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Background: Acoustophoresis has been utilized successfully in applications including cell trapping, focusing, and
purification. One current limitation of acoustophoresis for cell sorting is the reliance on the inherent physical

properties of cells (e.g., compressibility, density) instead of selecting cells based upon biologically relevant surface-
presenting antigens. Introducing an acoustophoretic cell sorting approach that allows biochemical specificity may
overcome this limitation, thus advancing the value of acoustophoresis approaches for both the basic research and

Results: The results presented herein demonstrate the ability for negative acoustic contrast particles (NACPs)
to specifically capture and transport positive acoustic contrast particles (PACPs) to the antinode of an
ultrasound standing wave. Emulsification and post curing of pre-polymers, either polydimethylsiloxane (PDMS)
or polyvinylmethylsiloxane (PVMS), within aqueous surfactant solution results in the formation of stable NACPs
that focus onto pressure antinodes. We used either photochemical reactions with biotin-tetrafluorophenyl
azide (biotin-TFPA) or end-functionalization of Pluronic F108 surfactant to biofunctionalize NACPs. These
biotinylated NACPs bind specifically to streptavidin polystyrene microparticles (as cell surrogates) and transport
them to the pressure antinode within an acoustofluidic chip.

Conclusion: To the best of our knowledge, this is the first demonstration of using NACPs as carriers for
transport of PACPs in an ultrasound standing wave. By using different silicones (i.e, PDMS, PVMS) and curing
chemistries, we demonstrate versatility of silicone materials for NACPs and advance the understanding of
useful approaches for preparing NACPs. This bioseparation scheme holds potential for applications requiring
rapid, continuous separations such as sorting and analysis of cells and biomolecules.
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Background

Microparticles suspended in an ultrasound standing
wave field may respond to the primary acoustic radiation
force by transporting to specific locations along the
wave (i.e., pressure node or pressure antinode) [1-4].
The primary radiation force (F) exerted on a particle
depends on several factors including the acoustic
pressure amplitude (Py), particle volume (V}),
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wavelength (1), and the acoustic contrast factor (¢)
(Equation 1, where k is the wavenumber and x is the
distance from a vertical wall of the microfluidic
channel). Importantly, the sign of the acoustic
contrast factor, which depends on both the density
(p) and the compressibility (5) of the particle relative
to the surrounding solution, dictates the relocation
(Equation 2). For example, particles with higher com-
pressibility (3,) than the surrounding media (B,,) will
move to the pressure antinode, whereas particles with
a lower compressibility than the surrounding media
will move to the pressure node. In general, particles
with a positive ¢ (i.e, PACPs), such as polystyrene
beads or cells, transport to acoustic pressure nodes

© 2013 Johnson et al,; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.


mailto:gabriel.lopez@duke.edu
http://creativecommons.org/licenses/by/2.0

Johnson et al. Journal of Nanobiotechnology 2013, 11:22
http://www.jnanobiotechnology.com/content/11/1/22

within aqueous media, whereas particles with a negative ¢
(i.e., NACPs) transport to the acoustic pressure antinodes
within aqueous media.
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The capacity to relocate PACPs to pressure nodes has
been used in various approaches for focusing and
separation of mammalian cells [5-11]. For example, the
recently commercialized Attune® flow cytometer
(Life Technologies) substitutes traditional hydrodynamic
focusing with ultrasonic standing wave fields to focus cells
into a single flowing stream prior to laser interrogation [5].
To increase the high-throughput capacity of flow
cytometry, Piyasena et al. recently developed multi-node
acoustic focusing and demonstrated up to 37 parallel flow
streams [6]. Peterson et al. exploited the inherent contrast
factor of constituents from whole blood to separate and
sort positive contrast erythrocytes from negative contrast
lipids within an acoustofluidic device [7,8]. Strategies for
separating two particle populations with contrast factors of
the same sign can exploit differences in the magnitude of
the acoustic force [9,10]. In certain cases, the contrast fac-
tor can be adjusted by changing the density of the solution,
as shown in a report separating polystyrene and PMMA
microparticles by increasing the salt concentration of the
media [11].

