Reproductive Biology and

O
Endocrinology ‘

BiolMed Central
Research

Effects of the estrous cycle, pregnancy and interferon tau on
expression of cyclooxygenase two (COX-2) in ovine endometrium
Seokwoon Kim, Youngsok Choi, Thomas E Spencer and Fuller W Bazer*

Address: Center for Animal Biotechnology and Genomics, Department of Animal Science, 442 Kleberg Center, 2471 TAMU, Texas A&M University,
College Station, Texas 77843-2471, USA

Email: Seokwoon Kim - swkim@neo.tamu.edu; Youngsok Choi - ychoil@bmc.tmc.edu; Thomas E Spencer - tspencer@ansc.tamu.edu;
Fuller W Bazer* - fbazer@cvm.tamu.edu
* Corresponding author

Published: 20 August 2003 Received: 07 July 2003

Reproductive Biology and Endocrinology 2003, 1:58 Accepted: 20 August 2003

This article is available from: http://www.RBEj.com/content/|/1/58

© 2003 Kim et al; licensee BioMed Central Ltd. This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media
for any purpose, provided this notice is preserved along with the article's original URL.

Abstract

In sheep, the uterus produces luteolytic pulses of prostaglandin F,, (PGF) on Days 15 to 16 of
estrous cycle to regress the corpus luteum (CL). These PGF pulses are produced by the
endometrial lumenal epithelium (LE) and superficial ductal glandular epithelium (sGE) in response
to binding of pituitary and/or luteal oxytocin to oxytocin receptors (OTR) and liberation of
arachidonic acid, the precursor of PGF. Cyclooxygenase-one (COX-1) and COX-2 are rate-limiting
enzymes in PGF synthesis, and COX-2 is the major form expressed in ovine endometrium. During
pregnancy recognition, interferon tau (IFNt), produced by the conceptus trophectoderm, acts in a
paracrine manner to suppress development of the endometrial epithelial luteolytic mechanism by
inhibiting transcription of estrogen receptor o (ERa) (directly) and OTR (indirectly) genes.
Conflicting studies indicate that IFN7 increases, decreases or has no effect on COX-2 expression
in bovine and ovine endometrial cells. In Study One, COX-2 mRNA and protein were detected
solely in endometrial LE and sGE of both cyclic and pregnant ewes. During the estrous cycle, COX-
2 expression increased from Days 10 to 12 and then decreased to Day |6. During early pregnancy,
COX-2 expression increased from Days 10 to 12 and remained higher than in cyclic ewes. In Study
Two, intrauterine infusion of recombinant ovine IFN7 in cyclic ewes from Days | | to 16 post-estrus
did not affect COX-2 expression in the endometrial epithelium. These results clearly indicate that
IFNt has no effect on expression of the COX-2 gene in the ovine endometrium. Therefore,
antiluteolytic effects of IFNt are to inhibit ERa and OTR gene transcription, thereby preventing
endometrial production of luteolytic pulses of PGF. Indeed, expression of COX-2 in the
endometrial epithelia as well as conceptus is likely to have a beneficial regulatory role in
implantation and development of the conceptus.

Background

In ruminants (sheep, cattle and goats), endometrial pros-
taglandins (PGs) play a major role in regulation of the
estrous cycle, pregnancy, and parturition. The estrous
cycle of sheep is dependent on the uterus as the source of
the luteolysin, prostaglandin F,, (PGF) [see [1,2] for
review]. On Days 15 and 16 of the estrous cycle, the cor-

