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Abstract

Background: RNA interference (RNAI) technology is a powerful methodology recently developed for the
specific knockdown of targeted genes. RNAI is most commonly achieved either transiently by transfection of small
interfering (si) RNA oligonucleotides, or stably using short hairpin (sh) RNA expressed from a DNA vector or
virus. Much controversy has surrounded the development of rules for the design of effective siRNA
oligonucleotides; and whether these rules apply to shRNA is not well characterized.

Results: To determine whether published algorithms for siRNA oligonucleotide design apply to shRNA, we
constructed 27 shRNAs from || human genes expressed stably using retroviral vectors. We demonstrate an
efficient method for preparing wild-type and mutant control shRNA vectors simultaneously using oligonucleotide
hybrids. We show that sequencing through shRNA vectors can be problematic due to the intrinsic secondary
structure of the hairpin, and we determine a strategy for effective sequencing by using a combination of modified
BigDye chemistries and DNA relaxing agents. The efficacy of knockdown for the 27 shRNA vectors was evaluated
against six published algorithms for siRNA oligonucleotide design. Our results show that none of the scoring
algorithms can explain a significant percentage of variance in shRNA knockdown efficacy as assessed by linear
regression analysis or ROC curve analysis. Application of a modification based on the stability of the 6 central
bases of each shRNA provides fair-to-good predictions of knockdown efficacy for three of the algorithms. Analysis
of an independent set of data from 38 shRNAs pooled from previous publications confirms these findings.

Conclusion: The use of mixed oligonucleotide pairs provides a time and cost efficient method of producing wild
type and mutant control shRNA vectors. The addition to sequencing reactions of a combination of mixed dITP/
dGTP chemistries and DNA relaxing agents enables read through the intrinsic secondary structure of problematic
shRNA vectors. Six published algorithms for siRNA oligonucleotide design that were tested in this study show
little or no efficacy at predicting shRNA knockdown outcome. However, application of a modification based on
the central shRNA stability should provide a useful improvement to the design of effective shRNA vectors.
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Background

RNA interference (RNAi) is a naturally occurring phenom-
enon by which RNA duplexes known as short interfering
RNA (siRNA) can reduce gene expression through enzy-
matic cleavage of a target mRNA mediated by the RNA-
induced silencing complex (RISC). The ability of synthetic
siRNA to inhibit targeted genes with near specificity
makes it an extremely powerful tool for functional
genomics that has drawn considerable interest recently
[1,2]. RNAi is commonly achieved by introducing chemi-
cally synthesized siRNA 19-22 mers into cells by transfec-
tion. However, many cells and cell lines are either
refractory to or adversely affected by transfection, and the
transient nature of this methodology renders it unsuitable
for the generation of long-term cell lines of the desirable
phenotype. Two alternatives to synthetic siRNA are DNA-
vector mediated RNAi production [3-5], and most
recently viral-mediated siRNA synthesis [6-10]. For the
latter technologies, sense and antisense strands can be
expressed from different promoters [11]. Alternatively,
short hairpin (sh) RNAs, expressed from a single pro-
moter, are processed into siRNAs by Dicer or a homolo-
gous double strand RNase [12].

One caveat of siRNA design is that not all 19-22 base RNA
duplexes will cleave their target with efficacy, and much

Table I: ShRNA vectors prepared for this study
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effort has gone towards identifying a set of rules for select-
ing an effective siRNA target site within a gene. Recent
findings [13,14] offered the first clue towards the develop-
ment of guidelines for selecting an siRNA target site. These
studies showed that the RISC complex is asymmetric and
favors the strand of the siRNA duplex with the least ther-
modynamically stable 5' terminus. Subsequently, Rey-
nolds et al. designed an algorithm based on statistical data
showing patterns of efficacy for siRNA oligonucleotides
containing specific residues at defined positions within
the 19-mer [15]. A limitation of their study is that a small
number of genes were tested. Several additional algo-
rithms for designing effective siRNAs have been published
since those initial reports with surprisingly disparate
results, making the determination of which residues are
generally favorable for siRNA efficacy a point of contro-
versy [ 16-20]. Additionally, whether any of the algorithms
developed for synthetic siRNA oligonucleotides apply to
the design of shRNA expressed stably from a vector has
not been well explored.

In the present report, we construct and analyze a set of 27
shRNAs for 11 different human genes. To our knowledge
this is the largest individual set of data published for
shRNA 19-mers. We describe a method for simultane-
ously preparing wild type and control mutant shRNA vec-

accession gene nomenclature target sequence
[GenBank:NM_013258] ASCIPYCARD shASC-721 GCTCTTCAGTTTCACACCA
[GenBank:NM_013258] ASC/PYCARD shASC-743 CCTGGAACTGGACCTGCAA
[GenBank:AY60181 1] CLR16.2 shCLR16.2-482 GGTGAAAGCCCTCATGGAT
[GenBank:AY60181 1] CLR16.2 shCLR16.2-716 GGGAACACGACTTCACACA
[GenBank:AY60181 ] CLR16.2 shCLR16.2-3394 CAAATGCTCTGAAGGTAAA
[GenBank:AY60181 1] CLR16.2 shCLR16.2-1630 GGCTGCTCAAGAAGAAATA
[GenBank:AY116204] CLR19.3INALPI2 shCLR19.3-667 GTCCATGCTGGCACACAAG
[GenBank:AY116204] CLRI19.3INALPI2 shCLR19.3-991 GCTGCTCCCTGAGCTATCT
[GenBank:AY116204] CLRI9.3INALPI2 shCLR19.3-1504 GGACATCAACTGTGAGAGG
[GenBank:AY 154466] CLR19.6/NALPI | shCLR19.6-888 GACCTTGCAGCTGTCGAAT
[GenBank:AY154466] CLRI9.6/NALPI | shCLR19.6-1549 ATGGTAGACAGCTTCAAGT
[GenBank:AY154466] CLRI9.6/NALPI | shCLR19.6-2249 CTGACCTTATCCAGCAATC
[GenBank:BC032474] MALITIRAP shMAL-1374 AGGAAGTGGTACTGATCAA
[GenBank:BC032474] MALITIRAP shMAL-1504 TGACTCACCTGACTGATCA
[GenBank:NM_002468] MYD88 shMYD88-1830 CTTTGTACCTTGATTGCCT
[GenBank:NM_002468] MYD88 shMYD88-2207 ACTCACACAACAATGAACT
[GenBank:U88878] TLR2 shTLR2-1625 CCATGTTACTAGTATTGAA
[GenBank:U88878] TLR2 shTLR2-2271 GTATGAACTGGACTTCTCC
[GenBank:U88880] TLR4 shTLR4-2377 AGGTGATTGTTGTGGTGTC
[GenBank:U88880] TLR4 shTLR4-1923 CACCAGAGTTTCCTGCAAT
[GenBank:U88880] TLR4 shTLR4-806 TCTGACCAATCTAGAGCAC
[GenBank:U78798] TRAF6 shTRAF6-936 CCAATTCCATGCACATTCA
[GenBank:U78798] TRAF6 shTRAF6-1326 GAGGAGAAACCTGTTGTGA
[GenBank:U78798] TRAFé shTRAF6-1563 GAGATAATGGATGCCAAAC
[GenBank:AY232653] TRAMITICAM2 shTRAM-290 AGAATCTGCTACAAGATGA
[GenBank:AY232653] TRAMITICAM2 shTRAM-482 TTAACAGGCAGCATAAATA
[GenBank:AB086380] TRIFITICAM| shTRIF-1786 AGAGCTACTTGTCCTACCA
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Wild Type shRNA oligo pair