We seek to augment acoustophoretic particle sorting
capabilities by introducing newly designed negative
acoustic contrast particles (NACPs) with the capacity for
specific biomolecular recognition and relocation of
PACPs to antinodes of ultrasound standing waves. Since
NACPs move in the direction opposite to the majority
of mammalian cells, we hypothesized that biofunctional
NACPs can capture and specifically transport targeted cells
(or other PACPs) to the pressure antinodes, provided the
total acoustic force of the NACPs is greater than the total
acoustic force of the PACPs. Figure 1 illustrates the
principle. Central to this bioseparation scheme is the spe-
cific association between the engineered NACPs and
targeted PACPs to create a stable complex capable of in-
tandem transport to the pressure antinode. This requires
precise design of biofunctional NACPs that exhibit stability
and specificity for targeted PACPs. Recently, Cushing et al.
reported the first use of NACPs for biomolecule quantifica-
tion assays by using protein adsorption to modify the
surface of PDMS particles [12]. While convenient, such ad-
sorption techniques often generate heterogeneous surfaces
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Figure 1 Acoustic mediated bioseparation using NACPs.
Schematic illustrating the use of NACPs as carriers for directed
transport of PACPs (e.g,, cells). (A) In the absence of the acoustic
standing wave (PZT off), all particles distribute randomly within the
acoustofluidic channel. (B) In the presence of the acoustic standing
wave (PZT on), microparticles transport either to the pressure node
(solitary non-targeted PACPs, blue) or to the acoustic anti-node
(NACPs, red). Here, the acoustofluidic channel operates at a half
wavelength resonant mode perpendicular to flow resulting in an
antinode at both channel walls and a single node in the middle of
the channel. By designing NACPs with biological affinity for targeted
PACPs (green), NACP-PACP complexes form and collectively
transport to the pressure antinode. Sorted PACPs may be collected
downstream using a trifurcation configuration. Schematic is not to

scale and represents conditions without flow or low flow rates.

resulting from random orientation and denaturation of pro-
teins on the surface [13]. These considerations become
more important in cell sorting applications that require
high concentrations of active, surface-presenting bioaffinity
groups for capturing rare cells and cells with a low quantity
of targeted surface antigens.

Herein, we report on the preparation of NACPs and
demonstrate the utility of these microparticles in a new
acoustophoretic separation scheme. Specifically, NACPs
are prepared using two different silicone elastomers and
biotinylated using two different chemical modification
approaches. The newly designed NACPs are evaluated as
carriers for the transport of streptavidin PACPs to pres-
sure antinodes within acoustofluidic devices. Our results
reveal the potential of this approach for cell sorting
applications.

Results and discussion

Silicone microparticles as biofunctional NACPs

Silicone elastomers offer properties suitable for NACPs
such as compressibility at mild temperature (e.g., Young’s
modulus ~1MPa for typical PDMS formulations) [14].
Here, all NACPs were prepared by emulsifying silicone
pre-polymers in aqueous surfactant solutions and subse-
quently curing to produce solid microparticles (Figure 2A).
Because homogenization produces polydisperse particles,
filtration or centrifugation was employed to narrow the
breadth of particle size distributions. In one example,



Johnson et al. Journal of Nanobiotechnology 2013, 11:22
http://www.jnanobiotechnology.com/content/11/1/22

Page 3 of 8

Figure 2 Silicone NACPs for acoustic mediated bioseparations. (A) SEM image of NACPs comprising PDMS. Brightfield image (B) and the
accompanying fluorescence image (C) of biotinylated PDMS particles (red) binding streptavidin polystyrene microparticles (green, 6 um diameter).
PDMS particles are encapsulated with rhodamine B and surface-functionalized with biotin-Pluronic F108. Scale bars represent 20 um.

filtration of NACPs with a 12 pm polycarbonate filter
resulted in an average particle diameter of 6 +3 pm
(Additional file 1). Although a variety of surfactants
enabled formation of silicone-in-water emulsions, the
importance of surfactant type became evident when
attempting to re-suspend cured NACPs in surfactant-free
buffer, which often resulted in irreversible particle
aggregation. Here, we found that the block copolymer
surfactant, Pluronic® F108, stabilizes silicone microparticles
likely due to the strong association of the hydrophobic
polypropylene oxide block with silicone [15]. We further
exploited this stable association by end-functionalizing
Pluronic® F108 with biotin (Figure 2B,C). Biotin-Pluronic
F108 enables use of the streptavidin protein as a
linker between NACPs and any biotinylated analyte
(e.g., cells labelled with biotinylated antibodies).