pus luteum (CL) is regressed by luteolytic pulses of PGF
[3,4], which are produced by the lumenal epithelium (LE)
and superficial ductal glandular epithelium (sGE) of the
uterine endometrium [5,6]. The coordinated effects of
progesterone, estrogen and oxytocin govern the produc-
tion of luteolytic PGF pulses by the endometrial epithe-
lium [7,8]. Oxytocin, secreted from the posterior pituitary
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and CL, binds to oxytocin receptors (OTR) in the
endometrium and elicits pulsatile release of PGF from the
endometrium [9]. Oxytocin receptor (OTR) mRNA and
protein levels increase in endometrial LE and sGE imme-
diately before and during luteolysis (Days 14-16) [10-
12]. Estrogen affects the timing, magnitude and pattern of
PGF response to oxytocin [13] by acting through estrogen
receptor alpha (ERa) to increase OTR gene expression
[14-16]. Progesterone initially suppresses ERo. and OTR
expression in the endometrium, but exposure of the
endometrium to progesterone for 8-10 days down-regu-
lates expression of the PR [17]. Consequently, loss of
expression of PR in endometrial LE and sGE after Day 11
[18] ends the progesterone block to ERa and OTR forma-
tion. Thus, ERa is first detected on Days 11 and 13, which
is followed by expression of OTR on Day 14. Increases in
the abundance of estrogens from ovarian follicles and
ERa. promote OTR formation resulting in the pulsatile
pattern of PGF release that results in luteolysis [7,13].
Oxytocin binding to the OTR results in cell signaling cul-
minating in the liberation of arachidonic acid, the precur-
sor of PGF.

Prostaglandins are generated via the cyclooxygenase
(COX) pathway and COX is the rate-limiting enzyme for
conversion of arachidonic acid into prostaglandin H,
(PGH,), the common substrate for various PG synthases
[18,20]. COX exists in two isoforms that are encoded by
two separate genes, Cox-1 and Cox-2, which are also
known as prostaglandin endoperoxide H synthases
(PGHS)-1 and PGHS-2 [19,20]. These enzymes are
responsible for the conversion of arachidonic acid into
PGH,, which is the precursor of various PGs including
PGE, (PGE) and PGF,, (PGF). Although COX-1 is a con-
stitutively expressed enzyme in a variety of cell types,
COX-2 is the inducible enzyme that plays a role in various
pathological and physiological conditions in animal tis-
sues. Although COX-1-deficient female mice are fertile,
they have specific defects in parturition, whereas COX-2-
deficient female mice are infertile with abnormalities in
ovulation, fertilization, implantation and decidualization
[21-23]. The requirement of COX-2 for normal blastocyst
implantation and decidualization in mice is due to the
role of COX-2-derived PGs in regulation of vascular
endothelial growth factor (VEGF) and angiopoietin sign-
aling that influence uterine vascular permeability and
angiogenesis [24,25].

Abrogation of luteolytic pulses of PGF from the uterus in
ruminants is due to effects of conceptus (embryo and
associated membranes) signaling [4,26]. Interferon tau
(IFN7), a novel Type I IFN [27], produced by mononu-
clear trophectoderm cells of the ovine conceptus between
Days 11 to 20-25, acts in a paracrine manner on the
endometrium to inhibit production of luteolytic pulses of
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PGF [16,26] by preventing transcription of ERa. and OTR
genes in LE and sGE [28,29]. Consequently, OTR are
absent from endometrial LE and sGE, and OT-induced
luteolytic pulses of PGF are abrogated to maintain CL
integrity and function. Several in vitro studies using bovine
endometrial cells led to reports that IFNTt either increases
[30,31] or decreases [31-34] expression of COX-2 in
bovine endometrial cells. However, Charpigny et al. [5]
reported that COX-2 protein in the endometrium was first
detectable on Day 12, still expressed on Day 17, and then
progressively decreased to Day 25 of pregnancy in sheep,
whereas it was only transiently expressed in LE and sGE
between Days 12 and 15 of the estrous cycle. In contrast,
COX-1 was constitutively expressed in the endometrium
of both cyclie and early pregnancy ewes and was not
affected by the conceptus [5].

Given the conflicting evidence for IFNt effects on COX-2
gene expression in the endometrium, objectives of the
presented studies were to: (1) determine the effects of the
estrous cycle and pregnancy on COX-2 mRNA and protein
expression in the ovine endometrium; and (2) determine
the in vivo effects of IFNt on COX-2 expression in the
ovine endometrium.

