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Abstract

Most mathematical models used to study the dynamics of influenza A have thus far focused on the between-host
population level, with the aim to inform public health decisions regarding issues such as drug and social
distancing intervention strategies, antiviral stockpiling or vaccine distribution. Here, we investigate mathematical
modeling of influenza infection spread at a different scale; namely that occurring within an individual host or a cell
culture. We review the models that have been developed in the last decades and discuss their contributions to our
understanding of the dynamics of influenza infections. We review kinetic parameters (e.g., viral clearance rate,
lifespan of infected cells) and values obtained through fitting mathematical models, and contrast them with values
obtained directly from experiments. We explore the symbiotic role of mathematical models and experimental
assays in improving our quantitative understanding of influenza infection dynamics. We also discuss the challenges
in developing better, more comprehensive models for the course of influenza infections within a host or cell
culture. Finally, we explain the contributions of such modeling efforts to important public health issues, and
suggest future modeling studies that can help to address additional questions relevant to public health.

Introduction
The influenza A virus causes annually recurring epidemic
outbreaks, most people become infected multiple times
over their lifetime [1]. The virus also has the propensity
to cause occasional pandemics with potentially high
death tolls [2,3]. Influenza infection results in the desqua-
mation of the epithelial cells lining the nasal mucosa, the
larynx, and the tracheobronchial tree. In the case of typi-
cal, uncomplicated influenza in humans, the infection
will involve only the upper respiratory tract and the
upper divisions of bronchi [4]. In very severe, and often
fatal cases of influenza, the infection will spread to the
lower lungs as observed, for example, in some infections
with avian influenza strains [5,6]. The site of infection,
namely the airway epithelium, consists of a single layer of
cells everywhere except in the trachea [7] and is com-
posed of four major cell types: basal (progenitor), ciliated,
goblet, and Clara cells [8]. While human-adapted, seaso-
nal strains of influenza tend to preferentially bind and

infect nonciliated cells, avian-adapted strains appear to
prefer ciliated cells, which could explain these strain’s
propensity to infect the lower respiratory tract [6,9-11].
An influenza A infection is typically initiated following

the inhalation of respiratory droplets from infected per-
sons. These droplets containing influenza virions (virus
particles) first land on the mucus blanket lining the
respiratory tract [7,12]. While many virions are destroyed
by non-specific clearance such as mucus binding, the
remaining virions escape the mucus and attach to recep-
tors on the surface of target epithelial cells. The incubation
time for influenza is typically about 48 h, but will typically
vary between 24–96 h, possibly owing to the size of the
initial inoculum [7]. Cell infection is initiated by adsorp-
tion of the virions to the cell surface. The influenza virus
hemagglutinin (HA) is responsible for binding the sialic
acid receptors on the surface of epithelial cells providing a
strong bond, facilitating the virion’s adsorption into the
cell. This results in receptor-mediated endocytosis of the
virus particles approximately 20 min after infection [7].
Once inside the cell, the virions begin replicating, using
the machinery and building materials that would normally
be used by the host cell to maintain its functions. Virus
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budding, which takes place only at the apical surface
membrane of infected cells [13], can be detected 5–6
hours post-infection (hpi), and is maximal 7–8 hpi (see
Table 1). The period between successful infection of the
cell and the productive release of viral progeny is often
called the “eclipse phase”. Just as it did upon cell entry, the
HA on the surface of the virions will again bind the sialic
acid receptors. The virus neuraminidase (NA) is responsi-
ble for cleaving the sialic acid receptors on the surface of
the cells to allow the newly-produced influenza virions to
break free of the cell that has produced it and go on to
infect other cells. Successive cycles of cell infection quickly
result in an exponential growth of viral titer, which peaks
around 2–3 days post-infection (dpi). The infection typi-
cally resolves in 3–5 dpi, and virus can typically be isolated
between 1–7 dpi [7]. In a primary infection with influenza,
pathogen-specific antibodies (Abs) and CD8+ cytotoxic T
lymphocytes (CTL) are first observed around 5 dpi, peak-
ing around 7 dpi, whereas in a secondary infection Abs
and CTLs can respond as early as 3 dpi [14]. Cellular
regeneration of the epithelium begins 5–7 dpi but com-
plete resolution can take up to one month [15]. Figure 1
illustrates the kinetic of the course of an influenza infec-
tion within a host.
Several aspects of influenza infections are still unre-

solved. For instance, the contributions of strain-specific
cell tropism, pre-existing immunity, and host genetic fac-
tors in shaping the virulence and transmissibility of a par-
ticular influenza strain are not well understood [16,17].
There is much to be learned about how a strain’s geno-
type shapes complex phenotypes such as virulence and
transmissibility. Most of these unresolved aspects will
require a quantitative analysis of the key players and of
the significance of their respective contribution. As we
enter the era of quantitative virology and immunology,

with ever more sophisticated experimental tools collect-
ing ever increasing amounts of data, there is more than
ever a need for greater synergy between experiments and
analysis.
Much work has been done on attempting to capture

the dynamics of influenza A using mathematical models;
almost all of these models are on the host population
level and are concerned with transmission between
infected hosts. These models can be used as tools to
inform public health decisions with respect to pandemic
planning: whom, how and when to quarantine, vacci-
nate, treat with antivirals, and how much and what to
stockpile [18-26].
Here, we focus on a lesser known application of math-

ematical modeling to the study of influenza kinetics,
that aimed at understanding and quantifying the pro-
cesses involved in determining the severity, duration,
and outcome of the progression of the infection within
a host or a cell culture. These types of models provide
information of a different nature, but, as we will outline
below, the information they provide can be equally criti-
cal for better treatment and management of the disease.
Furthermore, the development of reliable within-host
models is critical to improving epidemiological models
since the latter relies on the former to more accurately
capture the diversity of infection severity, latency, and
symptoms.
We first present a survey of the published literature on

within-host and in vitro modeling of influenza infections
(see also [27] for a recent review of some of those model-
ing efforts). We then discuss in general terms both the
contributions made by those models and the lessons
learned, as well as the challenges that remain as we seek
to further our understanding of influenza kinetics within
a host or cell culture. We close by highlighting the

Table 1 Kinetic parameters for influenza obtained from both fitting mathematical models to data and by direct
estimation from experimental data

Parameter Values [References]

Mathematical models to fit experimental data

Average lifespan of an infected cell 39h [42], 6h and 11.4h [15], 18h and 48h [39], 6h–14h [47], 17h and 40h [31], 1.8h and 33h [45] 28h.