We also sought to evaluate the feasibility of direct
modification of NACPs. Typically, surface modification
of PDMS is accomplished by employing modification
methods such as ultraviolet (UV)/ozone irradiation
[16], UV graft polymerization [13], oxygen plasma
treatment [17], and adsorption [18]. These modification
approaches are usually performed on macroscopic silicone
surfaces not held to the unique stringencies required to
functionalize NACPS. For NACPs, conditions must be
avoided that cause significant change in modulus or
irreversible microparticle aggregation. For instance,
modification of PDMS surfaces via plasma treatment
results in the formation of brittle silica layers [19]
which could affect the negative acoustic contrast
property. Here, to evaluate direct, covalent modification of
particles, we used PVMS which contains vinyl groups
and can be functionalized chemically without forming
a silica-like crust [16]. To first evaluate and compare
chemical groups in both PDMS and PVMS, bulk samples
were prepared and characterized using ATR-FTIR
(Figure 3). PVMS material displays characteristic vinyl
peaks at 958 cm™ (C=C twist, =CH, wagging), 1,408 cm™
(=CH, scissors), and 1,597 cm™ (C=C stretch). While
vinyl groups are versatile for various chemical reactions

(e.g., thiolene or methathesis coupling), our studies
revealed that relatively simple photochemical reaction
with biotin-TFPA results in biofunctionalization of PVMS
particles (Figure 4A,B). Photoreacting biotin-TFPA with
PVMS microparticles and subsequently adding fluorescent
streptavidin resulted in significant differences in fluores-
cent signal between positive and negative samples (Add-
itional file 2). For example, signal to background values
(S/B) of fluorescent images of PVMS microparticles func-
tionalized with biotin-TFPA and fluorescent streptavidin
was 22 + 2, whereas the negative control reaction without
light irradiation was 9.0 + 0.3, suggesting a biotinylation
reaction of NACPs occurred. Notably, these studies
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Figure 3 ATR-FTIR spectra of PDMS and PVMS. PDMS and PVYMS
exhibit IR peaks at 789-796 cm™ (~CH; rocking and Si-C stretching
in Si-CH3), 1020-1074 cm™ (Si-O-Si stretching), 1260-1259 cm’'
(CH5 deformation in Si-CHs), and 2950-2960 cm (asymmetric CH3
stretching in Si-CHs). The spectra for PYMS shows IR peaks
characteristic for C=C at 958 cm™', 1408 cm™', and 1597 cm".
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cannot discern the exact location of biotinylation (e.g.,
vinyl groups or associated surfactant), as TFPA may react
with C-H, N-H, or C=C groups [20]. Initial attempts at
using biotin-TFPA to functionalize PDMS microparticles
resulted in similar trends with a S/B values of 22 + 3,
supporting the non-specificity of biotin-TFPA. Overall,
these studies demonstrate the utility of using biotin-TFPA
for bio-functionalization of silicone microparticles.

Next, we sought to evaluate the acoustic responsive-
ness of these silicone microparticles. Our results show
that microparticles prepared from either PVMS or
PDMS function as NACPs within aqueous media
(Figures 4 and 5). For example, a mixture of biotinylated
PVMS NACPs and non-biotinylated polystyrene micro-
particles randomly distribute within an acoustofluidic
channel in the absence of a standing wave field
(Figure 4C). Upon application of an operating frequency
of 298 MHz to generate an ultrasound standing wave
within the microchannel (wavelength = 2 x channel width),
polystyrene and PVMS microparticles separate (Figure 4D).
Here, particle separation occurred in less than one
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second as determined under this experimental setup.
Determining the precise rate of particle separation
would require further measurements with a high
speed camera to track trajectories of individual parti-
cles. Incompressible positive acoustic contrast poly-
styrene particles transport to the center of channel,
corresponding to the pressure node, whereas com-
pressible PVMS NACPs transport to the channel side-
walls, corresponding to the pressure antinodes. The
capacity for both PDMS and PVMS to function as
NACPs (Figures 4 and 5) illustrates the versatility of
using silicone elastomers with different chemical
compositions. Although only two silicone materials
were tested here, we envision schemes to enhance the
repertoire of available functional groups by employing
a range of functional silicones that could be used
for bioconjugation reactions. It is important to note is
that the “PDMS” microparticles studied here (i.e.,
Sylgard 184, which is a blend of PDMS, silica, and
resin fillers) exhibited negative acoustic contrast
despite containing silica fillers.