Methods

Animals and experimental design

Mature ewes of primarily Suffolk breeding were observed
daily for estrous behavior using vasectomized rams. All
ewes exhibited at least two estrous cycles of normal dura-
tion (16-18 days). At estrus (Day 0), ewes were assigned
randomly to cyclic or pregnant status. Ewes assigned to
pregnant status were bred to intact rams at estrus. All
experiments and surgical procedures were in accordance
with the Guide for Care and Use of Agriculture Animals
and approved by the University Laboratory Animal Care
and Use Committee of Texas A&M University.

In Study One, ewes were hysterectomized (n = 5 ewes/
day) on Days 10, 12, 14 or 16 of the estrous cycle and
Days 10, 12, 14, 16, or 18 of pregnancy. On Days 10 to 16
post-mating, pregnancy was confirmed by the presence of
an apparently normal conceptus in the uterine flushing.
At hysterectomy, cross-sections (~0.5 cm) of the uterine
horn were fixed in fresh 4% paraformaldehyde in PBS (pH
7.2) for 24 h, dehydrated in 70% (v/v) ethanol for 24 h
and then embedded in Paraplast-Plus (Oxford Labware,
St. Louis, MO). The remaining endometrial tissues were
physically dissected from myometrium, frozen in liquid
nitrogen, and stored at -80°C for RNA extraction.

In Study Two, 10 cyclic ewes were ovariectomized and fit-
ted with intrauterine catheters on Day 5 of the estrous
cycle (Day O = estrus) as described previously [35]. Ewes
(n = 5 ewes/treatment) received daily intramuscular
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injections of 50 mg progesterone from Days 5 to 16, and
then daily intrauterine infusions of either 200 pg control
serum proteins (CX; ovine serum proteins) or recom-
binant ovine IFNt (IFN; 2 x 107 antiviral units per day)
[36] from Days 11 to 16. Preparation of control serum
proteins and rolFNt for intrauterine injection was per-
formed as described previously [35]. The selected dose of
rolFNt mimics pregnancy recognition in terms of ERq,
OTR and PG production in response to OT [16,17,28,29]
as well as induction and increases in IFNt-stimulated gene
expression in the endometrium [35]. All ewes were hyster-
ectomized on Day 17, and cross-sections from the mid-
region of each uterine horn fixed in 4% paraformaldehyde
and embedded in paraffin. The endometrium was physi-
cally dissected from the remainder of the uterine horns,
frozen in liquid nitrogen, and stored at -80°C for RNA
extraction.

RNA isolation and analyses

Total cellular RNA was isolated from frozen endometrial
tissue using Trizol reagent (Gibco-BRL, Bethesda, MD)
according to the manufacturer's recommendations. The
quantity of RNA was assessed spectrophotometrically,
and integrity of RNA examined by gel electrophoresis in a
denaturing 1% agarose gel.

Steady-state levels of COX-2 mRNA were assessed by
semi-quantitative RT-PCR analysis as described previously
[37]. Briefly, cDNA was synthesized from total cellular
RNA (5 pg) isolated from endometrial tissues using ran-
dom (Life Technologies, Gaithersburg, MD) oligo(dT)
primers and SuperScript Il Reverse Transcriptase (Life
Technologies). Newly synthesized cDNA was acid-ethanol
precipitated, resuspended in 20 pl of water, and stored at
-20°C. The cDNAs were diluted (1:10) with water before
use in PCR. COX-2 PCR primers used (GenBank accession
no. U68486) [38] were forward (bp 486-505) 5'-
CAGAGCTCTTCCTCCTGTGC-3' and reverse (bp 762-
780) 5'-CAAAAGGCGACGGTTATGC-3'. Using the ovine
B-actin  mRNA sequence (GenBank accession no.
U39357), the B-actin primers were forward (bp 274-295)
5'-CATCCTGACCCTCAAGTACCC-3' and reverse (bp
694-674) 5'-GTGGTGGTGAAGCTGTAGCC-3'. The COX-
2 PCR reaction consisted of 95°C for 30 sec, 58°C for 30
sec, and 72°C for 30 sec. The B-actin PCR consisted of
95°C for 30 sec, 55°C for 1 min, and 72°C for 1 min. The
optimal number of PCR cycles for COX-2 and B-actin was
determined to be 32 and 26, respectively, using methods
described previously [37]. In negative control reactions,
RT cDNA was substituted by inclusion of uterine total
RNA or water. The PCR reactions were performed using
AmpliTaqg DNA polymerase (PE Applied Biosystems Div.,
Foster City, CA) and Optimized Buffer C (Invitrogen,
Carlsbad, CA) for B-actin and COX-2 according to the
manufacturer's recommendations. Following PCR, 20 pl
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of each reaction was analyzed by agarose gel electrophore-
sis, and PCR products were visualized using ethidium bro-
mide. The relative amount of DNA present was quantified
by measuring the intensity of light emitted from correctly
sized bands under ultraviolet light using an Alphalmager
(Alpha Innotech Corp., San Leandro, CA). The B-actin val-
ues were used as a covariate in statistical analyses to cor-
rect for differences in the amount of cDNA template
between samples. Data are presented as relative units
(RU).