Bgl Il halfsite sense loop antisense termination/Xhol halfsite
Forward strand: 5' -GaTcccc TGTGGTTA T CATCTGAAGC TTCAAGAGA GCTTCAGATG A TAACCACATTTTTGGAAA 3

[ 1rni [
Reverse strand: 3' -GGG ACACCAAT A GTAGACTTCG AAGTTCTCT CGAAGTCTAC T ATTGGTGT AAAAACCTTTAGCT-5'

Mutant shRNA oligo pair

Bgl Il halfsite sense loop antisense termination/Xho | halfsite

Forward strand: 5 ' -caTcccc TGTGGTTA a CATCTGAAGC TTCAAGAGAGCTTCAGATG t TAACCACATTTTTGGAAA 3
[ { T O I A A O |

Reverse strand: 3'-cee ACACCAAT t GTAGACTTCG AAGTTCTCT CGAAGTCTAC a ATTGGTGT AARAACCTTTAGCT-5'

Mixed oligo pair
Bgl Il halfsite sense loop antisense termination /Xho | halfsite

Forward strand: 5 -carcccc TGTGGTTA T CA'I'CTGAAGC TTCAAGAGA GCTTCAGATG A TAACCACATTTTTGGAAA 3
[ ] NN [ ]

Reverse strand: 3'-GGG ACACCAAT GTAGACTTCG AAGTTCTCT CGAAGTCTAC a ATTGGTGT AAAAACCTTTAGCT-5'

t

ligation
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Figure |

Design for producing wild-type and mutant shRNA vectors simultaneously. A forward strand of the wild-type hair-
pin (blue) is synthesized together with a reverse strand containing a one bp mutation within both the sense and antisense copy
of the target sequence (shown in red). The double stranded hybrid is ligated into the retroviral vector 5' of an HI promoter
and transformed into competent bacteria. Since replication is semi-conservative, the daughter bacteria will be of two different

populations that carry either a double-stranded wild-type or a double-stranded mutant vector and can be isolated by preparing
and sequencing individual colonies.
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WT mut
Sh-MDSS-'l 830 | CTTTGTACCTTGATTGCCT CTTTGTACgTTGATTGCCT
Sh-LRZ-ZZﬂ GTATGAACTGGACTTCTCC | GTATGAACgGGACTTCTCC
sh-TLR4-2377 AGGTGATTGTTGTGGTGTC | AGGTGATTcTTGTGGTGTC
sh-TRAF6-1325 | GAGGAGAAACCTGTTGTGA | GAGGAGAAtCCTGTTGTGA
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Gene expression analysis for wild-type and mutant shRNA vectors prepared simultaneously using wild-type/
mutant double stranded hybrids. (A) Sequences of the target sites for four wild-type and mutant shRNA vectors that
were prepared simultaneously as detailed in Figure |. (B) Realtime analysis of shRNA knockdown, and loss of knockdown by
mutant shRNA vectors from (A). Values are standardized to 100% in non-transduced THPI cells. The expression in THP1 cells
transduced with an empty vector (EV) is shown as an additional control. Values represent average +SEM for at least three

assays performed in duplicate.

tors that is time and cost efficient, and show that
sequencing of shRNA plasmids can be quite problematic
due to the intrinsic secondary structure of the hairpin. We
examine several different strategies for overcoming this
problem including the use of modified BigDye chemis-
tries and the addition of agents known to relax DNA struc-
ture. The knockdown efficacy for each of the 27 shRNAs
was evaluated against six published algorithms for siRNA

oligonucleotide design by linear regression and ROC
curve analyses. We describe a modification of three of the
algorithms that provides fair-to-good prediction of
shRNA efficacy, and confirm the significance of the mod-
ified algorithms using a pooled set of shRNAs from previ-
ous publications. These findings should be of general
applicability in the design and construction of shRNA vec-
tors.
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Table 2: Evaluation of sequencing results of three DNA hairpin constructs. Average ratio of peak height after to before the hairpin
region was determined as a measure of how well the sequence read through the hairpin structure. The greater the peak height ratio,
the greater the ability to sequence through the hairpin. A value of | indicates no loss in peak height, and a value of zero indicates a
complete stop in sequence after the hairpin region. All values are the averages of at least triplicate sequencing reactions.

DNA Plasmid

pHSPG-shTLR4

pHSPG-shmutTLR4 pHSPG-shmCNN3

Chemistry DNA relaxing agent Peak Height Ratio Peak Height Ratio Peak Height Ratio
BDvl.I None 0.0 0.4 0.0
BDvl.I 5% DMSO 0.0 0.6 0.2
BDvl.I 0.83 M Betaine 0.3 0.9 0.7
BDvl.I I x PCRx Enhancer 0.7 0.3
BDvl.I 0.83 M Betaine & | x PCRx Enhancer 0.6 0.9 0.5

20:1 BD:dGTP None 0.4 0.6 0.5
20:1 BD:dGTP 5% DMSO 0.6 0.7 0.6
20:1 BD:dGTP 0.83 M Betaine 0.7 1.0 0.8
20:1 BD:dGTP | x PCRx Enhancer 0.6 0.8 0.7
20:1 BD:dGTP 0.83 M Betaine & | x PCRx Enhancer 0.8 0.9 0.8
10:| BD:dGTP None 0.5 0.6 0.6
10:1 BD:dGTP 5% DMSO 0.7 0.8 0.7
10:1 BD:dGTP 0.83 M Betaine 0.8 0.9 0.9
10:1 BD:dGTP I x PCRx Enhancer 0.7 0.8 0.8
10:1 BD:dGTP 0.83 M Betaine & | x PCRx Enhancer 0.9 1.0 0.9
10:1 BD:dGTP | x ThermoFidelase | 0.2 0.2

5:1 BD:dGTP None 0.6 0.7 0.7

3:1 BD:dGTP None 0.6 0.6 0.6

dGTP only None 0.7 0.7 0.8

Results and discussion

Design and preparation of shRNA plasmids

To address the question of how shRNA sequence corre-
lates with knockdown efficacy, 27 shRNA vectors from 11
different genes were designed and constructed (Table 1).
Target sequences were selected in the coding region of
each gene and were designed to broadly conform to the
seminal studies of sequence features for siRNA oligomer
efficacy [13-15]. Accordingly, sequences are low in runs
and have a G/C ratio of about 50%. The shRNAs were
designed to target sites that are devoid of single nucleotide
polymorphisms, and correspond to all splice variants
amplified by our real time PCR primer sets.

Since siRNAs can have off-target effects, it is important for
functional assays to make a specific mutant with one or
more base mismatch within the target recognition site as
a control [21]. To conserve time and cost, we have devel-
oped a method of making wild-type and mutant shRNA
vectors simultaneously (detailed in Methods and Figure
1). Gene knockdown results for four wild-type/mutant
shRNA pairs are shown in Figure 2. These results demon-
strate the utility of this method in providing a point
mutant shRNA vector that can serve as a loss-of-function
control for gene knockdown by wild type shRNAs.
Though detailed protocols have been published for con-

struction of shRNA vectors [22], this is the first protocol
for producing wild-type and mutant vectors simultane-
ously and should facilitate the implementation of highly
controlled system for shRNA.