Polystyrene
PACPs

Figure 4 Acoustic response of silicone NACPs. Brightfield image (A) and corresponding fluorescence image (B) of PVMS microparticles
functionalized with biotin-TFPA and subsequently labelled with streptavidin Alexa Fluor® 488. The fluorescent image was acquired during a 250
ms exposure. The scale bars represent 50 um. (C, D) Fluorescence images show a mixture of PVMS microparticles (red, functionalized with biotin-
TFPA and streptavidin Alexa Fluor® 546) and polystyrene microparticles (green, non-biotinylated, Spherotech, 10-13 um diameter) within a
channel of an acoustofluidic device with (C) and without (D) activation of the PZT. Mixture contained a 1:7 ratio of polystyrene:PYMS
microparticles. Images acquired in the absence of flow. Dashed lines are included to demarcate the channel boundaries.

direction to outlet
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Figure 5 Using NACPs to transport PACPs to the pressure antinode. Fluorescence images demonstrate the ability to use NACPs to transport
PACPs to the pressure antinode within an acoustofluidic device. (A) As a negative control, PDMS microparticles (non-biotinylated, encapsulated
with Nile Red fluorophore) were mixed with streptavidin polystyrene microparticles (green, 6 um diameter). The lack of binding between the
non-biotinylated PDMS and streptavidin polystyrene particles results in their transport to the antinode and node, respectively. (B) The high affinity
between PDMS microparticles (biotinylated, encapsulated with rhodamine B fluorophore) and streptavidin polystyrene microparticles (green, 6 um
diameter) generate particle complexes that transport collectively to the pressure antinode within an ultrasound standing wave. Images acquired

in the absence of flow with a 1:10 ratio of polystyrene:;PDMS. Dashed lines are included to demarcate the channel boundaries. Scale bars
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NACPs as carriers for acoustic-mediated separations

The separation of silicone NACPs from polystyrene
microparticles demonstrated in Figure 4 encouraged
further investigations aimed at evaluating potential for
the use of NACPs in cell separations. We hypothesized
that NACP-PACP complexes within aqueous media
will transport to pressure antinodes, provided the
total radiation force from NACPs in the complex is
greater than the total radiation force from PACPs in
the complex. To this end, we employed polystyrene
microparticles as surrogates for mammalian cells and
investigated separation characteristics using NACPs
prepared from PDMS. The brightfield image (Figure 2B)
and accompanying fluorescent image (Figure 2C) show
association between streptavidin coated polystyrene and
PDMS microparticles functionalized with biotin-Pluronic
F108. Notably, within the acoustofluidic device, the
NACP-polystyrene microparticle complexes transport
in unison to the pressure antinode (Figure 5B). This
supports the notion that NACPs may serve as vehicles for
specific transport of positive acoustic contrast particles.
Conversely, non-biotinylated PDMS microparticles did
not bind streptavidin polystyrene particles. This is

shown in the negative control (Figure 5A) where non-
biotinylated PDMS particles (red) transport to the pressure
antinode and polystyrene microparticles (green) align at the
pressure node. Figure 5 suggests the feasibility of a new
bioseparation technique where transport of targeted
PACPs (e.g., cells) will rely on specific, well-defined
interactions with the NACPs. Figure 5 shows all
PACP-NACP complexes transported to the antinode
at the acoustofluidic wall (e.g, ~14 NACPs and ~12
PACPs in four separate complexes). However, additional
studies are required to further understand the effects of
parameters, such as particle ratios, flow rates, and applied
voltages on efficiency of separation.

As expected, in the absence of fluid flow, NACPs
accumulate at the pressure antinodes along the
acoustofluidic channel walls during activation of the PZT
(Figures 4 and 5). Secondary acoustic forces contribute to
the aggregation of NACPs, as previously described for
lipids in milk emulsions and whole blood [7,8,21]. This
NAPC aggregation may be reduced by introducing flow to
the channel. As recently demonstrated, laminar flow
within the channel enables NACPs to maintain their
position at the pressure antinode while simultaneously
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moving along laminar streamlines to the downstream
trifurcation [12]. This capacity to couple relocation
with downstream sample collection facilitates continuous
sorting applications.

