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Abstract

Background: Several studies have shown that the immunophenotype of distant breast cancer metastases may
differ significantly from that of the primary tumor, especially with regard to differences in the level of hormone
receptor protein expression, a process known as receptor conversion. This study aimed to compare expression
levels of several membrane proteins between primary breast tumors and their corresponding distant metastases in
view of their potential applicability for molecular imaging and drug targeting.

Methods: Expression of Claudin-4, EGFR, CAIX, GLUT-1 and IGF1R was assessed by immunohistochemistry on tissue
microarrays composed of 97 paired primary breast tumors and their distant (non-bone) metastases.

Results: In both the primary cancers and the metastases, Claudin-4 was most frequently expressed, followed by
GLUT-1, CAIX and EGFR.
From primary breast cancers to their distant metastases there was positive to negative conversion, e.g. protein
expression in the primary tumor with no expression in its paired metastasis, in 6%, 19%, 12%, 38%, and 0% for
Claudin-4 (n.s), GLUT-1 (n.s), CAIX (n.s), EGFR (n.s) and IGF1R (n.s) respectively. Negative to positive conversion was
seen in 65%, 47%, 43%, 9% and 0% of cases for Claudin-4 (p = 0.049), GLUT-1 (p = 0.024), CAIX (p = 0.002), EGFR (n.s.)
and IGF1R (n.s.) respectively. Negative to positive conversion of Claudin-4 in the metastasis was significantly associated
with tumor size (p = 0.015), negative to positive conversion of EGFR with negative PR status (p = 0.046) and high MAI
(p = 0.047) and GLUT-1 negative to positive conversion with (neo)adjuvant chemotherapy (p = 0.039) and time to
metastasis formation (p = 0.034). CAIX and GLUT-1 expression in the primary tumor were significantly associated with
high MAI (p = 0.008 and p = 0.038 respectively).

Conclusion: Claudin-4 is frequently expressed in primary breast cancers but especially in their metastases and is
thereby an attractive membrane bound molecular imaging and drug target. Conversion in expression of the studied
proteins from the primary tumor to metastases was fairly frequent, except for IGF1R, implying that the expression
status of metastases cannot always be reliably predicted from the primary tumor, thereby necessitating biopsy for
reliable assessment.
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Background
Breast cancer is the most prevalent cancer among women
worldwide. The lifetime risk to develop breast cancer in
The Netherlands is 1 in 8 for women and 1 in 1,000 for
men [1,2]. Due to the increased life expectancy and the
changing age distribution in The Netherlands, the inci-
dence of breast cancer is increasing every year. As a result
of early diagnosis and improved local and systemic treat-
ment, the five-year survival rate of breast cancer has in-
creased over the last 20 years. Still, breast cancer is the
leading cause of cancer mortality in women worldwide [3],
in which progression of metastases plays a key role.
To improve early detection of distant metastases and

their molecular characterization, recent research has fo-
cused on molecular imaging techniques such as positron
emission tomography (PET), single photon emission
computed tomography (SPECT) and optical fluorescence
imaging [4] by targeting specific (membrane) proteins.
In addition, drugs targeting such proteins are widely
under development.
However, several studies have shown that the immuno-

phenotype of distant breast cancer metastases may differ
significantly from that of the primary tumor, especially
with regard to differences in the level of hormone and hu-
man epidermal growth factor receptor 2 (HER2) protein
expression, a process known as receptor conversion [5,6].
This phenomenon may be clinically relevant as the con-
sequence of this receptor conversion may be that some
patients with distant metastases are withheld adequate
therapy or receive expensive unnecessary or inadequate
therapy with possible side-effects. In addition, it has been
shown that conversion of the estrogen receptor (ER) from
positive in the primary breast tumor to negative in its me-
tastasis counterpart is associated with a worse prognosis [7].
Therefore, it cannot just be assumed that molecular im-

aging and drug targets that are present in the primary
tumor are retained in their distant breast cancer metasta-
ses, and the other way around. This may lead to false
negative molecular imaging results and may deny patients
proper personalized cancer treatment of metastases.
To this end, we set out to compare expression levels

of five tumor specific membrane bound candidate im-
aging [8-11] and drug targets (Claudin-4, the Epidermal
Growth Factor Receptor (EGFR), Carbonic Anhydrase IX
(CAIX), the Glucose Transporter 1 (GLUT-1) and the In-
sulin Growth Factor Receptor 1 (IGF1R) in primary breast
cancers and their distant metastases, and hypothesised
how this would impact molecular imaging and targeted
therapy.