Strategy for accurate sequencing through hairpin
structures

Verifying the sequence of an shRNA hairpin is essential
since mismatch of even one nucleotide within the target
sequence can ablate knockdown (Figure 2 and [5,23].) An
issue that is frequently encountered in the preparation of
shRNA vectors is that many are difficult to sequence due
to the intrinsic secondary structure of the hairpin. One
strategy recently proposed to overcome this issue involves
engineering a restriction site within the loop/stem region
of the hairpin to physically separate the inverted repeats
by digestion, and then piecing together sequence using
sense and antisense primers [24]. However, the ability to
achieve sequencing of shRNA constructs without modify-
ing stem/loop sequence would be of clear advantage. To
address this possibility, we evaluated modified sequenc-
ing reactions for improvement in the read-through of the
hairpin secondary structure in three shRNA hairpins.
Modifications include adding agents known to relax DNA
structure including DMSO, Betaine, PCRx Enhancer and
ThermoFidelase I; and adding increasing amounts of
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Figure 3

DNA sequencing of pHSPG-shTLR4 using modified reaction conditions. DNA sequencing peaks are shown in a full
scale view where base positions are indicated by the row of numbers in each panel and the Y axis is the signal intensity.
Sequencing reaction conditions shown are BigDye vI.l (BD) chemistry (A), 0.83 M Betaine + | XPCRx Enhancer in BD chem-
istry (B), 10:1 BD:dGTP chemistries (C), 0.83 M Betaine + | XPCRx Enhancer in 10:1 BD:dGTP chemistries (D), and | x Ther-
moFidelase | in 10:] BD:dGTP chemistries (E). The drop in signal (step in peak height) at the hairpin is highlighted by an arrow

in the 10:1 BD:dGTP chemistries panel.

dGTP BigDye terminator (dGTP) chemistry to the stand-
ard BigDye v1.1 (BD) chemistry which contains dITP
rather than dGTP.

Sequencing results for each of the three DNA constructs
are summarized in Table 2. Read-through of the hairpin
structure was measured as the ratio of the peak height
about 300 bases after the hairpin structure to the signal
about 50 bases before the hairpin structure. A ratio of 1
indicates no loss in signal and 0 indicates complete loss of

read-though. In the absence of any additive to BD chem-
istry, the hairpin caused a reduction in peak height ratio
for our less tightly structured hairpin, pHSPG-shmutTLR4,
to 0.4, and a complete loss in read through for the other
two plasmids. This can be visualized as an abrupt stop in
the sequence peak profile for pHSPG-shTLR4 (Figure 3A).

Among the DNA relaxing agents, 5% DMSO, 0.83 M
Betaine and 1 x PCRx Enhancer each improved the
sequence read significantly for some constructs. However,
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Table 3: Comparison of knockdown efficacy and siRNA design algorithm. Average knockdown was measured by real-time PCR of
triplicate samples. All averages are accurate within 10% SEM. Asterisks indicate high Takasaki et al. algorithm scores that have poor

corresponding knockdown efficacy.

| 2 3 4 5 6 7 8 9
nomenclature cell tested % knockdown 5' AAG Reynolds Hsieh Amarzguioui Ui-Tei  Takasaki
shASC-721 THPI 9l 0.65 6 0 2 2 8.07
shASC-743 THPI 74 -2.86 5 2 4 2 7.33
shCLR16.2-482 jurkat 37 -1.42 5 3 4 3 10.1 *
shCLR16.2-716 jurkat 64 -1.68 6 0 4 3 5.05
shCLR16.2-3394 jurkat 74 1.06 9 2 3 4 0
shCLR16.2-1630 jurkat 59 -8.1 8 | 5 4 48l
shCLR19.3-667 THPI 71 -1.59 3 | | | 10.1
shCLR19.3-991 THPI 13 -4.62 5 2 3 3 10.1 *
shCLR19.3-1504 THPI 70 1.06 4 0 0 0 8.42
shCLR19.6-888 jurkat <10% -0.33 5 2 2 2 3.78
shCLR19.6-1549 jurkat <10% -2.13 5 | 2 | -2.6
shCLR19.6-2249 jurkat <10% -2.22 4 3 4 3 9.8 *
shMAL-1374 THPI 69 -1.86 8 0 2 2 -1
shMAL-1504 THPI 65 -1.54 8 0 0 | -3.8
shMYD88-1830 THPI 73 3.06 5 3 | 3 2.7
shMYD88-2207 THPI 53 -1.31 5 2 | 2 -4
shTLR2-1625 THPI 59 -3.85 9 0 3 4 3.13
shTLR2-2271 THPI 57 1.84 4 | | 0 14.7
shTLR4-2377 THPI 79 0.6l 4 0 | -2 -6.6
shTLR4-1923 THPI <10% -2.58 6 | 4 3 -0.1
shTLR4-806 THPI <10% 1.52 4 2 -2 -2 -0.7
shTRAF6-936 THPI 51 -0.18 9 2 3 4 0
shTRAF6-1326 THPI 62 -2.83 5 2 3 3 13.1
shTRAF6-1563 THPI 53 0.26 3 0 3 0 7.38
shTRAM-290 THPI <10% 1.18 8 0 | 2 -8.9
shTRAM-482 THPI <10% -1.92 9 2 | 2 -1.4
shTRIF-1786 THPI <10% -0.99 8 | 0 0 1.03

the addition of 0.83 M Betaine plus 1 x PCRx Enhancer to
BD chemistry was found to sequence most consistently,
with peak height ratios of 0.5-0.9 (Table 2 and Figure 3B).
The addition of 10:1 BD:dGTP chemistries alone also
improved read through somewhat, with peak height ratios
of 0.5-0.6 (Table 2 and Figure 3C). The sub-optimal peak
height ratio for 10:1 BD:dGTP can be attributed to a visi-
ble step in the sequence peak profile after the secondary
structure region where the signal is reduced (Figure 3C,
arrow). Increasing the dGTP chemistry content to 5:1 and
3:1 BD:dGTP or using straight dGTP chemistry increased
the peak height ratio and reduced the step somewhat (0.6
to 0.8 ratio). However, the mixed incorporation of dITP
and dGTP resulted in worse peak broadening as the
amount of dGTP used increased [see Additional file 1],
and dGTP only chemistry caused severe sequence com-
pressions (data not shown). The best overall results were
observed by combining Betaine plus PCRx and 10:1
BD:dGTP mixed chemistries together. This combination
reduced the step with less peak broadening and increased
peak height ratios to 0.9-1.0 (Table 2 and Figure 3D).
ThermoFidelase I, a DNA destabililizing enzyme that is
frequently used to improve sequencing of genomic DNA

[25,26], did not improve sequencing of any of the three
hairpins in straight BD chemistry (data not shown), and
actually reduced the peak height ratio significantly in 10:1
BD:dGTP chemistries for all three shRNA constructs, caus-
ing the reappearance of a stop at the hairpin structure
(Table 2 and Figure 3E).