To the best of our knowledge, this is the first report
documenting the use of NACPs as carriers for active
transport of PACPs in acoustofluidic systems. Although
polystyrene microparticles were used as cell surrogates in
this preliminary investigation to demonstrate separation,
this approach should be suitable for cell sorting based on
binding of NACPs to specific cell surface antigens.
Because the positive acoustic contrast factor value of
cells is less than polystyrene beads [22], we anticipate
that cell-NACP complexes should readily transport to
pressure antinodes. Thus, this method holds potential
as a complement to current cell sorting techniques (e.g.,
fluorescence-activated or magnetic-activated cell sorting).
In contrast to these conventional methods, the present
technique offers the possibility of enhanced selectivity and
separation efficiency since ultrasound wave fields exert
forces on both NACPs and PACPs in opposing directions.
Given this promise, it is necessary to further examine
several aspects of using NACPs in cellular separations. For
example, the role of bioaffinity bond strength between
particles that are being subjected to force in opposite
directions may need to be studied in detail. Likewise, the
features that enable the primary radiation force of NACPs
to dominate that of PACPs requires further investigation.
The transport of PACPs to the pressure antinodes will
only occur when a complex of PACP bound to NACPs
exhibits an overall negative acoustic contrast factor,
which can be adjusted through the volume, density,
and bulk modulus of the NACPs. In the current
study, these properties have converged to favor the
relocation of PACP-NACP complexes to the antinode.
We anticipate that future experimental and computational
investigations will reveal the optimal parameters that
support efficient cell separation.

Conclusions

This report communicates a new approach for
bioseparation that employs polysiloxane-based micro-
particles with a negative acoustic contrast property.
Emulsifying and post-curing pre-polymers within
aqueous surfactant results in stable microparticles that
transport to the pressure antinode of an ultrasonic
standing wave field in aqueous media. By using
polysiloxanes with different chemical compositions and
curing chemistries (i.e, PDMS, PVMS), we demonstrate
versatility and general utility of silicone materials as
negative acoustic contrast agents. Both photochem-
ical and physical adsorption approaches are used to
biofunctionalize NACPs, ultimately enabling the spe-
cific capture and transport of PACPs to an acoustic
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pressure antinode. These results encourage further
pursuits aimed at using NACPs for cell separation,
owing to potential advantages of this system such as
high sensitivity, selectivity, portability and low cost.

Methods

Preparation & functionalization of NACPs

Preparing PVMS particles: A mixture of 1.0 g of hydroxyl-
terminated PVMS [14], 0.07 g vinylmethoxysiloxane homo-
polymer (Gelest), and between 0.02 g and 0.03g tin octoate
catalyst (Gelest) was thoroughly stirred and combined
with a solution of 0.5 or 0.7 wt% Pluronic® F108 (Aldrich)
in ultrapure water (Mill-Q, 18MQ resistivity). The
mixture was briefly vortexed, homogenized using a PT
1200E homogenizer (Polytron) with a 3mm rotor for 5
min at 18,750 rpm, and stirred for at least 2 hr at ~50°C.
The polydisperse emulsion was permitted to cure via
alkoxy condensation of silanol-terminated PVMS with
vinylmethoxysiloxane. Particles were left at ambient con-
ditions for approximately one week, then filtered through
a 12 pm polycarbonate membrane (Whatman, Cyclopore),
and stored at ambient conditions until use. Preparing
PDMS particles: A mixture comprising a 1:10 weight ratio
of curing agent: base of Sylgard® 184 (Dow Chemical)
was thoroughly mixed and 1 gram of the mixture was
subsequently combined with 1 wt% of Pluronic F108. The
mixture was homogenized as previously described. The
emulsion was incubated at 45°C, stirring for at least 1.5
hrs and subsequently left at ambient conditions for at least
12 hrs to permit curing. Functionalization: For reactions
with biotin-TFPA (Quanta Biodesign), ~5 x 10’ PVMS
microparticles were washed with 1x PBS by centrifuging
and resupending the pellet in a final volume of 2 mL
of 1x PBS. The microparticles were transferred to a
cylindrical glass vial (2.5 cm diameter) and 3 mg
biotin-TFPA in 100 pL of dimethylacetamide was
added. Light irradiation occurred using an Omnicure
S1000 equipped with a high pressure mercury lamp and
an internal 320-500 nm filter. The associated light guide
was placed ~5 mm above the stirring solution for 30 min
at a light intensity of ~100 mW/cm® at a wavelength
of 365 nm, (as measured by Powermax USB sensor,
Coherent). The resultant yellow solution was stored
at 4°C until use. Biotinylation of Pluronic F108
surfactant followed a similarly reported protocol [20].
Briefly, hydroxyl end groups on F108 were modified
to succinimidyl carbonate using N,N’-disuccinimidyl
carbonate (Aldrich) and 4-(dimethylamino)pyridine
(Aldrich) and subsequently reacted with biotin-hydrazide
(Aldrich). Once biotinylated, Pluronic F108 was used to
prepare silicone emulsions as previously described.
Subsequent addition of streptavidin (AlexaFluor® 488
or AlexaFluor® 546) to NACPs occurred by washing parti-
cles at least three times by centrifuging and resuspending
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the pellet in 1x PBS, and incubating with either 1 uM or
1.7 uM of streptavidin for 30 min at room temperature.