Average infectious lifespan of a virion 111h [42], 4.6h and 8h [15], 8h and 300h [39], 9.5h [47], 1.8h–9.1h [45], 5.7h and 2.6min [31]

Length of the latent (eclipse) phase 6h [15], 0.22h–6h [47], 6h–8.5h [45]

Rate of epithelial cell (re)growth per day 0.72 [42], 0.015 [75], 6.2 × 10-8 and 0.34 [31]

Drug efficacy 0.97 and 0.99 [39] (oseltamivir), 0.56–0.92 [47] (amantadine)

Lifespan of interferon 3.5h [74], 60h [75]

Direct experimental measures

Average lifespan of an infected cell 12–48h [80-86]

Average infectious lifespan of a virion 0.5–3h [87-90]

Length of the latent (eclipse) phase 3–12h [42,80,82-84,87,88,91-93]

Lifespan is defined as the inverse of the rate parameters (the sometimes alternatively used half-life contains an extra factor of log(2)). Note that some of the
studies are in vitro and some in vivo. Multiple values come from either differences in strains or different models analyzed within a single study. Caveats about
the reliability of the estimates obtained from model fitting are discussed in the section titled “Data diversity and quantity and its effect on parameter
identifiability”.
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importance of the models to public health and promising
directions for additional modeling studies.

Mathematical models of within-host influenza
dynamics and their contributions
Simple models without an immune response
Overview of the models
The most basic models considered to capture the
dynamics of influenza infections, both in vivo and in
vitro, consist of sets of ordinary differential equations
(ODEs), namely
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These models describe the dynamics of susceptible
target cells, T, which become infected at rate b by the
free virions, V . In model (1), the newly infected cells, I,
immediately begin to produce virus, whereas in model

(2), newly infected cells first undergo a latent or eclipse
phase, E, before they become infectious, I, after an aver-
age time 1/k has elapsed. Infectious cells, I, are assumed
to produce virions at a constant rate p, until they
undergo apoptosis after an average time 1/δ. Finally,
virus produced by infectious cells is eventually lost after
an average time 1/c due to clearance mechanisms that
include loss of infectivity (if the viral titer is measured
in units of infectious virus, e.g., pfu, TCID50), and bind-
ing with antibodies or mucus when analyzing in vivo
experiments. Note that these models make the assump-
tion of exponentially distributed latent and infectious
periods, which were shown to be incorrect as they can-
not reproduce the kinetics of certain experimental influ-
enza infection assays (see Applications to in vitro
systems). The use of more appropriate distributions in
implementing these delays can alter the model behavior
and estimates obtained from data fitting [28-30].
The typical kinetics of these models is illustrated in

Figure 2 for the model including a latent phase using
the averaged parameters presented in Table 3 of [15].
These parameters correspond to the geometric average
of a nonlinear fit of model (2) to viral titer from 6
human volunteers infected with influenza A/Hong
Kong/123/77 (H1N1). Viral titer grows exponentially,

Figure 1 Course of an influenza infection within a host. The timings of the adaptive immune response, namely Antibodies (Abs) and
cytotoxic T lymphocytes (CTL), for both a primary (PR) and secondary (SR) response to an influenza infection are indicated.
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peaks around 2–3 dpi, before decaying exponentially.
Target cells are consumed rapidly, with the population
of infected cells peaking around the same time as viral
titer.
Because this type of model does not explicitly incorpo-

rate an immune response (IR), it is said to be target-cell
limited, i.e. the virus load reaches its peak and subse-
quently declines once most cells have been infected and
few susceptible cells remain. More accurately, the peak is
reached when bTV ≈ δI. The target-cell limited nature of
the models is clearly illustrated in Figure 2 where most
target cells have been depleted by 54 hpi, around the
time of viral titer peak. This almost complete depletion
of target cells needs to be understood in the context of
susceptibility: Cells susceptible to the virus and able to
produce progeny virions as described by the model do
not necessarily directly correspond to all epithelial cells
in the respiratory tract. Indeed, it is not well known
which cells contribute to the infection dynamics in the
way described by the model. This likely varies between
different influenza strains and hosts. Some cells might

