Accordingly, about 2/3 of melanoma specimens expressed CTLA-4 at different level of intensity.
Ipilimumab triggered, via FcγReceptorIIIA (CD16), ex vivo NK cells as well as PBMC, IL-2 activated NK and γδT cells to
ADCC of CTLA-4+ melanoma cells. No ADCC was detected upon interaction with CTLA-4- FO-1 melanoma cell line.
TNF-α was released upon interaction of NK cells with CTLA-4+ melanoma cell lines. Remarkably, Ipilimumab neither
affected proliferation and viability nor triggered ADCC of CTLA-4+ T lymphocytes. In a chimeric murine xenograft
model, the co-engraftment of Ipilimumab-treated melanoma cells with human allogeneic NK cells delayed and
significantly reduced tumor growth, as compared to mice receiving control xenografts.

Conclusions: Our studies demonstrate that Ipilimumab triggers effector lymphocytes to cytotoxicity and TNF-α release.
These findings suggest that Ipilimumab, besides blocking CTLA-4, can directly activate the elimination of CTLA-4+

melanomas.
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Background
Cytotoxic T lymphocyte antigen-4 (CTLA-4) is a glyco-
protein of the immunoglobulin superfamily regarded as
the main inhibitory receptor of T cell activation and ef-
fector function. CTLA-4 is expressed on the surface of
T cells upon activation and its engagement with B7 li-
gands (CD80/CD86), expressed on antigen presenting
cells (APC), inhibits cell proliferation, cytokine produc-
tion and cell cycle progression [1,2]. Several mechanisms
could explain the ability of CTLA-4 to inhibit T cell
function ranging from prevention of CD28-mediated
positive T cell co-stimulation, interference with TCR
function or interaction with signaling molecules [3].
CTLA-4 is also expressed on a subset of T cells with

immunosuppressive properties (regulatory T cells; Tregs)
[4] and on different types of non-T cells, both normal
[5-8] and neoplastic [9-14]. We had previously reported
CTLA-4 constitutive expression on established cell lines
derived from different solid tumors, including melan-
oma. We also showed that CTLA-4 engagement with B7
ligands induces tumor cell death through apoptosis [11]
suggesting a functional role of CTLA-4 molecule also in
tumor cells.
The blocking of the physiological inhibitory function

of CTLA-4 in T cells is the rationale for the employment
of antagonistic anti-CTLA-4 mAbs as therapeutic tools
to treat different solid tumors [15], mainly metastatic
melanoma [16,17]. Indeed, this approach is supported by
preclinical studies showing induction of durable antitumor
T cell immunity following treatment with anti-CTLA-4
mAbs [18,19]. By blocking the interaction between
CTLA-4 expressed by T cells and B7 ligands expressed by
APC, these mAbs may promote further activation and ex-
pansion of tumor-specific T cells [20,21]. In particular,
CTLA-4/B7 blocking in murine models results in in-
creased IL-2 and interferon-gamma (IFN-γ) production by
lymphocytes, increased expression of major histocompati-
bility complex (MHC) class I molecules, and markedly in-
creased tumor killing [22,23]. The CTLA-4 blockade may
also prevent the reverse negative signaling provided by the
interaction of CTLA-4 expressed on Tregs with B7
expressed on dendritic cells [24,25] or CD4+ T cells [26].
Two human anti-CTLA-4 IgG mAbs, Ipilimumab (Bristol-

Myers Squibb, Princeton, NJ) and Tremelimumab (Pfizer,
New York, NY), have been used, either alone or in com-
bination with vaccines, in the immunotherapy of melan-
oma [16,17]. Ipilimumab, approved by the US Food and
Drug Administration for the treatment of metastatic mel-
anoma [27], has been the anti-CTLA-4 mAb most exten-
sively investigated, although the molecular mechanisms
underlying its anti-tumor activity have not been fully
elucidated.
It has been suggested that both Ipilimumab and

Tremelimumab inhibit CTLA-4 negative signaling without
inducing a cytotoxic effect on T cells [28,29]. These reports
are mainly based on the fact that CTLA-4 blockade
does not seem to reduce the absolute number of total
CD4+ T cells and/or to deplete the Treg repertoire in
the in vivo studies [28,30]. Nevertheless, whether hu-
man anti-CTLA-4 antibodies could induce ADCC of
CTLA-4+ melanoma cell targets has not yet been
investigated.
Herein, we show that patient-derived melanoma cells

and tissues constitutively express CTLA-4 molecule. We
demonstrate that CTLA-4 engagement with Ipilimumab
triggers innate immune cells to ADCC of CTLA-4+ mel-
anoma cells and Tumor Necrosis Factor (TNF)-α produc-
tion. That NK cells may be involved in the elimination of
CTLA-4+ melanoma cells it has been confirmed in a
chimeric murine xenograft model as well.