Characterization of negative acoustic contrast materials
and microparticles

Attenuated total reflection-Fourier transform infrared
(ATR-FTIR) spectra were acquired using a Thermo
Electron Nicolet 8700 spectrometer (Ge crystal, 32 scans,
4 cm?® resolution). Scanning electron microscopy (SEM)
images were obtained using model FEI XL 30 SEM under
ultra-high resolution mode after sputter coating the sam-
ples with approximately 6 nm of gold. Optical microscopy
images were obtained using an upright Zeiss Axio Imager
A2 microscope with appropriate filter set (ex 470/40, em
525/50 or ex 545/25, em 605/70 or ex 365, em 445/50).

Bioseparation studies

Binding between streptavidin polystyrene microparticles
(Polysciences, YG microspheres, 6 um) and PDMS NACPs
(encapsulated with rhodamine B, functionalized with
biotin-F108) occurred by combining ~10° polystyrene
particles and ~10” PDMS particles and incubating for 30
minutes at room temperature with end-over-end rotation.
Before combining with the polystyrene microparticles, ~10
PDMS NACPs were washed three times with 1x PBS. Poly-
styrene particles were added directly from the manufac-
turer’s stock without washing. Bioseparation events within
the channel were monitored through the glass lid of the
acoustofluidic device using fluorescent microscopy.

Fabrication of acoustofluidic device

The acoustofluidic device (Additional file 3) was prepared
using standard photolithography, deep reactive-ion etching,
anodic bonding and plasma bonding. The device contained
a downstream collection module and an acoustic (piezo-
electric) actuation element (i.e., lead zirconate titanate,
PZT, 841 WFB, d33 = 0.3 nm/V, APC International). The
channel width was designed to operate at a half wavelength
resonant mode (e.g., 252 pm and frequency of 2.94 MHz or
272 pum and frequency of 2.72MHz) resulting in an anti-
node at both channel walls and a single node in the channel
center line. For the experiments, an electric signal with
peak-to-peak voltage of 31 V was applied to the PZT. Prior
to running experiments, the acoustofluidic channels were
treated with a solution of Pluronic F108.

Additional files

Additional file 1: Size distribution of NACPs after filtration. This
graph shows the size distribution (6 + 3 pm) of PVMS NACPs (prepared
with 0.3 wt% cetyltrimethylammonium bromide surfactant) after filtration
with a 12 um polycarbonate filter. The particle diameters were
determined using optical microscopy with a 40x objective. Any
microparticles <1 um would not be resolved with this technique.
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Additional file 2: Analysis of PVMS microparticles after
functionalization with biotin-TFPA and fluorescent streptavidin.
Histogram showing the signal to background (S/B) fluorescent values

of: (A) PVMS microparticles (~5 x 107 particles/mL) combined with
biotin-TFPA and irradiated with a 320-500 nm light source (~10 mw/cm?)
for 30 minutes. The particles were subsequently labeled with streptavidin
AlexaFluor® 488 and washed with 1x PBS. The negative control reactions
were performed identically except (B) without light irradiation or (C) without
biotin-TFPA. All fluorescent values were taken from images acquired using a
40x objective and 25 ms exposure. Three separate fluorescent images from
the same sample were taken and used to calculate standard deviations.

Additional file 3: Acoustofluidic device. Digital camera images
showing (A) the glass top and (B) the silicon underside of an exemplary
acoustofluidic device. To collect downstream sorted particles, a
trifurcation arrangement was designed with two side outlets and a single
middle outlet, where negative and positive acoustic contrast particles
would exit, respectively. The PZT is attached to the silicon underside.
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