not be susceptible or be productively producing virus for
instance due to reduced affinity of the virus for the types
of receptors the cells express on their surface [6,9-11], or
due to the protection provided by the presence or emer-
gence of an IR not explicitly represented in the model.
Applications to in vivo systems
The absence of an explicit IR in target-cell limited mod-
els is equivalent to assuming that either the effect of the
IR on viral titer levels is negligible, or that its effect is
somewhat constant through the course of the infection.
In the latter case, the immune system can then implicitly
be taken into account through parameters δ and c, which
control the rate of loss of infectious cells (I) and virus
(V ), respectively. And as mentioned above, the target-cell
limitation itself can also act as an implicit IR by limiting
the number of cells available for infection owing to the
protective effect of the IR. Since viral titer in an influenza
infection peaks around 48 hpi, whereas the primary adap-
tive IR is not detectable before approximately 5 dpi
[31,32], it might be a reasonable assumption to ignore
the IR, though its role on infection clearance is still not
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Figure 2 Typical kinetics exhibited by the target-cell limited model with a latent phase predicting the course of an influenza infection
within a host. We can see that the target cells (T) are consumed rapidly, with viral titer (V ) peaking shortly thereafter. In this picture, there is
approximately a 3.6 h delay between the infectious (I) cells’ peak and that of viral titer. The parameters, (b, k, δ, p, c) = (3.2 × 10-5 ([V] · d)-1, 4.0 d-
1, 5.2 d-1, 4.6 × 10-2 [V]/d,5.2 d-1), and initial conditions, (T, E, I, V )t=0 = (4 × 108, 0, 0,7.5 × 102 [V]), where [V] is TCID50/mL of nasal wash are from
Table 3 of [15].
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fully resolved. We will return to this point later when we
discuss models which incorporate an IR.
To our knowledge, the first mathematical model pro-

posed to describe the within-host dynamics of an influ-
enza infection was introduced by Larson et al. in 1976
[33]. The 7-compartment, 5-parameter model was fitted
against the viral titer for mice infected with A/Aichi/2/
68 (H3N2). The model could successfully reproduce the
viral titer curves for virus sampled from the lung, the
trachea, or the nasopharynx. While most of the five
parameters could not directly be related to specific
infection mechanisms (e.g., viral production rate,
infected cell lifespan), two of them were of particular
interest. Parameter P1, which corresponds to the initial
viral titer (V at time t = 0) is of interest because the
compartment (lung, trachea, or nasopharynx) with the
largest initial viral inoculum likely corresponds to the
primary area of deposition of the infectious dose admi-
nistered. Parameter P2, which corresponds to the expo-
nential viral titer growth rate is of interest because the
compartment with the largest viral titer growth rate is
that in which the virus reproduces most effectively. The
fit of the model to the various viral titer curves indi-
cated that virus replicated most effectively in the tra-
chea, then in the lungs, with the poorest replicative
efficiency found in the nasopharynx. Unfortunately, the
viral titer sampling was sparse (every 24 h) often provid-
ing only one or two viral titer points from which to
characterize the initial viral inoculum (P1) and the expo-
nential viral titer growth rate (P2). Yet this work shows
the early interest in mathematical modeling, and the
promise it holds to characterize infection kinetics in a
more quantitative way.
Thirty years after the Larson et al. model, Baccam et al.

performed a study where they fitted a set of simple differ-
ential equation models to experimental viral titer for the
course of an influenza infection within a host [15]. They
first applied the target-cell limited models (1) and (2),
which had previously been applied successfully to HIV
[34,35] and HCV [36-38], to fitting viral titer of primary
infection of human volunteers with influenza A/Hong
Kong/123/77 (H1N1) [15]. Because the variables (target
cells, latently infected cells, infectious cells, and viral
titer) and parameters (e.g. viral clearance rate, cell life-
span) of the models correspond directly to biological pro-
cesses, the parameter values obtained from the fits of the
models to viral titers provided novel, quantitative infor-
mation about the kinetics of the infection. While the
reported best fit parameter values in this study largely
agree with known biology (e.g., Table 1), the values
should be used with caution due to the problem of over-
parametrization, which we will discuss below. It is also
important to note that the authors did not perform a sen-
sitivity analysis on the parameters of their models. A year

later, Handel et al. also used a simple target-cell depletion
model to fit human influenza data in the context of a
study of neuraminidase inhibitor resistance emergence
[39]. However, the study suffers from the same overpara-
metrization issue as [15]. In addition, since the main
focus of that study was not parameter estimation, the
authors did not perform as careful an analysis as was
done in [15]. For instance, no confidence intervals for
parameter values were provided. Since then, additional
modeling studies have been performed which incorpo-
rated components of the IR with varying levels of details.
We discuss these models below.
More recently, Dobrovolny et al. [40,41] have considered

a simple extension of model (2) in which two cell popula-
tions are represented: a default and a secondary popula-
tion. The two target cell model can capture the kinetics of
uncomplicated infections as well as that of sustained and/
or severe infections by incorporating the IR in an implicit
way via the secondary cell populations. The default cell
population is used to represent the readily accessible cells
typically consumed by an influenza infection. The second-
ary population represents cells that are protected from
infection in the case of seasonal infection, but are con-
sumed to varying degrees in severe or chronic infections,
perhaps due to differing cell tropism, lack of pre-existing
immunity, or an aberrant IR. The two target cell model
can also be applied to the study of the effect of cell trop-
ism (different virus strains having different preferences for
different cell populations) in cell cultures such as human
tracheobronchiolar epithelium (HTBE) cells.
Applications to in vitro systems
While models that ignore host factors such as the adaptive
IR constitute an approximation of in vivo systems, they
more accurately describe in vitro infections. In vitro
experiments have long been used to carefully characterize
specific aspects of the infection process, which could not
be studied easily in vivo. The application of mathematical
models to the analysis of in vitro infection systems allows
for simple models, which can focus on the kinetics of cell-
virus interactions alone, without the need to additionally
consider a wide array of host factors, such as the IR.
Several studies of mathematical modeling of in vitro