Methods
Patient material
From a previously described group of 254 patients with
paired primary breast cancer and (non-bone) metastases,
97 pairs eligible for manufacturing tissue microarrays
(TMAs) were selected, based on availability of material
(e.g. biopsies with too little tissue were excluded). Repre-
sentative areas containing primary or metastatic carcinoma
(lung, brain, liver, skin, ovary, cervix, uterus, endomet-
rium, stomach, ileum, colon, cecum, appendix, subcutis,
omentum, pleura, and peritoneum) were marked on H&E
stained glass slides and used as a guide for sampling of
three cores from the paraffin blocks with an automatic
tissue puncher and arrayer (TMA Grand Master, 3D His-
tech, Sysmex Belgium N.V). Use of anonymous or coded
left over material for scientific purposes is part of the
standard treatment contract with patients and therefore
ethics approval and informed consent procedure was not
required according to Dutch legislation (Medical Research
Involving Human Subjects Act, http://www.ccmo.nl and
http://www.ccmo.nl/en/).
Immunohistochemistry
Four-μm-thick sections were serially cut from the TMAs
blocks, mounted on pre-coated slides and dried for at least
10 minutes at 56°C. Subsequently, sections were deparaffi-
nized and rehydrated by a series of xylene and ethanol.
Endogenous peroxidase activity was blocked by 15 minutes
incubation in 1,5% (Claudin-4, EGFR, CAIX and GLUT-1)
or 3% (IGF1R) H2O2 in phosphate buffer. Antigen re-
trieval for EGFR was performed by Proteinase K (Dako,
Glostrup, Denmark) for 5 minutes and henceforth in-
cubation with a protein block (Novolink kit; Novocastra,
RE7102) for 5 minutes. For Claudin-4, CAIX and GLUT-1
antigen retrieval was performed by boiling in citrate buffer
pH 6.0 for 20 minutes, followed by a cooling down period
of 30 minutes. For IGF1R, slides were boiled in EDTA
pH 9.0 for 20 minutes. Next, the primary antibodies to
EGFR (Zymed, 28–8763, clone 31G7, 1:50), Claudin-4
(Invitrogen 32–9400, clone 3E2C1, 1:100), CAIX (Abcam,
Ab15086, 1:1000), GLUT-1 (Dako, A3536, 1:200) and IGF1R
(Novus Biologicals Cambridge, NB110-87052, 1:400) were
incubated overnight (EGFR) or for 60 minutes at room
temperature (Claudin-4, CAIX, GLUT-1 and IGF1R).
Hereafter, sections were incubated with a Post Primary
Block from the Novolink kit (Novocastra, RE7111) for
EGFR, or with the secondary antibody Brightvision poly-
HRP anti-mouse, rabbit, rat (Immunologic, Duiven, The
Netherlands, DPVO500HRP), for 30 minutes in case of
Claudin-4, CAIX, GLUT-1 and IGF1R. Next, sections
were incubated with a Novolink polymer (Novocastra,
RE7112) for 30 minutes and with the Novolink DAB kit
for 5 minutes (EGFR), or directly incubated with DAB
substrate for 10 minutes (Claudin-4, CAIX, GLUT-1 and
IGF1R). Subsequently sections were counterstained with
haematoxylin, dehydrated in graded ethanol and xylene
and coverslipped.

http://www.ccmo.nl
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Figure 1 Representative IHC staining in primary breast tumors
(left; no membrane staining for Claudin-4, CAIX and GLUT-1
(significant negative to positive conversion), positive membrane
staining for EGFR and IGF1R (negative to positive conversion n.s.)
and metastases (right; positive membrane staining). Magnification:
20× (inlet 40×).
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Scoring was done by consensus of two observers in-
cluding an experienced pathologist (PvD), who were
blinded to patient characteristics and results of other
stainings. Included positive controls comprised normal
breast tissue for Claudin-4, tissue harvested from mice
injected with human tumor cells expressing CAIX for
CAIX, placenta tissue for GLUT-1 and tissue from breast
cancer for EGFR and IGFR. Negative controls were ob-
tained by omission of the primary antibodies.
A case was considered positive if at least one of the

three cores per sample showed any membrane staining.
Cases with cytoplasmatic staining in either the primary
tumor or paired metastases were left out of the analysis.
Conversion from negative in the primary tumor to

positive in the metastases or vice versa was noted.

Statistics
Statistical analysis was performed using IBM SPSS Statistics
20. Paired analysis of categorical variables was performed
using McNemar’s test. Unpaired associations between cat-
egorical variables were examined using the Pearson’s Chi
square test or the Fisher’s Exact test when necessary.
ER, PR, HER2, mitotic activity index (MAI) and age

were dichotomized using traditional cut-off points: 10%
for ER and PR, 3+ for HER2, 13 for MAI and 50 for age.
Two-sided p-values <0.05 were considered to be statisti-
cally significant.