Methods
Primary and established cell lines
Primary melanoma cell lines were derived from tumor
tissue samples of cutaneous melanoma patients, who
underwent surgical resection of skin or lymph node me-
tastases at the IRCCS AOU San Martino-IST (Genoa,
Italy). This study was approved by the local Institutional
Ethics Committee (n.OMA09.001) and patients gave
written informed consent according to the Declaration
of Helsinki.
Tissue specimens were processed for establishment of

the primary cell lines as described [31].
Expression of Melan-A and GP100 melanocyte dif-

ferentiation antigens (MDA), of CD133, CD117 and
CD271 stem cell-related antigens (SCA), of nestin and
CD56 neural crest antigens (NCA) was analyzed by im-
munofluorescence, as reported [32] and described in
Additional file 1.
Among the established melanoma cell lines, C32 and

MeWo were obtained from ECACC (Salisbury, UK) and
FO-1 was kindly provided by S. Ferrone (New York
Medical College, 1991), HLA typed by SSPO analysis
[33] and authenticated in our lab by PCR-SSP. The hu-
man lymphoblastoid B cell line C1R-neo was obtained
from ATCC (Manassas, USA, 2011) and validated
according to its short tandem repeat. Last authentication
was performed before using the cell lines for the present
study.

Analysis of CTLA-4 expression by flow cytometry
Expression of surface and cytoplasmic CTLA-4 was ana-
lyzed by flow cytometry as reported [8] and described in
Additional file 1. For CTLA-4 surface staining with
Ipilimumab human antibody (Bristol-Myers-Squibb), in-
direct immunofluorescence was performed by incubating,
for 30 min at 4°C, 2×105 cells/sample with the mAb
(20 μg/ml). CTLA-4 cytoplasmic staining with Ipilimumab
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was performed on fixed (2% paraformaldehyde) and
permeabilized (0.1% saponin) 4×105 cells/sample. Both
stainings were followed by the addition of Alexafluor
647-conjugated goat anti-human IgG secondary anti-
body (Molecular Probes, Inc. Eugene, OR, USA). Nega-
tive controls included directly labelled and unlabeled
isotype-matched irrelevant mAbs.
Results were expressed as mean ratio of relative fluor-

escence intensity (MRFI), calculated as follows: mean
fluorescence intensity (MFI) of CTLA-4 staining/MFI of
irrelevant isotype-matched mAb staining.

Analysis of CTLA-4 transcripts by RT-PCR and qRT- PCR
Analysis of CTLA-4 transcript variants by RT-PCR and quan-
titative RT-PCR (qRT-PCR) were performed as described in
Additional file 1 and in the Table of Additional file 2.

Analysis of CTLA-4 expression by immunohistochemistry
Immunohistochemical (IHC) analysis of CTLA-4 expres-
sion was performed on formalin-fixed, paraffin-embedded
(FFPE) tissues of cutaneous melanoma lesions by staining
with either the anti-CTLA-4 14D3 mAb or Ipilimumab.
For reaction development, we used an Alkaline Phos-

phatase(AP)-Fast Red staining for 14D3 and a peroxidase-
DAB staining for Ipilimumab. Both whole tissue slides
and tissue microarray (TMA) were stained (see Additional
file 1). Scores for percentage of stained cells were 0 (nega-
tive), 1 (1-29%), 2 (30-59%), 3 (60-100%). Scores for stain-
ing intensity were 0 (negative), 1+ (weak), 2+ (moderate)
3+ (strong). A final immunoreactive score (IRS) for
CTLA-4 expression was obtained by multiplying both
scores [34] resulting in the following IRS (values from
0 to 9): 0 (negative), 1–4 (low to intermediate) and ≥6
(high). Stained slides were analyzed by two independent
observers under an optical microscope (Olympus BX41)
using 10× ocular lens, 63× objectives. Image acquisition
was performed with Leica (DMD1.08) microscope.

Analysis of soluble CTLA-4 by ELISA
Soluble CTLA-4 (sCTLA-4) secreted by the melanoma
cells was measured in culture supernatants (SN) by using a
sCTLA-4-specific ELISA kit (Bender MedSystems, Milan,
Italy) according to manufacturer’s protocol. SN were col-
lected from melanoma cells, grown to approximately 80%
confluence, and tested undiluted in duplicate. The lowest
sensitivity threshold of the assay was 0.13 ng/ml.

Leukocyte cell separation, antibody-dependent cellular
cytotoxicity (ADCC) and TNF-α production assays
Peripheral blood mononuclear cells (PBMC) were
obtained after Ficoll-Hypaque density centrifugation of
blood samples derived from healthy volunteers. Highly
purified preparations of NK cells and γδT cells were
obtained from PBMC as described [35] and tested in a
conventional 4h ADCC assay [36]. Production of TNF-α
was determined by ELISA (see Additional file 1).

Chimeric xenograft NOD/SCID model
Non-obese diabetic/severe combined immunodeficiency
(NOD/SCID) mice were purchased from Harlan Labora-
tories (Udine, Italy) and housed according to the institu-
tional animal care guidelines. All experiments were
approved by the Ethics Committee for Animal Use in
Cancer Research at our institute. All mice were approxi-
mately 7 weeks-old. Tumorigenicity assay of melanoma
cell lines was performed as described in Additional file 1.
Different melanoma xenografts were prepared for sub-

cutaneous (s.c.) injections into NOD/SCID mice. Briefly,
freshly harvested MECO cells (2×106) were washed
twice and incubated with Ipilimumab or Rituximab
(both at 20 μg/ml) at 4°C for 30 min. Treated and un-
treated MECO cells, either alone or mixed at 1:1 ratio
with human NK cells isolated from the buffy coats of three
different healthy donors, were injected s.c. (200 μl/mouse)
into the mice (6 injections per each experimental condi-
tion). Tumor growth was evaluated as described in
Additional file 1 starting from day 5 of melanoma and NK
cell xenograft implantation.