influenza infections, combined with experiments, have
been undertaken by the group of Reichl and colleagues
[42-45]. They have focused their attention on studying
the growth of influenza virus within microcarrier cell cul-
tures, with the goal of characterizing and maximizing
viral titer yield in these systems meant to produce virus
for use in influenza vaccines. In 2005, Möhler et al. pro-
posed a simple model for the kinetics of infection in a
microcarrier of MDCK cells infected with an equine
influenza A (H3N8) virus [42]. The model is similar to
model (1), but includes the death and regeneration of tar-
get (uninfected) cells, the loss of virus due to adsorption
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onto target cells, and incorporates a fixed delay of 4.5 h
between cell infection and the start of viral production,
instead of an explicit eclipse phase as in model (2). The
model in [42] provides a good fit to HA titer data. From
their study, the authors conclude that viral yield in these
systems can be most effectively maximized by increasing
the total number of susceptible cells, upregulating viral
production rate, and delaying the apoptosis of infected
cells. In a follow-up study, Sidorenko et al. developed a
Monte Carlo model for viral titer growth in microcarrier
MDCK cultures infected with an equine influenza A
(H3N8) virus that incorporates both intra- and inter-
cellular infection kinetics. Rather than explicitly repre-
senting all aspects of intra-cellular viral replication (a
topic the group addressed in a separate study [46]), they
characterize a cell’s intracellular infection state as differ-
ent classes representing cells that contain different num-
bers of intra-cellular virus equivalents. This allowed the
authors to fit not just the viral HA titer, but also the
fluorescence distribution for the population of infected
cells measured through flow cytometry of cells stained
using antibodies against the virus M1 and NP. These and
further studies by this group [42-45] offer a unique look
at the process of influenza viral infection in microcarrier
cell cultures and a rare opportunity to develop and refine
intra-cellular models for influenza viral replication by
providing high quality experimental data.
The analysis of in vitro data using mathematical mod-

els can also reveal infection parameters buried within
experimental data. For example, in 2008, Beauchemin
et al. used models (1) and (2) to analyze the viral titer
over the course of experimental infections of MDCK
cells with influenza A/Albany/1/98 (H3N2) in a hollow-
fiber reactor under different concentrations of the anti-
viral drug amantadine [47]. The aim of the work was to
characterize the effect of amantadine treatment on the
course of the infection. Using different variants of the
target-cell limited mathematical models, Beauchemin
et al. were able to determine the IC50 (0.3–0.4 µM) and
maximum efficacy (56–74%) of amantadine at blocking
the infection of susceptible cells. Research by Beauche-
min and colleagues has also focused heavily on the
application of mathematical models to the analysis of in
vitro infections, with special attention to the properties
of in vitro assays. In Holder et al., two mathematical
models were constructed to reproduce the course of an
influenza infection in two different viral assays: a plaque
and a viral yield assay [48]. The aim of the project was
to determine if and how the fitness of the oseltamivir-
sensitive wild-type (WT) A/Brisbane/59/2007 (H1N1)
differs from that of its H275Y (N1 notation) oseltamivir-
resistant counterpart. Interestingly, while the plaque
assay suggested that the WT strain was fitter (exhibited
a more rapid plaque growth), the viral yield assay

suggested that instead the H275Y mutant was fitter
(exhibited a larger exponential viral growth rate). Using
mathematical equivalents of the assays to run a large
number of simulated experiments, Holder et al. uncov-
ered that plaque assays, due to the spatial restriction of
the overlay on infection spread, were most sensitive to
the length of the cell’s eclipse phase, whereas the viral
yield assay was equally sensitive to virus infectivity, viral
production rate, and the length of the cell’s eclipse
phase. This difference in the sensitivity of the assays to
different aspects of the viral replication cycle explains
why the two assays appear to provide contradictory con-
clusions about the fitness of the two strains. Thus,
mathematical models can help shed light on the limita-
tions or caveats of in vitro assays. In return, in vitro
assays can teach us about fallacies in the formulation of
our mathematical models. Holder et al. investigated how
different in vitro assays can inform model development
[30,49]. Notably, they showed that use of either expo-
nential or Dirac-delta distributions for the times spent
by cells in the latent or productively-infected state are
not consistent with experimental results from single-
cycle viral yield experiments, whereas normal and log-
normal time distributions are. From these studies, it is
clear that a greater synergy between experiments and
mathematical models is highly desirable.

More extensive models which incorporate an immune
response
The importance of the immune response to influenza
infections
As discussed earlier, the kinetics of the viral titer over the
course of an influenza infection is well captured with a
simple model that does not include an IR. Instead, one
can account for the decline in viral load by attributing it
solely to the complete depletion of target cells. While
complete cell depletion — even if restricted to a localized
patch of cells — may appear excessive, at least one histo-
logical study of influenza infection of ferrets supports
this idea. In [50], Francis and Stuart-Harris examined the
lungs of ferrets infected intranasally with a sub-lethal
inoculum of influenza virus and noted desquamation of
the tracheal area by 2 dpi, which progressed to a com-
plete destruction of the epithelium. Despite this severe
insult, the animals survived and their epithelial tissue
fully regenerated within a few weeks. While ferrets are
generally considered a good animal model for human
influenza infections, it is not clear how applicable this
result is to influenza infections in humans [51]. Reports
of immunocompromised patients shedding influenza
virus for prolonged periods suggest that the IR plays an
important role in clearing infection, or at least in pre-
venting chronic and potentially fatal outcomes [52-55].
The IR is likely to be especially important in more severe
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influenza cases where infection also involves the lower
respiratory tract [56,57], as observed in infections with
avian-origin H5N1 [58,59], and 1918 pandemic influenza
strains [60,61]. In fact, it is quite likely that some of the
virulence of influenza strains such as H5N1 or the 1918
H1N1 is due to an over- or mis-responding IR causing
immunopathology, though the details are yet to be
resolved [62-66]. Further evidence of the crucial role of
the IR comes from animal studies in which components
of the IR are depleted. Those studies taken together sug-
gest that both innate and adaptive IR are important
[32,67,68]. Thus, to gain a comprehensive understanding
of the progression of an influenza infection within a host,
i.e. to understand specifically how host factors shape the
course and outcome of an influenza infection, models
incorporating an IR are essential. Several recent modeling
studies have taken the IR into account, we will discuss
those in the next section.
Influenza models incorporating an immune response
To our knowledge, the first influenza modeling study that
included components of the IR was a very detailed ODE
model developed by Bocharov et al. in 1994 [69]. The
model tracked macrophages, CD4+ T-cells and CD8+