In summary, the combination of 10:1 BD:GTP chemis-
tries, 0.83 M Betaine, and 1 x PCRx Enhancer provided
optimal sequencing, and mixed BD:dGTP chemistries,
Betaine, PCRx Enhancer, and DMSO each had some posi-
tive effects on their own. ThermoFidelase I, however,
probably should be avoided for shRNA vectors with diffi-
cult intrinsic secondary structure.

Correlation between shRNA knockdown efficiency and
published algorithms for siRNA design

To determine whether the efficacy of knockdown by
shRNA vectors correlates with published rules for the
design of effective siRNA oligonucleotides, shRNAs were
evaluated for their ability to knockdown gene expression.
The shRNAs were transduced stably into either THP1 or
Jurkat human cell lines as detailed in Table 3, first two
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Figure 4

Correlation between shRNA knockdown efficacy and scoring for six published algorithms for siRNA. Algorithm
scores for each shRNA target site from Table 2 are plotted against observed knockdown efficiency for the Hsieh et al. (A), 5'
AAG (free energy differential) (B), Reynolds et al. (C), Amarzguioui et al. (D), Ui-Tei et al. (E) and Takasaki et al. (F) algorithms.
The 5' AAG score is plotted on a reverse horizontal axis since knockdown efficacy is predicted to correlate with negative 5'
AAG value. A trend line is shown along with the R2 value for each plot. Knockdown of less than 10% is plotted as zero.

Columns. The average knockdown was determined from  function of the shRNA target sequence rather than features
RNA collected on three or more different days and is listed ~ of the viral transduction [see Additional file 2]. More than
for each shRNA (Column 3). Knockdown was shown to  one third of the shRNA vectors constructed were unable to
be reproducible for cell lines that were independently  suppress transcription (<10% in Column 3), despite com-
transduced and sorted, suggesting that knockdown is a  parable growth rates and long term expression of the GFP

Page 8 of 16

(page number not for citation purposes)



BMC Biotechnology 2006, 6:7 http://www.biomedcentral.com/1472-6750/6/7

1
A B C
< Hsieh et al. 1 T
AUC =0.25
41 p=0.06 b b
5' AAG. Reynolds et al.
i 1 AUC =0.57 | T AUC =0.5
p =0.54 p=0.98
0- T T T T T T T T T T T T
1
D F
T Amarzguiou | T ]
et al. Ui-Tei et al. Takasaki et al.
b AUC =0.48 AUC =0.54 | T AUC = 0.57
p=0.9 p=0.72 p =0.56
o L) L) L) L) L) L) L) L) L) L) L)
1

Modified Modified Modified

True Positive Fraction

Amarzguioui et al | Ui-Tei et al. Takasaki et al.
AUC =0.76 AUC =0.76 AUC =0.79
p =0.005 p =0.006 p =0.0006

-_—

Modified Modified Modified

Amarzguioui et al Ui-Tei et al. Takasaki et al.
AUC =0.79 AUC =0.81 AUC = 0.722
p =0.0001 p =0.0001 p =0.009
0 L] L] L] L] L] L] L] L]
0 10 10 1

False Positive Fraction

Figure 5

ROC curve analysis of siRNA scoring algorithms. The true positive fraction was plotted against the false positive frac-
tion as the decision threshold varied from minimum to maximum scores (see Materials and Methods for details) for the Hsieh
etal. (A), 5' AAG (free energy differential) (B), Reynolds et al. (C), Amarzguioui et al. (D), Ui-Tei et al. (E) and Takasaki et al. (F)
algorithms using an efficacy threshold of 50% knockdown. ROC curves for modified Amarzguioui et al. (G), Ui-Tei et al. (H)
and Takasaki et al. (I) algorithms are also shown. A set of 38 published shRNAs (Table 5) was analyzed using the modified
Amarzguioui et al. (J), Ui-Tei et al. (K) and Takasaki et al. (L) algorithms to confirm the utility of the modified algorithms. The
area under the curve (AUC) and the probability (p) that the AUC is significantly different from 0.5, the area under diagonal, is
indicated for each ROC curve.
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marker at high levels in these cell lines. Furthermore, great
variations in knockdown efficacy for several shRNAs
made against many of the same genes (i.e., CLR16.2,
CLR19.3 and TLR4) argue against any simple biological
reasons for differences in efficacy for these genes. Many of
the ineffective shRNAs have negative 5' AAG values and
high Reynolds scoring, each which have been hypothe-
sized to correlate with siRNA knockdown efficacy (Table
3, Columns 4 and 5) [13-15]. Conversely, among the shR-
NAs that were able to confer gene knockdown, several had
either positive 5'AAG values or low Reynolds scores. These
findings indicate that 5'AAG and Reynolds scoring algo-
rithm for siRNA may not provide positive correlative cri-
teria for shRNA design.

To determine whether other published algorithms for
siRNA oligonucleotide design can be applied to shRNA
vectors, each of the shRNA target sites was evaluated by
four additional algorithms, and scores were plotted
against the percent knockdown for each shRNA (Table 3,
Columns 6-9 and Fig. 4). For each algorithm plot a best
fit line was drawn and the R2 value calculated as an indi-
cation of whether the variance in knockdown efficacy can
be explained by the algorithm scoring. Results confirm a
poor association between shRNA efficacy and either 5'
AAG (free energy differential) considerations [13] or the
Reynolds et al. algorithm [15], and also demonstrate a
poor association with the Hsieh et al. algorithm [19], with
each in fact showing a weak reverse correlation with the
data. The algorithms of Amarguizoui et al. [20], Ui-Tei et
al. [18], and Takasaki et al. [17], correlate directly with
shRNA efficacy. However, none of the algorithm scores
explain a significant percentage of the variance in knock-
down efficacy. Among the algorithms tested, the Takasaki
et al. scoring system shows the highest association, with
an R2value of 0.0251.

Because these results suggest that a linear relationship
does not strongly apply to shRNA knockdown for any of
the six algorithms, we evaluated each of the algorithms by
ROC curve analysis to determine whether any algorithm is
superior to the others at identifying effective shRNAs. The
ROC curve is a plot of sensitivity (the true positive frac-
tion, TPF) versus 1 minus the specificity (the false positive
fraction, FPF) that is generated by varying the decision
threshold between the minimum and maximum algo-
rithm score. The diagonal of the ROC plot represents the
ROC curve for an algorithm that is no better at discrimi-
nation than random selection. Algorithms that are poor
discriminators have ROC curves that track along the diag-
onal and have an area under the ROC curve (AUC) that is
not significantly different from the AUC of the diagonal
(0.5). Algorithms that are good discriminators have ROC
curves with strong convex deviation from the diagonal

http://www.biomedcentral.com/1472-6750/6/7

and AUCs that approach 1 and are significantly different
from the AUC of the diagonal.

The Hsieh et al. algorithm had a concave ROC curve (Fig.
5A) indicating unacceptable sensitivity and specificy in
discriminating effective from ineffective shRNAs. The
ROC curves for all other algorithms (Figs. 5B-F) tracked
near the diagonal of the ROC plot and had AUCs that
were not significantly different from the AUC of the diag-
onal (Figs 5B-F). Thus, none of the algorithms showed a
statistically significant ability to discriminate between
effective and ineffective shRNAs.