Statistical analyses
Results were analyzed using unpaired Student’s t-test.
Pairwise correlation was assessed through Spearman's
nonparametric coefficient. All tests were two-tailed and
data were analyzed using the Stata software. Statistical
significance was accepted for any P value < 0.05.

Results
CTLA-4 is expressed by primary cutaneous melanoma cell
lines
In the present study, we analyzed CTLA-4 expression in
14 primary cell lines originating from metastatic lesions
of cutaneous melanoma patients and in 3 long-term
established melanoma cell lines.
We found that all the cell lines, except FO-1, expressed

variable levels of surface and cytoplasmic CTLA-4
(Figure 1A). It is of note that FO-1 cell line appeared to be
surface CTLA-4 negative but it was positive in the cyto-
plasm (Figure 1A).
We next investigated whether CTLA-4 expressed by

melanoma cells was recognized by the therapeutic
Ipilimumab antibody. Flow cytometric analysis showed
that Ipilimumab reacted, with different intensity, at the
cell surface of all, except FO-1, melanoma cell lines
tested (Figure 1B). It is of note that Ipilimumab did react
with FO-1 into the cytoplasm. Both polyclonal and
Ipilimumab anti-CTLA-4 antibodies reacted with the
established human melanoma cell lines C32 and MeWo
(Figure 1A,B).
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Figure 1 CTLA-4 is expressed in cutaneous melanoma cell lines and it is recognized by Ipilimumab. Flow cytometric profiles of
representative primary cell lines and established cell lines (C32, MeWo, FO-1), stained with either an anti-CTLA-4 polyclonal antiserum (surface)
and 14D3 mAb (cytoplasm) (panel A) or Ipilimumab Ab (panel B). FO-1 cell line was used as control for CTLA-4 surface negative expression. Open
histograms represent staining with specific anti-CTLA-4 Abs, filled histograms represent staining with isotype control Abs. Numbers within the
quadrants represent values of MRFI. Panel C, densitometric analysis of RT-PCR for CTLA-4 transcripts (TM and delTM) normalized to GAPDH and
reported as % of expression. The experiment was repeated three times with similar results. Panel D, ELISA analysis of sCTLA-4 in melanoma cell
SN. Results are means ± SD of two independent experiments performed in duplicate.
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CTLA-4 expression in primary melanoma cell lines
appeared to be independent from the stage of melanoma
differentiation. Indeed, cytofluorimetric analysis did not
point out any statistically significant Spearman’s correl-
ation coefficient (not shown) for surface CTLA-4 expres-
sion, detected with either the polyclonal antiserum or
Ipilimumab, and the expression pattern of MDA, as well
as of SCA and NCA (Table 1). Flow cytometric analysis of
melanoma cells, double-stained with Ipilimumab and
an anti-CD56 (NCAM) Ab, showed that the cell lines
expressed CTLA-4 and CD56 simultaneously (representa-
tive profiles are shown in Figure 2A), although at variable
intensity (Table 1). The melanoma nature of our cell lines
was further confirmed by IHC staining for S100 marker
(representative experiments are shown in Figure 2B).
CTLA-4 expression was confirmed at transcriptional

level by RT-PCR analysis identifying the two transcript
variants CTLA-4TM and CTLA-4delTM/soluble [37].
Expression of CTLA-4TM transcript was found with

variable intensity in all melanoma cell lines; CTLA-
4delTM (sCTLA-4) transcript was expressed at lower
levels in respect to CTLA-4TM, in all cell lines except in
MECO (Figure 1C). The expression of CTLA-4delTM
transcript confirmed the finding that the primary melan-
oma cell lines secreted detectable levels of sCTLA-4
(range: 0.1-1.05 ng/ml), as defined by ELISA (Figure 1D).



Table 1 Expression patterns of CTLA-4, MDA, SCA and NCA in 14 primary melanoma cell lines