Cytotoxic T Lymphocytes (CTL), B-cells, antibodies and
interferon (IFN) in a very detailed manner. The authors
used the model to analyze how different components of
the IR affect infection kinetics. In particular, they found
that a 50-fold increase in specific antibodies and CTLs
could prevent an infection from occurring. Another
model that is similar in detail to the Bocharov et al.
model has recently been developed and studied by Hanci-
glou et al. [70]. The authors analyzed the effect of initial
viral load on the infection kinetics and found that for
small initial viral load the disease progresses through an
asymptomatic course, for intermediate value it takes a
typical course with constant duration and severity of
infection but variable onset, and for large initial viral load
the disease becomes severe. Two other models, by Chang
et al. [71] and Tridane at al. [72], are simpler models
based on a variant of the target-cell limited model (2),
with an additional component to describe the dynamics
and effect of CTLs. The Chang et al. study also included
IFN. Chang et al.’s model suggested that the time and
level of virus peak is influenced by the innate (IFN)
response, while the duration of the infection and clear-
ance phase is determined by the CTL response. Tridane
et al. focused in their study on investigating the impact of
different model choices for the CTL response on the
infection dynamics and found that slight changes in how
the CTL dynamics is implemented can influence the
resulting dynamics.
Some of the results obtained from these models could

have important implications for treatment or vaccine
strategies. However, large uncertainty with regards to

parameter values and overall model structure make it
difficult to evaluate the validity of the models and their
predictions. While all these models [69-72] were con-
structed and parametrized based on the known biology
of influenza infections, until such models are brought
into direct contact with data for model validation or falsi-
fication, the results should mainly be considered as pro-
viding conceptual insights.
Several other modeling studies have been performed that

were based on a direct connection between models and
data. In the study by Baccam et al. [15] already mentioned
above, the authors employed one model that included an
IR component, namely IFN. Fitting such a model to data,
they found that while the fits obtained from this model
were not statistically significantly better, they could repro-
duce a double peak in virus load, something that was
observed in a few of the patients they studied. In another
study dealing with the issue of drug resistance emergence
during infection, Handel et al. [39] fitted both a model
with and without an IR. The latter included a very simplis-
tic version of an antibody response. The authors found
that the available data did not permit discrimination
between the two models.
More detailed and comprehensive models that com-

pared various IR models to data have since been pub-
lished. Lee et al. [73] developed a model that included all
the major effectors of the adaptive IR (CD4+ and CD8+

T-cells, B-cells/antibodies) as well as explicit descriptions
of the IR activation process mediated by dendritic cells.
They were able to compare their model to (sparse) data
and thereby partially validate it. A follow-up study by the
same group made use of extensive experimental data spe-
cifically collected for the purpose of fitting the model
[31]. In this study, Miao et al. used several ingenious
ideas for fitting their models to the data. They divided
the course of the infection into an early and late phase,
corresponding to infection kinetics in the absence and
presence of an adaptive IR, respectively. They also did
not attempt to construct ODEs to capture the dynamics
of IgA and IgG antibodies, and CTLs. Instead, they fitted
smooth curves to the data sets, which were then used as
given quantities in their ODE model. The separation of
infection dynamics into an early and late phase and the
large amount of data the authors had available allowed
for a more detailed analysis of the importance of different
aspects of the IR (innate, adaptive) during the course of
the infection, and the authors were able to estimate
important kinetic parameters and how they varied during
the infection (see Table 1).
Another recent study by Saenz et al. used a unique data-

set of virus load and infected cell levels in ponies to study
a model that included an IFN response [74]. The study
suggested that inclusion of an IFN response was sufficient
to describe the dynamics, while a model without it did not
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fit the data well. It is still possible, and quite likely, that
other model alternatives with adaptive IR components
might fit the data equally well, therefore the relative
importance of IFN is not yet fully established.
Yet another modeling study using data from two dif-

ferent experimental studies in mice with intact and
compromised IRs was conducted by Handel et al. [75].
The authors compared different models with and with-
out both innate and adaptive IR components. They
found that both the innate and adaptive IRs are required
to provide adequate explanation of the data. For one of
the datasets investigated, the authors found that they
could not describe the IFN data using a simple equation
such as those used in other studies [15,74]. Instead,
Handel et al. used the IFN level as given and fitted the
remaining data to the dynamical model using an
approach similar to that used in [31]. The study also
showed that a discrimination between different types of
adaptive IRs (i.e. T-cell versus B-cell/antibody) was not
possible based on the available data [75].
The studies described thus far are based on differential

equations. Another class of models, spatial agent-based
models, were also proposed [76,77]. In 2005, Beauchemin
et al. introduced an agent-based model for the spread of
influenza within a host. In 2006, Beauchemin used this
model to explore how spatially localized effects can come
to shape and dominate the course and outcome of the
infection. While the model is more akin to a toy model,
its analysis did yield some insight into the effect of spatial
versus well-mixed implementation of cell regeneration
and CTL expansion on chronic infection outcomes.