In situ hybridization analysis

COX-2 mRNA was localized in uterine tissue sections (5
um) by in situ hybridization analysis as described previ-
ously [35]. Briefly, deparaffinized, rehydrated, and depro-
teinated uterine tissue sections were hybridized with
radiolabeled antisense or sense cRNA probes generated
from a linearized bovine COX-2 partial cDNA (GenBank
AF004944) [29] using in vitro transcription with [o-35S]
UTP. After hybridization, washing and ribonuclease A
digestion, slides were then dipped in NTB-2 liquid photo-
graphic emulsion (Kodak, Rochester, NY) and exposed at
4°C for two weeks. Slides were developed in Kodak D-19
developer, counterstained with Harris modified hematox-
ylin (Fisher Scientific, Fairlawn, NJ) and dehydrated
through a graded series of alcohol to xylene. Coverslips
were then affixed with Permount (Fisher). Images of rep-
resentative fields in brightfield and darkfield illumination
were recorded using a Nikon Eclipse 1000 photomicro-
scope (Nikon Instruments Inc., Lewisville, TX) fitted with
a Nikon DXM1200 digital camera.

Immunohistochemistry

Expression of immunoreactive COX-2 was detected in
uterine tissue cross-sections (5 pum) using anti-human
PGHS-2 (COX-2) rabbit polyclonal IgG antibody (PG27,
Oxford Biomedical Research, Inc., Oxford, MI) and a
Super ABC Rabbit IgG Kit (Biomeda, Foster City, CA) as
described previously [35]. Negative controls were per-
formed in which the primary antibody was substituted
with the same concentration of purified normal rabbit
IgG from Sigma Chemical Co. (St Louis, MO). Sections
were deparaffinized, rehydrated, subjected to boiling cit-
rate buffer antigen retrieval [18,35], and then incubated
with anti-COX-2 IgG or rabbit IgG. Immunoreactive pro-
tein was visualized using diaminobenzidine tetrahydro-
chloride (Sigma) as the chromogen and then dehydrated
and coverslipped over Permount (Fisher Scientific, Pitts-
burg, PA).

As described previously [18], relative staining intensity for
immunoreactive COX-2 protein expression was assessed
visually in uterine sections (n = 2 per horn) from each ewe
by two independent observers and scored as follows:
absent (-; i.e., no staining above IgG control), weak (+),
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moderate (++), or strong (+++). The scores from the two
observers were averaged. If histologically discernable,
intercaruncular endometrial tissues, including LE, stroma,
and GE, caruncular endometrial tissues, including LE and
stroma, and myometrium were scored. Images of repre-
sentative fields were recorded using a Nikon Eclipse 1000
photomicroscope (Nikon Instruments Inc., Lewisville,
TX) fitted with a Nikon DXM1200 digital camera.

Statistical analyses

Integrated light intensity measurement data from RT-PCR
analyses were subjected to least-squares analysis of vari-
ance (LS-ANOVA) using the General Linear Models
(GLM) procedures of the Statistical Analysis System ver-
sion 8.1 for Windows (SAS Institute, Cary, NC) [38]. The
intensity of light emitted from fB-actin PCR products was
used as the covariate. The least square means (LSM) and
standard errors (SE) illustrated in graphs were derived
from this analysis. Data is presented as relative units (RU).