The Takasaki et al. algorithm (Fig. 5F) showed the most
promise as a discriminator of effective from ineffective
shRNAs. However, this algorithm suffered from a rela-
tively high false positive fraction for decision thresholds
near the maximum score as indicated by the weak, erratic
deviation from the diagonal near the origin of the ROC
curve (Fig. 5F). This indicated that the algorithm assigned
a high score to a number of ineffective shRNAs. Inspection
of the data revealed that two of the three high-scoring
ineffective shRNAs targeted genes whose expression was
successfully knocked-down by other shRNAs (Table 3,
asterisks). Thus it is unlikely that the inefficacy of the shR-
NAs is a consequence of selective pressure against the sta-
ble suppression of gene expression. It is more likely that
the Takasaki et al. algorithm does not account for a critical
feature of effective shRNAs.

Application of an algorithm modification based on the
stability of the 6 central bases of each shRNA

Inspection of the physical properties of the high scoring
ineffective shRNAs revealed that the average stability of
the duplex formed by the 6 central bases of the shRNAs
(bases 6-11 of the sense strand hybridized to bases 9-14
of the antisense strand) was greater than the average sta-
bility of high scoring effective shRNAs (AG = -13.1 + 0.1
versus -11.1 + 1 kcal/mol respectively). Based on this
observation, the Takasaki et al. algorithm was modified
such that shRNAs with a central duplex AG equal to or less
than -12.9 kcal/mol were assigned a minimum score
(Table 4). This modification assigned minimum scores to
five shRNAs, four which were ineffective, thus increasing
the specificity of the algorithm without a significant loss
in sensitivity. A minimum score assigned to one effective
shRNA (71% knockdown), indicates that other properties
in addition to central duplex stability influence efficacy.
Nevertheless, the addition of this modification eliminated
the weak erratic deviation of the ROC curve from the diag-
onal for high decision thresholds and increased the AUC
to 0.79 (Fig. 51). Similar modification of the Amarzguioui
et al. and Ui-Tei et al. algorithms also raised the AUCs of
their ROC curves (Figs. 5G and 5H). With this modifica-
tion, the AUCs of the ROC curves for all three modified
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Table 4: Modification of algorithm scores based upon shRNA central duplex AG. The percent knockdown data represents the average
knockdown as shown in Table 3. shRNAs with a central AG equal to or less than -12.9 kcal/mol are underlined. These were assigned
minimum scores according to the algorithm modification. Minimum scores are: Amarzguioui et al. algorithm, -4; Ui-Tei et al.
algorithm, -2; Takasaki et al. algorithm, -13.26. The three shRNAs that scored high in the original Takasaki et al. algorithm but have
poor knockdown efficacy are marked with asterisks. The modification minimized scoring for these shRNAs, thus increasing specificity

of the algorithm.

Nomenclature % knockdown Central AG Modified Modified Modified
Amarzguioui Ui-Tei Takasaki
shASC-721 9l 9.7 2 2 8.07
shASC-743 74 -10.6 4 2 7.33
shCLR16.2-482 37 -12.9 -4 -2 -13.26 *
shCLR16.2-716 64 -11.3 4 3 5.05
shCLR16.2-3394 74 -12 3 4 0
shCLR16.2-1630 59 -9.6 5 4 4.8l
shCLR19.3-667 71 -13 -4 -2 -13.26
shCLR19.3-991 13 -13.1 -4 -2 -13.26*
shCLR19.3-1504 70 -10.9 0 0 8.42
shCLR19.6-888 <10% -7.8 2 | -2.6
shCLR19.6-1549 <10% -13.1 -4 -2 -13.26*
shCLR19.6-2249 <10% -10.9 2 2 3.78
shMAL-1374 69 -11.2 2 2 -1
shMAL-1504 65 -11.8 0 | -3.8
shMYD88-1830 73 -9.8 | 3 2.7
shMYD88-2207 53 -9.6 | 2 -4
shTLR2-1625 59 -7.1 3 4 3.13
shTLR2-2271 57 -10.6 | 0 14.7
shTLR4-2377 79 -7.3 I -2 -6.6
shTLR4-1923 <10% -8.5 4 3 -0.1
shTLR4-806 <10% -9.8 -2 -2 -0.7
shTRAF6-936 51 -10.9 3 4 0
shTRAF6-1326 62 9.7 3 3 13.1
shTRAF6-1563 53 -9.8 3 0 7.38
shTRAM-290 <10% -1 | 2 -8.9
shTRAM-482 <10% -12.9 -4 -2 -13.26
shTRIF-1786 <10% -8.69 0 0 1.03

algorithms were significantly different from the AUC of
the diagonal (Figs. 5G-I), indicating statistically signifi-
cant predictive capability. Differences between AUCs of
the ROC curves for the modified algorithms were not sig-
nificant, so on statistical grounds all three of the modified
algorithms were of equal utility. The 5' AAG, Reynolds et
al, and the Hsieh et al. algorithms were not improved to a
statistically significant predictive capability by applying
the central duplex AG modification (data not shown).

To address the possibility that the improvement achieved
by the modification of the Amarzguioui et al, Ui-Tei et al,
and Takasaki et al. algorithms is a consequence of overfit-
ting our set of shRNAs, an independent set of 38 shRNAs
pooled from previous publications ([18,27-33]; Table 5)
were subjected to analysis. While none of the ROC curves
for the three unmodified algorithms had an AUC signifi-
cantly different from that of the diagonal (Amarzguioui et
al,, p = 0.174; Ui-Tei et al. p = 0.09; Takasaki et al., p =
0.26), all of the modified algorithms yielded ROC curves

with AUCs significantly different from the AUC of the
diagonal (p = 0.0001-0.009; Figs. 5J-L). On statistical
grounds, all three of the modified algorithms were of
equal utility as the AUCs of the ROC curves for the modi-
fied algorithms were all significantly different from the
AUC of the diagonal, but not significantly different from
each other. This analysis of an independent set of shRNAs
suggests that the modification of the algorithms is of gen-
eral validity.

Because minimizing the false positive rate is the primary
concern in shRNA design, we recommend using the mod-
ified Ui-Tei et al. algorithm, which had the lowest high
false positive fraction at decision thresholds near the max-
imum score as indicated by the strong deviation from the
diagonal near the origin of the ROC curve (Figs. 5H and
5K). Using a decision threshold of 3 limits selection of
shRNAs to a region of the ROC curve where the sensitivity
was acceptable (0.28-.33), while the specificity was very
good (1.0). By setting this decision threshold, the false
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Table 5: Previously published shRNA sequences analyzed in this study