Lessons learned and challenges ahead
Conceptual insights and parameter estimates obtained
from the models
At the most fundamental level, models can be used to
explore a complicated dynamical system, and to gain
basic insights into the relative importance of host and
viral factors. Such models can either be simple and try to
capture only the most fundamental interactions making
up the kinetics of the infection, or they can be detailed
and try to integrate most of the known biological pro-
cesses. Unfortunately, the quantity and diversity of avail-
able data is usually limited and the results from many
modeling efforts therefore remain predominantly concep-
tual and qualitative. These models are still excellent tools
that can help shape our understanding of infection
kinetics. The power of modeling has been well documen-
ted for HIV [78,79]. For influenza, some useful insights
have thus far been obtained as well.
The spatial influenza models described at the end of

the previous section [76,77], provided important qualita-
tive insights into the importance of spatial effects in the

infection dynamics. Another insight was provided in the
study by Handel et al. [39], where it was shown that dif-
ferent assumptions for within-host dynamics (a model
with and without an IR) lead to vastly different predic-
tions for the likelihood of drug resistance emergence dur-
ing treatment. This suggests that it will be crucial to
better understand the role of target-cell depletion versus
IR, an issue that has since been addressed in several
more recent modeling studies [74,75]. Another important
conceptual contribution was made by the study of Smith
et al. [27], which showed that a two-phase approximate
solution can be used to characterize virus dynamics,
and this concept was applied to fit data in the study by
Miao et al. [31].
Once sufficient understanding of a system has been

obtained and data are available, one can formulate math-
ematical models that encapsulate specific mechanistic
hypotheses. By comparing the models with data, one can
discriminate between those hypotheses. For instance, in
the work by Saenz et al. [74], the hypothesis could be
phrased as “a model purely based on target-cell depletion
does not explain the data, while a model that includes an
IFN response can”. By fitting the model to data, the
authors were able to test (and affirm) this hypothesis.
The crucial part for such studies is the availability of suf-
ficient data to allow falsification of models. Just because a
model fits the data does not mean that it is correct. This
is especially true for more complicated models, such as
the ones including detailed IRs. However, if a model does
not fit the data, one has learned something important, i.e.
that the mechanisms as implemented in the model do
not adequately represent what is going on in the real sys-
tem. Often, data can permit the elimination of certain
models and hypotheses, while a large number of usually
more detailed models cannot be ruled out. An example
of this is the study by Handel et al. [75] mentioned pre-
viously. While the authors were able to rule out a model
that did not include an innate or adaptive IR, they were
not able to discriminate between different alternative
implementations of such IRs. It is therefore important to
realize that “negative results”, i.e. the lack of agreement
between model and data, is often the most important
insight.
Once a model has been found that can be trusted to

reasonably approximate the biology (i.e. the model is
well-supported by a fair amount of data), one can fit the
model to experimental data to obtain estimates for the
kinetic parameters of a system. This is especially helpful
if such parameters cannot easily be obtained through
direct experimental measurements. The parameters one
can estimate depend on the specific model and the data
available. Almost all models published so far include
parameters for the average lifespan of an infected cell
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and the half-life of virions. Other parameters that have
been estimated from some models include the average
length of the eclipse (latent) phase, the growth or repla-
cement rate of new susceptible cells and the efficacy of
drug treatment. In Table 1, we list estimates for some of
these parameters, obtained from fitting data to the math-
ematical models as described above. For comparison, we
also show estimates based directly on experimental stu-
dies. However, one should be aware of the key caveats
regarding the reliability of parameter estimates obtained
from fitting models to experimental data. These are dis-
cussed in the next section.

Data diversity and quantity and its effect on parameter
identifiability
Quantitative knowledge of infection parameters could
provide much needed answers to many important ques-
tions. For example, say one could determine quantita-
tively from experiments the rate at which virions of a
given influenza strain are produced in a given cell line.
Using this information one could compare strains with
respect to their replication efficiency, could map how
specific mutations within a given strain affect specifically
viral production, or what concentration of an antiviral is
required to block viral production by a specific amount.
What, then, are the roadblocks in making this goal a
reality? One is insufficient data, both in terms of diver-
sity, quality, and quantity. While more complete and
complex mathematical models can be developed readily,
use of these models to predict infection kinetics or to
estimate unknown parameters is questionable if critical
aspects of the model or key parameters are unknown or
too poorly supported by experimental data. Thus, if one
is to use mathematical models to extract parameter
values, one can only add as many components as can be
determined from data, and this, ultimately, is what limits
the complexity of the models [94].
Consider, for example, the target cell limited models (1)

and (2). These models are well-suited to the analysis of
viral titer curves from in vitro or in vivo uncomplicated
infections because, like the models themselves, these
curves typically follow a simple shape: a period of expo-
nential viral growth (lg), followed by a peak in the viral
titer (Vp) at some time tp post-infection, followed by a per-
iod of exponential viral decay (ld). By linearizing model (2)
about (T, E, I, V ) = (T0, 0, 0,0), Smith et al. [95] derived an
expression for lg and for ld. More recently, Holder et al.
[49] simplified the expression for lg further by assuming
that p T k cb d0  , , , such that, for model (2)

l b
d

l d

g

d

p kT
k c

k c
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These expressions illustrate how the determination of
k, δ, and c based solely on viral titer is not be possible.
As remarked by Smith et al. [95], this degeneracy is
likely the reason why parameter fits obtained in Baccam
et al. [15] for different patients often resulted in these
three (or two of these three) parameters being set to the
same value by the parameter fitting routine.
Ultimately, since viral titer courses can be well

described using just four parameters [30], one can at
best hope to extract four parameters from viral titer
alone. The issue of parameter identifiability for models
(1) and (2) has been investigated by Miao et al. [96]
who determined for each of the two models what type
of data (e.g. viral titer alone, or viral titer and fraction of
infected cells) and how much of that data (e.g., 2 points,
8 points) would be required to identify each of the mod-
el’s parameters. These studies [30,96] outline the need
for more data. Not only is more data needed, quality
and diversity are also crucial. For example, having 100
viral titer measurements all sampled after viral titer
peak simply cannot make up for the absence of points
prior and near the viral titer peak without which one
cannot infer the shape of the viral titer curve. Equiva-
lently, measuring only virus titer will not be enough to
give a full picture, other quantities, such as different
components of the IR, will also need to be carefully
measured.