Melanoma cell line CTLA-4 MDA SCA NCA

Polyclonal antiserum Ipilimumab Melan A GP100 CD133 CD117 CD271 Nestin CD56

MECA 2.5 19.1 4.2 7.5 0.9 0.7 2.7 4.6 18.8

MECO 4.6 7.0 25.7 17.0 1.0 0.7 3.2 4.0 1.5

MEOL 3.4 3.7 10.9 2.5 1.1 0.6 26.8 6.1 24.5

MEMO 3.3 31.0 1.1 2.2 1.1 0.8 90.0 11.4 42.5

MEMR 3.5 4.3 2.4 2.1 0.9 0.9 1.0 1.9 32.0

MEPA 5.5 8.2 2.5 1.8 1.0 0.8 13.9 7.4 14.7

METR 6.9 3.8 18.8 23.6 10.3 0.8 12.5 2.3 1.4

MEBO 1.9 6.7 1.2 4.2 1.7 17.5 1.0 14.5 3.7

METU 3.5 7.0 1.0 1.0 1.3 2.0 22.5 9.5 12.0

MEMI 1.7 2.9 19.9 2.2 1.4 70.2 1.0 62.2 20.4

MEFE 2.0 7.2 22.8 1.0 1.0 1.6 18.3 2.2 46.9

MEPC 2.4 1.4 11.8 1.0 1.6 0.7 72.9 1.4 1.6

MECS 5.8 2.9 6.8 1.2 1.0 6.3 19.9 1.2 12.3

MEDB 3.7 1.7 0.8 2.7 1.0 8.5 4.8 1.9 2.6

The 14 primary melanoma cell lines derived from metastatic lesions were stained with the indicated anti-CTLA-4 antibodies and analyzed by flow cytometry for
the expression patterns of melanoma differentiation antigens (MDA), stem cell-related antigens (SCA) and neural crest antigens (NCA).
Results were expressed as mean ratio of relative fluorescence intensity (MRFI), calculated as follows: mean fluorescence intensity (MFI) of CTLA-4 staining/MFI of
irrelevant isotype-matched mAb staining.
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CTLA-4 is expressed by cutaneous melanoma tissues
CTLA-4 protein expression was also found on FFPE tis-
sue sections from 5 metastatic lesions (ML) used to ori-
ginate the cell lines, and from additional melanoma
lesions. IHC with a murine anti-CTLA-4 mAb (14D3)
demonstrated a diffuse and strong positivity, uniformly
spread throughout the tumor (representative staining in
Figure 3A). A similar staining pattern was observed with
Ipilimumab (representative staining in Figure 3B).
An anti-S100 mAb was used as positive control (repre-

sentative staining in Figure 3C) whereas a murine anti-
CD20 mAb and Rituximab were used as isotype-matched
irrelevant mAbs (representative staining in Figure 3D,E).
Moreover, we analyzed 28 melanoma tissues by TMA

immunostaining for CTLA-4 and we evaluated CTLA-4
expression through the immunoreactive score (IRS; 0 =
negative, 1-4 = low to intermediate and ≥6 = high), an
index which takes into account both parameters of per-
centage of positively stained cells and staining intensity,
according to their individual scores (34), as described in
the Methods. Twenty out of 28 (71.4%) tissues were
found positive for CTLA-4 expression (IRS > 1), al-
though with variable percentage of stained cells and in-
tensity, whereas 8 (28.6%) were found CTLA-4-negative
(IRS = 0) (Table 2). In particular, 9 out of 20 (45.0%)
CTLA-4-positive tissues showed low to intermediate ex-
pression (IRS 1–3) and 11 (55.0%) showed high CTLA-4
expression (IRS ≥6).
We further confirmed the expression of CTLA-4 and

reactivity of Ipilimumab by performing qRT-PCR in a
CTLA-4+ melanoma tissue sample consisting of almost, if
not all, melanoma cells. A strong expression of CTLA-4
transcript was detected in this tissue as compared to
METR cell line and FO-1 used as control reference (see
Figure of Additional file 3 and Additional file 4).

Ipilimumab triggers lysis of melanoma cells through
ADCC of ex-vivo isolated NK cells
We further investigated whether Ipilimumab could trig-
ger activation of NK cells to ADCC upon interaction
with CTLA-4+ melanoma cells. To this aim, ex-vivo iso-
lated NK cells were used in a conventional cytolytic
assay using CTLA-4+ melanoma cell lines in the presence
of Ipilimumab. The results showed that NK cells effi-
ciently killed melanoma cells at high effector:target cell ra-
tio (E:T) (40-60% of lysis at 40:1 E:T ratio) (Figure 4A).
This lysis was barely detectable at very low E:T ratio of 1:1
(5-17% depending on cell line used), but it was signifi-
cantly increased by the addition of Ipilimumab to the
cytolytic assay. Indeed, the lysis of MECA, MECO,
MEMO and METR cell lines at 1:1 E:T ratio (21, 7, 15
and 5% respectively in the absence of antibody) was en-
hanced in the presence of Ipilimumab (46, 35, 42 and 23%
respectively) (Ipilimumab vs. control, P < 0.001; P = 0.023;
P = 0.003; P = 0.023, respectively, referred to 2.0 μg/ml of
Ipilimumab) (Figure 4A). Moreover, it appeared that this
enhancement was superimposable at concentration of 20,
2.0 and 0.2 μg/ml of Ipilimumab.
The induction with Ipilimumab of NK cell-mediated

ADCC was confirmed using the established melanoma
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cell lines C32 and MeWo (Figure 4A). It is of note that
Ipilimumab did not trigger ADCC of the CTLA-4 nega-
tive cell line FO-1 (Figure 4A). Indeed, NK cell-mediated
lysis of FO-1, in the presence of Ipilimumab, was super-
imposable to basal cell lysis observed in the absence of
any antibody.
The triggering of ADCC was detectable only using