accession gene target sequence % knockdown reference
[GenBank:NM_002737] PKCalpha GAACAACAAGGAATGACTT 90 [27]
[GenBank:NM_002738] PKCbetal GGAAGCTGTGGCCATCTGC 90 [27]
[GenBank:NM_006257] PKCtheta TTGGATGAGGTGGATAAAA. 90 [27]
[GenBank:AY599018] HBVI GGAGGTTGGGGACTGCGAA 75 [28]
[GenBank:DQ207798] HBV2 CAAGGCACAGCTTGGAGGC 6l [28]
[GenBank:DQ207798] HBV3 CGAGGCGAGGGAGTTCTTC 63 [28]
[GenBank:NM_012029] Ecsit GCTGTGGTTCACCCGATTC 0 [29]
[GenBank:NM_012029] Ecsit GGTCACTGTCTACCAGATG 95 [29]
[GenBank:U47298] Firefly Luciferase GTTGGCAGAAGCTATGAAA 93 [18]
[GenBank:U47298] Firefly Luciferase GATTTCGAGTCGTCTTAAT 96 [18]
[GenBank:U47298] Firefly Luciferase GCACTCTGATTGACAAATA 93 [18]
[GenBank:U47298] Firefly Luciferase GACAAATACGATTTATCTA 86 [18]
[GenBank:U47298] Firefly Luciferase GATTATGTCCGGTTATGTA 97 [18]
[GenBank:U47298] Firefly Luciferase GGATGGATGGCTACATTCT 92 [18]
[GenBank:U47298] Firefly Luciferase GCCTGAAGTCTCTGATTAA 95 [18]
[GenBank:U47298] Firefly Luciferase AACATAAAGAAAGGCCCGG 0 [18]
[GenBank:U47298] Firefly Luciferase GTCGCTCTGCCTCATAGAA 72 [18]
[GenBank:U47298] Firefly Luciferase GATTTCGAGTCGTCTTAAT 98 [18]
[GenBank:U47298] Firefly Luciferase AATCTTGTAATCCTGAAGG 94 [18]
[GenBank:NM_001025257]  VEGF GCTACTGCCGTCCAATTGA 26.4 [30]
[GenBank:AY500353] VEGF GGCGAGGCAGCTTGAGTTA 14.7 [30]
[GenBank:NM _001025250]  VEGF AATCAGTTCGAGGAAAGGG 427 [30]
[GenBank:NM_000546] p53 GTCTGTGACTTGCACGTAC 95 [311
[GenBank:NM_000546] p53 GCAGTCACAGCACATGACG 85 [31]
[GenBank:NM_000546] p53 GACTCCAGTGGTAATCTAC 87 [31]
[GenBank:NM_009820] Runx2i CGGGCTCACGTCGCTCATC 55 [32]
[GenBank:AM07581 ] HCV-38 CACTCCCCTGTGAGGAACT 28 [33]
[GenBank:AMO07581 ] HCV-56 TACTGTCTTCACGCAGAAA 38 [33]
[GenBank:AMO07581 ] HCV-7I GAAAGCGTCTAGCCATGGC 0 [33]
[GenBank:AM07581 ] HCV-138 CCATAGTGGTCTGCGGAAC 92 [33]
[GenBank:AM07581 ] HCV-156 CCGGTGAGTACACCGGAAT 28 [33]
[GenBank:AM07581 1] HCV-174 TTGCCAGGACGACCGGGTC 0 [33]
[GenBank:AMO07581 ] HCV-279 CCTTGTGGTACTGCCTGAT 76 [33]
[GenBank:AM07581 ] HCV-301 GTGCTTGCGAGTGCCCCGG 49 [33]
[GenBank:AM07581 ] HCV-321 AGGTCTCGTAGACCGTGCA 94 [33]
[GenBank:AMO07581 ] HCV-334 CGTGCACCATGAGCACGAA 9l [33]
[GenBank:AM07581 ] HCV-360 CCTCAAAGAAAAACCAAAC 9l [33]
[GenBank:AM07581 ] HCV-5879 GGTGCTTGTGGATATTTTG 68 [33]

positive fraction was minimized, while 28 - 33% of the
effective shRNAs were identified from our shRNAs and the
published set of shRNAs respectively. Should the sensitiv-
ity need to be increased, we recommend using a decision
threshold of 2. This threshold had a sensitivity of 0.54 -
0.55 and a specificity of 0.88 - 0.9. If the decision thresh-
old was further relaxed to 0, the sensitivity increased to
0.86 - 0.9, but the specificity fell to 0.55 - 0.54. We rec-
ommend using the highest of these decision thresholds
possible.

Though statistically small, this study has the advantage to
our knowledge of being the largest published set of 19-
mer based shRNAs to date. In addition, unlike other
shRNA studies that are necessarily skewed toward effective
shRNAs, our study includes both functional and non-

functional shRNAs. We have shown that modified Ui-Tei
et al.,, Amarzguioui et al. and Takasaki et al. algorithms are
fair to good predictive tools that distinguish effective from
ineffective shRNAs. However, significant shortcomings
still exist in the modified algorithms. A direct assessment
of the algorithm modifications using shRNAs designed
according to each original and modified algorithm would
lend support to these findings. These algorithms are
meant to reduce the number of false positive shRNAs
selected, not completely eliminate them altogether, and
thus this would require a large number of shRNAs to
obtain a statistically significant difference in false positive
rate. The availability of larger shRNA data sets should sup-
port the development of algorithms with improved sensi-
tivity and specificity. Additionally, several software
applications for siRNA oligonucleotide design that were
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not considered in this study may be of use in the design of
shRNAs [16,34-36]. Criteria for designing functional
siRNA oligonucleotides remain controversial as evidenced
by the large number of studies still being devised for
siRNA design, and since we did not test these sequences as
siRNAs it cannot be established whether the modification
of these algorithms also applies in the context of siRNA
oligonucleotides. shRNA has an added layer of complexity
over siRNA oligonucleotides since the hairpin needs to be
processed within the cell before entering the RISC com-
plex. Moreover, selective pressure against the stable
expression of shRNAs that are deleterious to cell growth
would be expected to lend an additional constraint to the
stable expression of certain shRNAs. Despite these com-
plexities, our findings begin to bring insight into the abil-
ity to apply siRNA algorithms for design of functional
shRNAs.

Conclusion

We have provided several important strategies that should
facilitate the generation of effective shRNA vectors for
gene knockdown in mammalian cells. The ability to pro-
duce wild-type and mutant shRNA vectors simultaneously
using mixed oligonucleotide pairs provides an efficient
method to generate a specific control vector with little
added time or cost. This strategy should be particularly
useful in generating specific controls in high throughput
applications. Difficulty in sequencing through the high
intrinsic secondary structure of some hairpin vectors also
has presented a major constraint in the construction of
shRNA vectors, and the knowledge that sequencing issues
can be resolved by modifying BigDye chemistries and
adding Betaine and other DNA relaxing agents should be
valuable regardless of the method of shRNA design and
construction. Using data from 27 shRNAs that we have
constructed we have performed an analysis of the ability
of published algorithms for siRNA oligonucleotide target
selection to predict knockdown efficacy. Our results show
that shRNA efficacy cannot strictly be explained by any of
the six algorithms tested. We provide a modification,
however, that greatly improves the predictability of the
Ui-Tei et al., Amarzguioui et al. and Takasaki et al algo-
rithms. Results were confirmed using data from 38 previ-
ously published shRNAs. These findings should be of
significant applicability in the design and preparation of
functional shRNAs.