Results

Pregnancy increases COX-2 mRNA and protein in the
endometrial epithelium

Steady-state levels of COX-2 mRNA in the ovine
endometrium were determined by semi-quantative RT-
PCR analyses (Fig. 1). In cyclic ewes, COX-2 mRNA levels
increased between Days 10 and 12 and then decreased
from Day 12 to Day 16 (quadratic effect of day, P < 0.10).
In pregnant ewes, endometrial COX-2 mRNA levels were
lowest on Day 10, increased approximately 4-fold by Day
12, and remained high thereafter (quadratic, P < 0.10).

OCyclic M Pregnant
22000
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T 16000 o
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Z 10000 4
£
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4000 <
2000 9
0 v v v
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Figure |

Steady-state levels of COX-2 mRNA expression in
endometrium of cyclic and pregnant ewes. Total RNA was
isolated from endometrium and analyzed by semi-quantita-
tive RT-PCR. Data are presented as LSM relative units (RU)
with SE.
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After Day 10, levels of COX-2 mRNA were greater in the
endometrium of pregnant compared to cyclic ewes (day x
status, P < 0.01).

In situ hybridization and immunohistochemical analyses
revealed temporal and spatial alterations in COX-2 mRNA
and protein expression in the ovine uterus. In cyclic (Fig.
2) and pregnant (Fig. 3) ewes, COX-2 mRNA and protein
were detected only in LE and sGE of ovine endometrium.
In early pregnant ewes (Fig. 3), COX-2 mRNA and protein
abundance in endometrial LE and sGE increased from
weak to strong between Days 10 and 12 and remained
strong to Day 18. The decline in COX-2 expression after
Day 12 in the endometrium of cyclic ewes was not
observed in the endometrium of comparable pregnant
ewes. On Day 18 of pregnancy, COX-2 mRNA and protein
were observed in the conceptus.

Intrauterine infusion of ovine IFN7 has no effect on COX-
2 expression in the endometrium

In Study Two, intrauterine infusion of rolFNt into cyclic
ewes did not affect (P > 0.10) steady-state levels of
endometrial COX-2 mRNA as determined by semi-quan-
titative RT-PCR analysis (data not shown). These results
were confirmed by in situ hybridization and immunohis-
tochemical analyses of COX-2 mRNA and protein (Fig. 4).
COX-2 mRNA and protein were detected predominantly
in endometrial LE and were not different in CX as com-
pared to IFNt infused ewes.

Discussion

In the present study, COX-2 mRNA and protein were
detected in endometrial LE and sGE from cyclic ewes.
Overall, levels of COX-2 mRNA increased between Days
10 and 12 post-estrus and then decreased. These results
conflict with reports that COX-2 protein was expressed
maximally in ovine endometrium between Days 10 and
16 of the estrous cycle [40] and that COX-2 mRNA did not
fluctuate across the estrous cycle [41]. However, Char-
pigny et al. [5] found that COX-2 was transiently
expressed in the ovine endometrial LE and sGE between
Days 12 and 15 of the estrous cycle and then decreased in
abundance. The differences in the present study may stem
from breed of ewe used in the studies to sensitivity of the
biochemical techniques and estrus detection. In bovine
studies, COX-2 mRNA and protein were expressed at low
and high levels on Days 1-12 and 13-21, respectively, of
the estrous cycle [42]. Nevertheless, COX-2 is the predom-
inant enzyme expressed in ovine and bovine uteri [42]
and is expressed in LE and sGE of the endometrium,
which are responsible for production of luteolytic pulses
of PGF2a. [6].