Ipilimumab as the addition of the human anti-CD20 Ri-
tuximab antibody to the cytolytic assay did not affect
basal lysis of the different melanoma cell lines tested
(Figure 4A).
In addition, no lysis of melanoma cells was detected in

the presence of Ipilumumab alone, avoiding a direct ef-
fect of Ipilimumab after a short time incubation (data
not shown).
The triggering of ADCC detected using Ipilimumab

with ex-vivo NK cells and CTLA-4+ melanoma targets
was conceivably due to the binding of Ipilimumab to
FcγRIIIA expressed on NK cells as the addition of an
anti-FcγRIIIA antibody to the assay could almost block
the ADCC (Figure 4B, P < 0.0001). The addition of an
anti-NCAM antibody did not affect Ipilimumab-mediated
ADCC (Figure 4B, P = 0.129 n.s.). Although not shown,
Ipilimumab-triggered ADCC in the presence of human
serum was superimposable to that observed in its absence.
This indicates that human immunoglobulins do not com-
pete with Ipilimumab bound to CTLA-4 expressed on
melanoma cells for the binding with FcγRIIIA.
It is known that CTLA-4 is also expressed on activated

T cells and this expression is maximal on day2 after stimu-
lation with PHA [9,38]. Thus, to analyze whether NK cells
can kill T cells expressing CTLA-4 as well, we used ex-vivo
isolated NK cells as effector cells and PHA-stimulated
PBMC as target cells. No lysis of PBMC (Figure 4C, left
panel) in the presence of Ipilimumab was detected al-
though CTLA-4 was expressed on these cells (data not
shown). Of note, no differences were observed using
autologous or allogeneic NK cells. Rituximab used as
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control did not trigger lysis of PBMC as expected (being
CD20 not expressed on PHA blasts), while it efficiently
triggered lysis of CD20+ C1R-neo lymphoblastoid cell line
(Figure 4C, right panel).

Ipilimumab triggers NK cells to produce TNF-α upon
interaction with melanoma cells
We next analyzed whether Ipilimumab could also trigger
ex-vivo NK cells to produce anti-tumor cytokines, such
as TNF-α, during co-cultures with CTLA-4+ melanoma
cells. To this aim, TNF-α was measured in the SN
obtained from co-cultures of NK cells isolated from 4
different donors and CTLA-4+ MECO cell line (1:1 E:T
ratio), by ELISA (Figure 4D). The addition of Ipilimumab
to NK-MECO cell co-cultures strongly enhanced TNF-α
production as compared to NK-MECO co-cultures alone
or in the presence of Rituximab used as control
(Ipilimumab vs. Rituximab, P = 0.041).

Ipilimumab triggers ex-vivo isolated PBMC, NK or γδT cells
cultured with IL-2 to kill melanoma cells through ADCC
We next analyzed whether ADCC can also be elicited in
PBMC, IL-2 activated NK cells and γδT cell populations
expressing FcγRIIIA. Furthermore, we analyzed ADCC
using three different melanoma cell lines expressing differ-
ent levels of reactivity with Ipilimumab. Indeed, as shown
in Figure 5A, MECO cell line expressed high reactivity
with Ipilimumab (Figure 5A, MRFI:6.1) while FO-1 mel-
anoma cells did not react with Ipilimumab (Figure 5A,
MRFI:1.4) and METR cells showed an intermediate re-
activity with Ipilimumab (Figure 5A, MRFI:3.8).
PBMC can efficiently kill MECO at E:T ratio of 40:1 in
the presence of Ipilimumab (35% vs. 1% of lysis in the ab-
sence of antibody, P < 0.001). It is of note that
Ipilimumab-mediated ADCC was still evident at 20:1 and
detectable at 10:1 (20% and 12% vs. 1% of lysis, respect-
ively, in the absence of antibody, P = 0.002 and P = 0.003).
No difference between basal lysis and lysis in the pres-

ence of Ipilimumab was detectable using the CTLA-4
surface negative FO-1 cell line. Using METR as target
cells, we detected, at the E:T target ratio of 40:1, an in-
crement of lysis in the presence of Ipilimumab (from 5%
to 20%, P = 0.004). This increase was lower at 20:1 (from
5% to 11%, P = 0.003) and almost undetectable at 10:1
(from 5% to 8%, P = 0.006) E:T ratios respectively. IL-2
activated NK cells (Figure 5B) killed more efficiently
MECO than METR in the presence of Ipilimumab (at
5:1 E:T ratio from the basal lysis of 35% to 75% with
Ipilimumab using MECO and from the basal lysis of
35% to 42% with Ipilimumab using METR as target,
P < 0.001 and P = 0.228 n.s., respectively). No incre-
ment of lysis was detected with Ipilimumab using the
CTLA-4 surface negative FO-1 cells. Finally, γδT cell
populations expressing FcγRIIIA can kill very effi-
ciently the MECO cell line in the presence of
Ipilimumab (from 5% as basal level to 65% with
Ipilimumab at 1:1 E:T ratio, P < 0.001). On the other
hand, the lysis of METR was barely incremented in
the presence of Ipilimumab while no effect was
detected on the lysis of FO-1 (Figure 5C, middle and
right panel). In no instance, Rituximab used as con-
trol antibody, could significantly enhance cytolysis of