Methods

Cell lines and cell culture

THP1 monocytic cell and Jurkat T cell lines were cultured
in RPMI, 10% FCS. Cultures were maintained between 2
and 8 x 105 cells/ml and standardized to equivalent den-
sities before assessing knockdown efficiencies.

http://www.biomedcentral.com/1472-6750/6/7

Plasmid design and construction

Retroviral vectors for shRNA expression have a pHSPG
backbone [37] with an inserted H1 RNA promoter driving
shRNA expression. The pHSPG vector also has a green flu-
orescent protein (GFP) gene driven by a phosphoglycerate
kinase promoter as a marker. The H1 promoter and
shRNA expression cassette were inserted into the pHSPG
vector by one of two methods. In the first method, a dou-
ble stranded oligomer is synthesized with Bgl Il and Xho I
half sites on the ends. This is prepared as either a matched
pair or a wild-type/mutant hybrid (Fig. 1). To prepare
wild-type and mutant shRNA vectors simultaneously, a
forward strand oligomer is synthesized that contains the
wild-type hairpin. In parallel, a mutant reverse strand with
a one bp mismatch within the target sequence is also syn-
thesized. Despite the mismatches between the forward
wild-type and reverse mutant strands, annealing can still
occur efficiently under optimized conditions. The ds oli-
gonucleoltide is annealed by combining 1000 pmol of
each oligomer strand in 50 pl of annealing buffer (100
mM potassium acetate, 30 mM HEPES-KOH, pH 7.4, 2
mM Mg-acetate). The mixture is boiled for five minutes
and then cooled slowly to 4°C. The annealed double
stranded oligomer is ligated into Bgl IT and Xho I half sites
3' of the H1 promoter that is inserted into the 3' long ter-
minal repeat (LTR) of pHSPG generating a self-inactivat-
ing LTR. The double stranded hybrid is ligated into the
vector 5' of a pol Il promoter and is transformed into
competent bacteria. Since replication is semi-conserva-
tive, the daughter bacteria will be of two different popula-
tions that carry either a double-stranded wild-type or a
double-stranded mutant vector. Bacteria carrying either
wild-type or mutant vectors can then be isolated from
individual colonies and sequenced. Oligos used for this
method had the sequence: GATCCCC-N19-TTCAAGAGA-
N19-TTITTGGAAA; and TCGATTTCCAAAAA-N19-
TCTCITGAA-1N19-GGG (where N19 is the sense of the
target sequence and rN19 is the antisense). We have rou-
tinely used DH5a to prepare wild-type and mutant
shRNA vectors with approximately equal yields of each
type of vector; however, a repair-deficient E. coli mutant
could theoretically improve the efficiency of simultane-
ous construction.

A second design involves PCR using a primer complemen-
tary to the 5' end of the H1 promoter together with an
shRNA-specific long-primer whose 3' end is complemen-
tary to the 3' end of the H1 promoter. PCR is performed
using Pfx polymerase with PCRx enhancer (this combina-
tion has proved essential for reducing the number of
mutations introduced within the amplified region). Oli-
gos used for this method were: GCGGCCGCGATATC-
GAACGCTGACGTCATCAACCC (universal oligo); and
TGCTCTAGAAAAA-N19-TCTCITGAA-TN19-GGGAAA-

GAGTGGTCTCATACAGAACTTATAAGATTCC, where
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N19 is the sense of the target sequence and rN19 is the
antisense. Sequences complimentary to the H1 promoter
are underlined. PCR fragments were digested with EcoRV
and Xbal and ligated into the 3' LTR of pHSPG. All con-
structs were verified by sequencing.

Sequencing of shRNA vectors

DNA sequencing was done at the UNC-CH Genome Anal-
ysis Facility. Sequencing reactions were 12.5 uL total vol-
ume containing 1 x BigDye Terminator v1.1 Cycle
Sequencing Ready Reaction Mix (Applied Biosystems),
0.26 ug of DNA and 3.75 pmole of primer. LTRa primer
(sequence CGCGAACAGAAGCGAGAA) that binds the
HSPG vector approximately 120 bp downstream from the
inserted hairpin was used in all sequencing reactions. The
shRNA vectors used to assess sequencing efficacy were
constructed as stem loop hairpins as described above and
contain the following target sequences: pHSPG-shTLR4,
AGGTGATTGTTGTGGTGTC; pHSPG-shmutTLR4, AGGT-
GATTCTTGTGGTGTC; pHSPG-shmCNN3, AGGAAT-
GAGCGTGTATGGG; and pHSPG-shTLR2,
GTATGAACTGGACITCTCC. Modified sequencing reac-
tions substituted part or all of the BigDye v1.1 chemistry
with ABI Prism dGTP BigDye Terminator Ready Reaction
Mix (Applied Biosystems). Ratios of 20:1, 10:1, 5:1 and
3:1 BD:dGTP chemistries and straight dGTP chemistry
were used. Additives evaluated in sequencing reactions
were: 0.83 M Betaine (Sigma part # B-0300), 5% DMSO
(Sigma part # D-2650), 1 x PCRx Enhancer (in Invitrogen
kit part # 11495-017), 1 x (1 uL Thermofidelase/20 uL
sequencing reaction) ThermoFidelase I (Fidelity Systems)
and 10 x primer concentration. The thermal cycler proto-
col used for cycle sequencing was: 95'C for 3 minutes (or
5 minutes when using ThermoFidelase I) followed by 25
cycles of 98'C for 40 seconds (1%t cycle) or 10 seconds
(subsequent cycles), 50'C for 5 seconds and 60'C for 4
minutes. Sequencing reactions were purified using Centri-
Sep 96 well spin plates (Princeton Separations), and the
purified reaction products were run on a 3730 DNA Ana-
lyzer (Applied Biosystems) with a 50 cm array using the
LongRead protocol. As a measure of read through efficacy
peak height ratios were determined about 300 bases after
and 50 bases before the hairpin.

Virus preparation, transduction and cell sorting

To prepare virus, pHSPG-shRNA plasmids were co-trans-
fected into 293T cells with gag/pol and VSVg vectors by
the calcium phosphate method. Viral supernatants were
collected 24 and 48 hours following transfection and used
to transduce THP1 or Jurkat cells by spinoculation. THP1
cells were transduced with virus on two consecutive days
to increase transduction levels. Following approximately
one week of culture, stably transduced cells were isolated
by sorting for GFP. FACS analysis studies suggest that GFP
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expression is 95% stable for at least two months following
sorting (not shown).

RNA expression analyses

Total RNA was isolated with an RNeasy isolation kit (Qia-
gen) using the recommended protocol. To increase specif-
icity, cDNA was reverse transcribed using oligo dT primer
and Superscript III RT (GibcoBRL). Real-time PCR experi-
ments were performed using an AB Prism 7700 instru-
ment (Applied Biosystems) with 57°C annealing
temperature. For 18s, CLR19.6/NALP11, CLR19.3/
NALP12, MYD88, TLR2, TLR4, and TRAFG, real-time PCR
was performed using Absolute QPCR Mix (ABgene) mix
and either TET or FAM labeled probes. The following are
the sequences of the oligonucleotides used, listed as [for-
ward; reverse; probe]: 18s-[CGGCTACCACATCCAAGG;
GCTGCTGGCACCAGACIT;  Tet-CAAATTACCCACTC-
CCGACCCG-Tamra]; CLR19.6/NALP11-[TCAATGAT-
GCGTAAGGAAAGA; ACTTTCCCATTGCAGCATGA; Fam-