In pregnant ewes, the present study found that COX-2

mRNA and protein expression increased between Days 10
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In situ hybridization and immunohistochemical analysis of COX-2 expression in the endometrium of cyclic ewes. Cross-sec-
tions of ovine endometrium were hybridized with radiolabeled antisense or sense bovine COX-2 cRNA probes. Hybridized
sections were digested with ribonuclease A, and protected transcripts were visualized by liquid emulsion autoradiography.
Developed slides were counterstained lightly with hematoxylin, and photomicrographs were taken under bright-field (left) or
dark-field illumination (middle). Inmunoreactive COX-2 protein was detected using rabbit anti-human COX-2 polyclonal IgG
(right). The negative IgG control was performed by substituting irrelevant rabbit IgG for primary antibody. The white arrow
denotes areas of specific COX-2 mRNA or immunoreactive protein expression. Legend: C, cyclic; LE, lumenal epithelium; S,
stroma; sGE, superficial ductal glandular epithelium. Bar = 20 um.
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Figure 3

In situ hybridization and immunohistochemical analysis of COX-2 expression in the endometrium of early pregnant ewes.
Cross-sections of the ovine endometrium were hybridized with radiolabeled antisense or sense bovine COX-2 cRNA probe.
Hybridized sections were digested with ribonuclease A, and protected transcripts were visualized by liquid emulsion autoradi-
ography. Developed slides were counterstained lightly with hematoxylin, and photomicrographs were taken under bright-field
or dark-field illumination (left). Inmunoreactive COX-2 protein was detected using rabbit anti-human COX-2 polyclonal IgG
and a BioStain Super ABC Kit (right). The white arrow denotes areas of specific COX-2 mRNA or immunoreactive protein
expression. Legend: C, conceptus; LE, lumenal epithelium; S, stroma; sGE, superficial ductal glandular epithelium; P, pregnant.

Bar = 20 um.
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In situ hybridization and immunohistochemical analysis of COX-2 expression in the ovine endometrium (Study Two). Ewes
were ovariectomized on Day 5 of the estrous cycle, treated daily with progesterone, and infused from Days || to 15 with

either control (CX) proteins or recombinant ovine IFNt (IFN). On Day 16, ewes were hysterectomized. Cross-sections of the
ovine uterus were hybridized with radiolabeled antisense or sense bovine COX-2 cRNA probe. Hybridized sections were
digested with ribonuclease A, and protected transcripts were visualized by liquid emulsion autoradiography. Developed slides
were counterstained lightly with hematoxylin, and photomicrographs were taken under bright-field or dark-field illumination
(left). Immunoreactive COX-2 protein was detected using rabbit anti-human COX-2 polyclonal IgG (right). The negative IgG
control was performed by substituting irrelevant rabbit IgG for primary antibodies. The white arrow denotes areas of specific
COX-2 mRNA or immunoreactive protein expression. Legend: CX, control; IFN, interferon tau; LE, lumenal epithelium; S,
stroma; sGE, superficial ductal glandular epithelium. Bar = 20 um.

and 12 and remained high thereafter in the LE and sGE of
the endometrium. Charpigny et al. [5] also reported that
COX-2 increased on Day 12 of pregnancy and was
expressed to Day 17. The present study also detected COX-
2 mRNA and protein expression in the Day 18 conceptus.
Similarly, Charpigny et al. [5] found that COX-2 was
expressed in the ovine conceptus and was developmen-
tally regulated in the trophoblast. The increase in COX-2
expression in ovine endometrium and conceptus is corre-
lated with production of several types of PGs [5,43]. The
COX-2-derived PGs produced by the blastocyst are pro-
posed to be involved in blastocyst formation, hatching
and elongation [44,45], whereas PGs produced by the

endometrium play essential roles in endometrial vascular
permeability and implantation [23-25,46,47].

Conclusions

Several reports supported the hypothesis that IFNt pre-
vents the COX-2 expression in endometrium to block the
production of PGF and that IFNt acts on endometrium to
inhibit OT-stimulated COX-2. Using an in vitro model to
investigate effects of IFNt on expression of COX-2, IFNt
was found to decrease COX-2 expression in bovine
endometrial cells [32-34]. However, in wvivo studies
showed that expression of COX-2 is essential for blasto-
cyst implantation and decidualization especially changes
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in vascular permeability and angiogenesis in mice [23-
25]. Thus, available results support the contention that
the antiluteolytic effect of IFNt on endometrial epithelia
is not manifest on COX-2 gene expression. Rather, IFNt
inhibits or silences expression of the ERa gene [48],
which, in turn, prevents increases in OTR gene expression
[49], thereby preventing endometrial production of lute-
olytic pulses of PGF.
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