Table 2 CTLA-4 expression in melanoma tissue
microarray by immunohistochemistry

Melanoma
cases

CTLA-4 staining IRS

% of positive cells Intensity

1 10 3+ 3

2 70 2+ 6

3 10 1+ 1

4 30 1+ 2

5 5 1+ 1

6 80 2+ 6

7 70 2+ 6

8 70 2+ 6

9 80 2+ 6

10 0 0 0

11 85 3+ 9

12 0 0 0

13 10 1+ 1

14 0 0 0

15 0 0 0

16 0 0 0

17 5 1+ 1

18 5 1+ 1

19 0 0 0

20 60 2+ 6

21 90 2+ 6

22 70 2+ 6

23 30 1+ 2

24 0 0 0

25 100 1+ 1

26 0 0 0

27 80 3+ 9

28 95 3+ 9

CTLA-4 expression by IHC staining of tissue microarrays consisting of 28
formalin-fixed, paraffin-embedded melanoma sections.
IHC staining was performed with the murine anti-CTLA-4 14D3 mAb and
detected with AP-conjugated secondary antibody and Fast Red chromogen.
IRS: immunoreactive score (values from 0 to 9) for CTLA-4 expression was as
follows: 0 (negative), 1–4 (low to intermediate), ≥6 (high). IRS score was
obtained by multiplying the scores of % of positively stained cells and staining
intensity. Scores for % of stained cells were: 0 (negative), 1 (1-29%), 2
(30-59%), 3 (60-100%). Scores for staining intensity were: 0 (negative), 1+
(weak), 2+ (moderate), 3+ (strong).
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the melanoma cell lines using different effector cells
(Figure 5A and not shown).

Ex-vivo NK cells in the presence of Ipilimumab reduces
melanoma cell growth in a melanoma/NK cell xenograft
model
We next investigated in vivo, using a NOD/SCID murine
xenograft model, whether NK cells can affect tumor
growth in the presence of Ipilimumab. In vivo experiments
were carried out with the MECO cells as this cell line effi-
ciently triggered in vitro NK cell-mediated ADCC
(Figure 4A).
Previous studies showed that human NK cells engraft

and retain cytotoxic function when injected s.c. into
SCID mice, along with allogeneic human tumor cells
[39]. Thus, we injected s.c. a mixed cell suspension of
ex-vivo isolated allogeneic human NK cells and MECO
cell line incubated in medium alone (MECO/NK) or
with Ipilimumab (IPI-MECO/NK) or Rituximab (used as
control antibody) (RIT-MECO/NK) at 1:1 NK:MECO ra-
tio. We choose this experimental setting as it more
closely reflected the conditions used in the in vitro cyto-
toxicity assay (Figure 4A). Also, MECO cell line incu-
bated in medium or with Ipilimumab (IPI-MECO) or
Rituximab (RIT-MECO) was injected as additional
control.
After a single inoculation of the six different MECO

xenografts (IPI-MECO, IPI-MECO/NK, RIT-MECO,
RIT-MECO/NK, MECO and MECO/NK), the tumor
growth was monitored weekly for up to 30 days. In all
the experimental groups, tumors were detected within
15 days (mean tumor volume: 56.93 ± 11.71 mm3) except
in IPI-MECO/NK xenografts in which just palpable
really small tumors started to appear at that time (mean
tumor volume 3.00 ± 2.19 mm3, P = 0.042 vs. all other
xenografts). In all mice, tumor growth progressively in-
creased until day 30 (mean tumor volume: 307.11 ±
28.58 mm3) but, again, a significantly reduced tumor
growth was observed in mice injected with IPI-MECO
/NK xenografts (mean tumor volume: 163.15 ± 35.22, P =
0.024 vs. all other xenografts). Comparing the growth of
IPI-MECO/NK xenografts to that of IPI-MECO control
xenografts, we found a significant reduction of tumor
growth at day 15 (P = 0.005), day 20 (P = 0.009) and day
30 (P = 0.028) (Figure 6A). Moreover, NOD/SCID mice
engrafted with RIT-MECO/NK, used as control, did not
show delay in tumor formation or inhibition of tumor
growth compared with mice engrafted with RIT-MECO
(P = 0.686) (Figure 6B). It is of note that MECO and
MECO/NK xenografts gave rise to tumors of similar vol-
ume indicating that NK cells per se did not affect tumor
cell growth (Figure 6C). The growth of IPI-MECO/NK xe-
nografts was also significantly reduced in respect to the
growth of MECO control xenograft as well as to the
growth of all other MECO xenografts observed at day 30
(P = 0.018 and P = 0.042, respectively) (Figure 6A,B,C).
The in vivo reduced tumor growth observed with IPI-