Reconciling the disconnect between experimental
measures and model variables
To allow easy comparison with experimental data, mathe-
matical models are typically described in terms of vari-
ables, which correspond to, or can easily be related back
to, experimentally measurable quantities. Unfortunately,
these quantities (e.g., plaque forming units, fluorescence
level) are at best relative measures of quantities of interest
(e.g., infectious viral titer levels, proportion of cells
infected) and are often related to quantities of interest in
nontrivial ways. For example, the number of plaque form-
ing units (pfu) in a viral sample is thought to correspond
to the number of virions that are infectious to the cells in
the culture used to measure the viral pfu. If the virus solu-
tion is collected from a ferret but the viral pfu is measured
in MDCK cells, one has not determined the number of
virions infectious to ferrets, but rather those infectious to
MDCK cells. When using a count of the total number of
virions rather than the number of infectious virions (using
RT-PCR, for example), models typically assume that the
fraction of infectious to non-infectious virions over time
remains constant. However, since influenza virions loose
infectivity faster than they lose RNA integrity [97], it is
unlikely that this assumption is correct. Experimental
results for HIV suggest that virion infectivity is not
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constant over time [98] and mathematical models have
incorporated this using a time-varying infectivity for vir-
ions [99]. Thus, when constructing models with the aim to
extract parameters, modelers must be aware of the nature
of the measured quantities and have a keen understanding
of how they relate to the variables of their model.
The units used to measure the experimental quantities

will often “contaminate” the model’s parameters, greatly
limiting the usefulness of their values. One way to
emphasize the effect of relative measures on a model’s
parameters is to perform a rescaling of each variable to
see how each parameter will be affected. For example,
using model (2), let us consider the rescaling of the cell
population Cm = ΓC where C is any of T, E, or I, and
Vm = gV , with C and V the true number of cells and
infectious virus particles, respectively, and Cm and Vm

their experimentally measured equivalent. Thus, we get
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where only the virus infectivity, b, and the viral pro-
duction rate, p, are affected by the rescaling. Hence,
unless both g and Γ are known, the viral production rate
cannot be expressed in terms of useful units, namely
number of infectious virions produced per infected cell
per unit time. Beauchemin et al. [47] remarked that, in
their assays, the measured viral titer corresponded to no
more than 10% of the true number of infectious virus
particles.
While knowing the relative value of p is sufficient in

many applications (e.g., strain A produces three times
more virus than strain B), the modeling of drug resis-
tance demands that the absolute value of this parameter
be known. Indeed, the rate of emergence of mutations is
dependent on the rate of production of virions and
unless experimental units of infectious virus (e.g. pfu/
mL) can reliably be converted to an actual number of
infectious virions, model predictions for the emergence
of resistance are uncertain and their robustness must be
tested using various viral production rates.
It is also important to understand that parameters

extracted by applying a mathematical analysis to experi-
mental data can sometime also be extracted from
experiments. However, the parameters extracted experi-
mentally may not be equivalent to those extracted
through mathematical modeling of experimental data.

For example, several in vitro assays are traditionally
used to estimate the IC50 of a drug against a particular
virus strain. In such assays, the IC50 represents the drug
concentration required to half the viral titer or fraction
of dead cells observed experimentally compared to that
seen for an untreated infection at a given time post-
infection. Since in these experimental assays the IC50 is
defined as the concentration required to half a certain
experimental observable, the IC50 estimated in this man-
ner varies between different techniques and assays, and
cannot readily be compared. In contrast, mathematical
models define the IC50 as the concentration of drug
required to half a specific viral replication parameter
(e.g. virus production rate by an infected cell) [47]. In
that case, the effect of a drug on a virus replication
parameter can be measured in several different assays by
fitting the mathematical model to assay data (e.g., viral
titer versus time for different drug concentrations). The
IC50 estimates thus obtained are more robust and
should be readily comparable for a given cell-virus strain
pair, irrespective of the details of the experimental pro-
cedure followed. As such, mathematical models may
present a preferable approach to extracting the IC50 for
a given drug-strain pair.

Discussion
Public health contributions of mathematical models
The usefulness of mathematical modeling for public
health has long been recognized at the between-host
population level. Starting as early as the work of Ber-
noulli [100], and being steadily used since the beginning
of the 19th century, all the way to the recent heavy use
of detailed models for influenza and other infections,
mathematical and computational models have been and
continue to play an important role in shaping our
understanding of the evolutionary and transmission
dynamics of infectious diseases, and are important tools
for designing appropriate intervention strategies
[18-26,101]. While the mathematical modeling of infec-
tion dynamics within a host does not have as long a his-
tory as that of between-host modeling, it has
nevertheless already contributed important insights.
Most notably, several studies combining data with math-
ematical models for HIV have had a direct impact on
drug treatment strategies [34,79,102]. The use of mathe-
matical and computer models to study influenza infec-
tion within a host or in vitro is much younger than the
modeling of influenza at the population level or the
within-host modeling of other viral infections such as
HIV. Most of the mathematical modeling of influenza
infections has only been pursued in earnest during
approximately the last five years. While this means that
most results obtained today are tentative and further
studies are certainly needed, the models have already
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provided some important insights. As described above,
the models helped to better quantify viral fitness [48],
shed light on the importance of specific IR components
on the infection dynamics [31,74,75], gave conceptual
insights into the role of putative vaccines and virus
inoculum dose on virus dynamics and severity [69,70],
and allowed for the estimation of drug efficacy [39,47].
While most of these findings clearly need to be con-
firmed and further strengthened by additional studies,
both experimental and theoretical, the direct implica-
tions for how we understand the infection and imple-
ment better treatment strategies such as vaccinations
and drugs, is evident.