CTTTGCATGCCTCCTGATTGCGGT-Tamra]; CLR19.3/
NALP12-|[AGAGGACCTGGTGAGGGATAC; CTTCCA-
GAAGGCATGTTGAG; Fam-CCCGTCCTCACTT-
GGGAACCA-Tamra]; MYDS88-

[CTCTGTAGGCCGACTGC; CTGCTGCTGCTTCAAGATA;
Fam-TGGCAATCCTCCTCAATGCTGGGTC-Tamra];
TLR2-|GGTCATCATCAGCCTCTCCA; GAGCTGCCCTT-
GCAGATAC; Fam-CCTCCAATCAGGCTTCTCTGTCITGT-
GACC-Tamra]; TLR4: [AGAGCCTAAGCCACCICT;
CTAGAGATGCTAGATITGTCTCCA; Fam-AGCCAC-
CAGCITCTGTAAACTTGATAGTCCAGA-Tamra|; TRAFG:
[CCATGCGGCCATAGGIT; TITCCAGCAGTATTTCATT-
GTCA;  Fam-TGGACATTTGTGACCTGCATCCCITATT-
GAT-Tamra]. For ASC/PYCARD, CLR16.2, MAL/TIRAP,
TRAM/TICAM2, and TRIF/ICAM]1, realtime PCR was per-
formed using ABsolute SYBR green mix (ABgene) and the
following primers, listed as [forward; reverse]: ASC/
PYCARD1-[AACCCAAGCAAGATGCGGAAG; TTAG-
GGCCTGGAGGAGCAAG]; CLR16.2-
[TCAACACAGCCCTCACTGCICTCTATCTIC; AGCCAC-
CCCAATGGCATITCCTCITAAGTC]; MAL/TIRAP-
[GGACTCATCTCCTGCCTAACG; CATGGTGAGGCCT-
GCAATCT]; TRAM/TICAM2-|GGCACAGTGTGGATA-
CAAGT; ACATCTCTTCCACGCTCTGA]; TRIF/TICAMI-
[CAGGAGCCTGAGGAGATGAG; GGGTAGITGGTGCT-
GGTTTC]. Primers were designed to span exon/intron
junctions where possible. All RNA expression analyses
were done at least in triplicate for RNA isolated on differ-
ent days and knockdowns were verified with at least one
control hairpin. Values represent average observed knock-
down for RNA from different days of cell culture and were
standardized to 18s rRNA expression.

Implimentation of algorithms
The free energy (AG) of RNA duplex formation for the 5
bases at the 5' end of the sense and antisense strands was
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determined using the thermodynamic parameters and
expanded nearest-neighbor model of Xia et al. [38]. The 5'
AAG (differential free energy) was calculated by subtract-
ing the AG of the antisense strand from that of the sense
strand. Determination of scores for the Reynolds et al.,
Amarzgiuoui et al., and Takasaki et al. algorithms was as
described [15,17,20]. The Hsieh et al. score represents the
interpretation of the Hsieh et al. design criteria as pub-
lished by Saetrom and Snove [16,19]. For the Ui-Tei algo-
rithm sequences with a C or G on the 5' end scored 1
point, whereas those with an A or T scored -1 point.
Sequences with an A or T on the 3' end scored 1 point,
whereas those with a C or G scored -1 point. Sequences
with 5 or more A or T bases in the seven 3' bases scored 2
points, whereas those with 4 A or T bases scored 1 point.
Sequences can be classified by score as follows: 4 - class
Ia, 3 - class Ib, 2, 1 or 0 - class IT and -1 or -2 - class III.
All knockdowns of <10% are graphed as 0.

Modifications of the Amarzgiuoui et al., Ui-Tei et al., and
Takasaki et al. algorithms were applied as follows. The free
energy of RNA duplex formation for 6 central bases of
each shRNA (bases 6-11 of the sense strand hybridized to
bases 9-14 of the antisense strand) was calculated. shR-
NAs with central duplex AGs equal to or less than -12.9
kcal/mol were assigned a minimum score (-4 for the
Amarzgiuoui et al. algorithm, -2 for the Ui-Tei et al. algo-
rithm and -13.26 for the Takasaki et al. algorithm). The
scores for shRNAs with central duplex AGs greater than -
12.9 kcal/mol were left unchanged. The cutoff value of -
12.9 kcal/mol was selected empirically based upon the
range of central duplex AGs for all ShRNAs (see Table 4).

ROC curve analysis

ROC curves were constructed as described [39]. ROC anal-
ysis requires that each shRNA is classified as either effec-
tive or ineffective. For our analyses, a shRNA was classified
as effective if it reduced mRNA expression by 50% or
more. A ROC curve was generated for each algorithm as
follows. The decision threshold was set to one unit below
the lowest shRNA score. By definition shRNAs with scores
greater than or equal to the decision threshold were pre-
dicted to be effective, while those with scores less than the
decision threshold were predicted to be ineffective. Then
each shRNA was classified as a true positive (effective pre-
dicted to be effective), a false negative (effective predicted
to be ineffective), a true negative (ineffective predicted to
be ineffective) or a false positive (ineffective predicted to
be effective). The true positive fraction (TPF) for the deci-
sion threshold was calculated as the number of true posi-
tives divided by the sum of the true positives and false
negatives. The false positive fraction (FPF) was calculated
as the number of false positives divided by the sum of the
false positives and true negatives. The decision threshold
was increased by one unit and the TPF and FPF calculated
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again. This process was repeated until the decision thresh-
old was one unit greater than the highest scoring shRNA.
ROC curves were constructed by plotting TPF versus the
EPF for all decision thresholds. The area under the ROC
curve was estimated by integration using the trapezoid
rule.

List of abbreviations

siRNA, small interfering RNA; shRNA, short hairpin RNA;
RNAi, RNA interference; RISC, RNA-induced silencing
complex; BD chemistry, BigDye Terminator v1.1 Termina-
tor Cycle Sequencing Chemistry; dGTP chemistry, ABI
Prism dGTP BigDye Terminator Cycle Sequencing Chem-
istry; ROC analysis, receiver operating characteristic anal-
ysis, AUC, area under the curve; TPF, true positive fraction;
FPF, false positive fraction.
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Additional material

Additional File 1

Effect of mixed BD:dGTP chemistries on peak resolution. Sequencing
from the 500 base region of pHSPG-shTLR2-2271, containing a hairpin
structure which sequenced without problem in straight BD chemistry, is
shown. Sequencing chemistries used were BD chemistry (A), 20:1
BD:dGTP chemistries (B), 10:1 BD:dGTP chemistries (C), 5:1
BD:dGTP chemistries (D) and 3:1 BD:dGTP chemistries (E). Peak reso-
lution decreased as the amount of dGTP used increased (see boxed AAAA
region at postion 475).

Click here for file
[http://www.biomedcentral.com/content/supplementary/1472-
6750-6-7-S1.eps]|

Additional File 2

Gene knockdown is similar for cell lines derived from different rounds
of transduction and sorting. Realtime data is shown for cell lines derived
independently using the same viral vectors. Virus was prepared and used
to transduce THP1 cells independently for each round. Values are pre-
sented as average + SEM for at least three assays run in duplicate, with
the exception of shclr19.3-1504, second transduction (single value).
Click here for file
|http://www.biomedcentral.com/content/supplementary/1472-
6750-6-7-S2.eps]
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