MECO/NK xenograft was found to correlate with the
lytic activity observed in vitro when the human allogen-
eic NK cells used for the in vivo injections were co-
cultured with MECO cells in the presence of Ipilimumab
(data not shown).
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Figure 4 Ipilimumab triggers ex-vivo isolated NK cells to kill melanoma cells and to secrete TNF-α. Panel A, NK cells were analyzed for
their cytolytic activity in an ADCC assay using Ipilimumab (0.2-2.0-20 μg/ml) and melanoma primary cell lines (MECA, MECO, MEMO, METR), as
well as established cell lines (MeWo, C32 and FO-1) at different effector to target cell ratio (E:T = 40:1, 20:1, 10:1, 5:1, 2:1, 1:1). NK cells were
incubated with target cells in medium alone (none) or in the presence of Rituximab used as isotype-matched control Ab. Results are expressed as
% of 51Cr specific release and are the mean ± SD of experiments with 6 donors. Panel B, effect of the addition of anti-FcγRIIIA mAb (α-FcγRIIIA) on
the ADCC triggered with Ipilimumab (at the indicated doses) using ex-vivo NK cells and CTLA-4+ MECO target cells. Results obtained by adding
an anti-NCAM mAb (α-NCAM), as isotype-matched control Ab for the anti-FcγRIIIA mAb, to ADCC assay are shown. ***P < 0.0001, **P < 0.0002.
Panel C, lysis of PHA-stimulated PBMC or MECO or C1R-neo CD20+ B cells using ex-vivo NK cells alone (none) or with Ipilimumab or Rituximab (at
20 μg/ml). Panel D, NK cells, ex-vivo isolated from 4 different healthy donors, were incubated with MECO at the E:T ratio of 1:1 alone or in the
presence of Ipilimumab or Rituximab (2.0 μg/ml) for 24 h. Then, culture SN were harvested and analyzed by ELISA for the presence of TNF-α.
Results are expressed as pg/ml of TNF-α/105 NK cells. Statistical significance: ***P < 0.001, **P < 0.005.
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Discussion
In this study, we demonstrate that CTLA-4 is constitu-
tively expressed in a large portion of patient-derived cu-
taneous melanoma cells, as well as tissues, and it is
recognized by Ipilimumab. Furthermore, we show that
ADCC and TNF-α secretion are triggered in FcγRIIIA+

lymphocyte subsets upon Ipilimumab interaction with
CTLA-4 on melanoma cells.
Our data show mRNA and cytoplasmic CTLA-4 expres-

sion in all primary melanoma cell lines tested, although
the surface CTLA-4 expression was quite heterogeneous
(MRFI ranging from 1.2 to 6.9), regardless their stage of
differentiation and stemness phenotype. Furthermore, we
found, by the TMA approach, that about 2/3 of melanoma
tissues expressed CTLA-4. In particular, by using the IRS
score, it was possible to differentiate between low-
intermediate (45.0%) and high (55.0%) CTLA-4-expressing
tissues. The heterogeneity of CTLA-4 expression can be
considered as an intrinsic biological characteristic of the
tumor. At present, it is not known the physiological role
of CTLA-4 on melanoma cells. We have previously dem-
onstrated that CTLA-4 engagement with its natural li-
gands can deliver an apoptotic signal in haematological
and solid tumor cells including melanoma cell lines (11).
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Thus, the heterogeneity observed in melanoma tissue
specimens may be dependent on the selection processes
induced by the microenvironment on tumor cells. The
heterogeneity of level of CTLA-4 expression on melan-
oma cell lines may derive from the heterogeneity of the
parental tumor tissue from which the cell line has been
obtained.
On the other hand, we found that all the melanoma

cell lines, but not FO-1, expressed CTLA-4. This
strongly suggests that the absence of the tumor micro-
environment favours the in vitro selection of CTLA-4
positive melanoma cells.
Also CTLA-4 transcripts were found expressed in

melanoma tissue sections consisting of melanoma cells
without detectable tumor infiltrating lymphocytes. This
further reinforces the idea that in vivo melanoma cells
can express CTLA-4.
Ipilimumab triggered in vitro ADCC via the engage-

ment of FcγRIIIA in different effector lymphocyte popu-
lations i.e. ex-vivo isolated PBMC, highly purified CD3-

NK cells, IL-2 activated NK cell bulk populations and
γδT lymphocytes. This ADCC led to efficient killing of
several melanoma cell lines and it appears that the de-
gree of this process was directly related to the level of
CTLA-4 surface expression. This would suggest that a
threshold level is necessary for triggering ADCC induced
by Ipilimumab. The expression in vivo of CTLA-4 on
melanoma cells would suggest that ADCC could be
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Figure 6 Ipilimumab triggers NK cells to kill melanoma cells in a chimeric murine xenograft model. NOD/SCID mice were s.c. injected
with melanoma MECO cells (2×106) after incubation with Ipilimumab (IPI-MECO xenograft) or Rituximab (RIT-MECO xenograft) with human
allogeneic NK cells (IPI-MECO/NK and RIT-MECO/NK xenografts). Human NK cells were ex vivo isolated from the peripheral blood of 3 different
healthy donors and mixed at 1:1 NK:MECO ratio. Controls consisting of MECO cells alone or MECO cells mixed with NK cells (MECO and MECO/NK
xenografts, respectively) were also injected. Tumor growth was monitored twice a week and plotted as tumor volumes (mean ± S.E.M.) (panels A,
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triggered also upon in vivo administration of Ipilimumab.
It is to determine what is this threshold and how/whether
ADCC can concur to the outcome of melanoma patients
treated with Ipilimumab. Along this line, it has been
shown that sera of macaques immunized with a melan-
oma vaccine could trigger a stronger human PBMC-
mediated ADCC of melanoma cells when macaques were
vaccinated with melanoma cells together with antibody
11D10 (namely Ipilimumab) compared to macaques
vaccinated with only melanoma cells [28]. This ADCC
was mainly ascribed to the higher levels of anti-
melanoma antibodies present in the sera of macaques
[28]. However, the possibility that 11D10 antibody
could trigger directly human PBMC-mediated ADCC
of melanoma cells has not been analyzed in that report.
Indeed, the notion that melanoma cells can express
CTLA-4 is more recent [11,12].
We show that γδT cells exerted a stronger ADCC than