Future directions
It is obvious that a general direction for the future is to
perform more and more detailed modeling studies, pre-
ferably in close contact with appropriate data (i.e. data
of high quality, quantity, and diversity). The recent com-
bined experimental and modeling work by Miao et al.
[31] is a very promising step in that direction. Modeling
studies can contribute to our understanding of influenza
infection dynamics in many different ways, here we just
name a few directions that we believe to be especially
interesting and important.
While understanding the infection dynamics per se is

a useful and necessary first step, in the end we are inter-
ested in outcomes that are important from a medical or
public health perspective. For instance, can we develop
within-host models that can produce and predict quan-
tities such as “virulence” or “transmissibility” as read-
outs? Several tentative steps in this direction have
recently been made [39,74], but confirmation with
experiments is currently lacking.
To further improve treatment and intervention strate-

gies, we need to better understand their impact and
consequences. With the increasing level of antiviral
resistance in circulating influenza strains, much activity
is currently ongoing to investigate the usefulness of
drug combination therapy for the treatment of influenza,
a strategy similar to that already employed with HIV
[103-110]. We believe that experimental work in this
area will benefit from the additional input, which dyna-
mical models like those outlined here can provide [73].
Another area of interest is to better understand vac-

cines and vaccine efficacy [111]. Most experimental ani-
mal studies currently measure protection by vaccines by
recording mortality of the animals. However, it might be
useful to have a more nuanced understanding of the
effects of vaccine on the infection dynamics, something
for which mathematical models are again useful tools
[112].
One active area of research in biology in general is the

development of multi-scale models [113-117]. The

interest in multi-scale models can be seen as driven by
an overarching long-term goal: To develop the ultimate
predictive tool that would allow one to take a genome
sequence of a new influenza strain (or other pathogen),
and based on the sequence, predict crucial phenotypes
such as virulence, transmissibility at the population
level, and susceptibility to drugs – without the need of
potentially difficult and lengthy experiments [118,119].
We are obviously far from such a comprehensive frame-
work, but mathematical and computational modeling
will be essential to reaching that goal. To make progress
in that direction, we need to develop models that allow
mappings from genotype to complex phenotypes, which
naturally calls for a multi-scale, “systems” approach. As
an example, the virus production rate is clearly deter-
mined by dynamical processes inside an infected cell.
The models described above predominantly keep the
rate of viral production by infected cells fixed. The sim-
plest models assume that production starts right away
once a cell gets infected (Eqs. (1)), whereas slightly
more detailed models allow for an initial latent phase
(Eqs. (2)). Recently, Sidorenko et al. [46] developed an
intra-cellular model for influenza replication and used it
to study virus production rate. Their model suggests
that virion production is not constant but instead
increases with time. While the lack of good intracellular
data means the caveats about quantitative interpretation
of the results outlined above apply, it will clearly be
interesting to start combining such intracellular models
with the cell-population based models described herein.
Similarly, it will be important to connect the within-
host dynamics with the dynamics at the host population
level [113,120]. A few recent studies have started to link
those two scales for influenza to study drug resistance
[39] and to map within-host virus load to transmission
potential [121].
While the development of new and more detailed

models and data will be important, it is equally impor-
tant to improve the rigor with which models are ana-
lyzed. For instance, extensive sensitivity analysis, as has
been used in infectious disease modeling [122-124],
could be useful. This is especially true for models con-
taining many parameters that are not fitted but instead
estimated from the literature. More sophisticated, multi-
level fitting schemes and Bayesian/MCMC frameworks
that go beyond the current simple approaches might
prove equally helpful [125-127].
While our focus in this review has been on dynamical

mathematical and computational models based on dif-
ferential equations or similar dynamical formulations,
another class of models, namely static or statistical mod-
els, have also recently contributed insights into influenza
infection dynamics. In a very exhaustive study of human
experimental influenza infections, Carrat et al. [128]
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were able to use a combination of data and simple mod-
els to estimate the duration of infectiousness and other
quantities. Liao et al. [129] reanalyzed the same dataset
and used it to estimate the relative transmissibility of
different influenza strains, as well as other epidemiologi-
cally relevant quantities. Lau et al. [130] used similar
approaches to analyze data for naturally acquired infec-
tions. A combination of such static/statistical models
with the dynamical models described herein will likely
to lead to further progress.

Summary
In our opinion, mathematical and computational models
are powerful tools to study the infection dynamics of
infections. The last few years have seen increased inter-
est in such modeling studies, and we are likely going to
see further increases in such studies in the future. We
believe such studies can do for influenza what similar
studies have already done for infections such as HIV or
HCV. To achieve this, it will be crucial that the models
be connected to data as tightly as possible, and that the
model type and complexity is appropriate for the ques-
tion one wants to address. As long as these simple rules
are followed, we have no doubt that modeling will con-
tinue to provide important insights into the infection
dynamics and will eventually help us address several of
the questions mentioned in the previous section, as well
as many others. In addition, much of the progress will
not only benefit our understanding of influenza, but will
also help to study other acute infections on the within-
host level, an area that is still much less developed com-
pared to similar studies at the between-host level.
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