NK cells. This would depend also on the expression of
HLA-I antigens on melanoma target cells. Indeed, it is
known that NK cell mediated cytolysis is inhibited by
the interaction of specific HLA-I receptors belonging to
inhibitory receptor superfamily and self-HLA-I. Thus,
ADCC mediated by NK cells would be the balance be-
tween positive (through FcγRIIIA) and negative (through
HLA-I) signals. On the other hand, γδT cells are not ne-
cessarily inhibited upon interaction with HLA-I and thus
only the positive triggering signal is evoked leading to a
stronger ADCC. To support this interpretation of our
results, experiments using self NK and γδT lymphocytes
together with autologous melanoma cell lines should be
performed.
Activated T cells expressing CTLA-4 were not killed
by ADCC most likely due to either the transient or weak
expression of CTLA-4 on T cells upon activation [3].
This indicates that Ipilimumab would not impair T cell
response exerting its direct effect on melanoma cells by
triggering activation of cytolytic effector cells. Our data
are not in contrast with the commonly accepted notion
that Ipilimumab can block the action of CTLA-4 at the
cell surface of T cells; this leads to a stronger immune
anti-tumor response that according to previous report is
the reason why Ipilimumab is working in patients with
melanoma. Indeed, we suggest that the activation of
ADCC leading to melanoma cell lysis can concur with
the triggering of immune response due to relieve of
CTLA-4-mediated down-regulation to a better elimin-
ation of melanoma cells.
Further, we show that NOD/SCID mice s.c. co-

engrafted with Ipilimumab-coated MECO cells and allo-
geneic human NK cells had delayed tumor onset and
significant inhibition of tumor growth as compared with
mice engrafted with Ipilimumab-coated MECO cells
alone. These findings suggest that, in our experimental
conditions, tumor formation and growth were influenced
by the presence of NK cells in the xenograft and that
Ipilimumab-mediated ADCC triggering may have played
a role as Rituximab, used as antibody control, neither
showed delay in tumor formation nor reduction of
tumor volume. However, we found that all the mice de-
veloped a tumor. The inability of ex-vivo isolated human
NK cells to completely suppress tumor cell growth des-
pite the presence of Ipilimumab, may be due to a) the
low number of NK cells injected (1:1 NK/melanoma cell
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ratio); b) the lack of cytokines required for an optimal
human NK cell activation as IL-2 or IL-15; c) the lack of
accessory immune cells that can aid NK cell in eliminat-
ing melanoma cells.
In this regard, it has been reported that CD56+ NK cells

are more efficient in suppressing the growth of a lung can-
cer xenograft in SCID mice, if they are coinjected with ei-
ther CD8+ T cells or unfractionated peripheral blood
lymphocytes which are presumed to be important for the
in situ secretion of NK cell stimulating cytokines [39,40].
Whether the in vivo NK cell-mediated antitumor effect

occurs via ADCC activity or TNF-α secretion needs fur-
ther investigations. However, collectively our studies
pointed out an involvement of the innate immune sys-
tem in the antitumor effect of Ipilimumab.

Conclusions
Herein, we show that patient derived melanoma cell lines
and tumor tissues can express CTLA-4. Ipilimumab reacts
with CTLA-4 on melanoma cell lines and tissues and is
able to trigger antibody dependent cellular cytotoxicity
(ADCC) engaging FcγRIIIA on lymphocyte subsets such
as primary NK cells, IL-2 activated NK and γδT cells. The
degree of ADCC is dependent on the expression level of
CTLA-4 on melanoma target cells. Furthermore, NK cells
in the presence of Ipilimumab interacting with CTLA-4+

melanoma cells can release TNF-α.
These findings can have important therapeutic impli-

cations as they suggest 1) a new mechanism of action of
Ipilimumab; indeed, although formerly regarded as a
CTLA-4 antagonist antibody for T cells, it can trigger a
direct effect on melanoma tumor by inducing activation
of cytolytic effector cells; ii) the possibility that different
CTLA-4 levels on melanoma tissues could contribute to
the heterogeneous patterns of clinical response that
characterize the CTLA-4 immunotherapy in metastatic
melanoma patients.
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