Results
Expression of molecular imaging and drug targets
Table 1 shows the expression frequencies of the different
targets in primary breast tumors and distant metastases.
In both the primary cancers and the metastases, Claudin-4
was most frequently expressed, followed by GLUT-1,
CAIX, EGFR and IGF1R. Figure 1 illustrates representative
examples of Claudin-4, CAIX and GLUT-1 expression in
primary breast tumors and distant metastases.
Table 2 shows the conversion rates of Claudin-4, EGFR,

CAIX, GLUT-1 and IGF1R.
Membrane expression of Claudin-4, CAIX and GLUT-1

was significantly more frequent in the metastases (p = 0.049,
p = 0.002 and p = 0.024 respectively), while the difference
Table 1 Expression frequencies of Claudin-4, EGFR, CAIX,
GLUT-1 and IGF1R in primary breast tumors and distant
metastases

Primary cancers Metastases

Claudin-4 68/88 (77.3%) 77/88 (87.5%)

EGFR 8/77 (10.4%) 11/77 (14.3%)

CAIX 17/52 (32.7%) 30/52 (57.7%)

GLUT-1 43/88 (48.9%) 56/88 (63.6%)

IGF1R 1/96 (1.0%) 1/96 (1.0%)
for EGFR and IGF1R was not significant (p = 0.508 and
p = 1.000 respectively). 13/20 (65%) primary tumors with-
out membrane staining for Claudin-4 had positive metas-
tases. For EGFR, CAIX, GLUT-1 and IGF1R, the negative
to positive conversion rates were 6/69 (8.7%), 15/35
(42.9%), 21/45 (46.7%), and 0/95 (0%) respectively. Positive
to negative conversion rates were lower: 4/68 (5.8%), 3/8
(37.5%), 2/17 (11.8%), 8/43 (18.6%) and 0/95 (0%) for
Claudin-4, EGFR, CAIX, GLUT-1 and IGF1R respectively.



Table 2 Conversion rates for Claudin-4, EGFR, CAIX, GLUT-1
and IGF1R

Conversion

None Positive to
negative

Negative to
positive

p-value

Claudin-4 71 4 (5.8%) 13 (65%) p = 0.049

EGFR 68 3 (37.5%) 6 (8.7%) p = 0.508

CAIX 35 2 (11.8%) 15 (42.9%) p = 0.002

GLUT-1 59 8 (18.6%) 21 (46.7%) p = 0.024

IGF1R 95 0/95 (0%) 0 (0%) P = 1.000
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Association with clinicopathological features
Claudin-4 negative to positive conversion in the metasta-
ses was significantly associated with tumor size (p = 0.015;
11/14 versus 31/72), whereas negative to positive con-
version of EGFR was associated with negative PR status
(p = 0.046; 8/8 versus 46/75) and high MAI (p = 0.047; 8/8
versus 47/75). GLUT-1 negative to positive conversion
was significantly associated with (neo)adjuvant chemo-
therapy (p = 0.039; 13/18 versus 20/46 ) and time to me-
tastasis formation (p = 0.034; 29,8 versus 40,1 months). In
addition, CAIX and GLUT-1 expression in the primary
tumor was significantly associated with high MAI (p = 0.008;
20/23 versus 40/71 and p = 0.038; 34/46 versus 25/47).
No associations were found between either of these

biomarkers, whether in the primary tumor or the metas-
tasis individually or with conversion, and ER status,
HER2 status, lymph node status and age. The numbers
of available samples of different metastatic locations
were too small for statistical analysis.

Discussion
The aim of this study was to explore conversion of ex-
pression of a set of membrane bound molecular imaging
and drug targets in distant (non-bone) breast cancer me-
tastases. Such conversion was previously described for
ER, PR and HER2 receptors [5], but was not studied be-
fore for other candidate molecular imaging and drug
targets. In this manuscript we therefore analysed the
membrane-bound candidate protein markers Claudin-4,
EGFR, CAIX, GLUT-1 and IGF1R.
In both the primary tumor and the metastases, Claudin-

4 was most frequently expressed, followed by GLUT-1,
CAIX, EGFR and IGF1R. Expression of Claudin-4, CAIX
and GLUT-1 was significantly more frequent in distant
metastases compared to their primary tumors (negative to
positive conversion). This illustrates that these proteins
are potential molecular imaging and drug targets for dis-
tant breast cancer metastases, even more than for their
primary tumors [8].
Claudin-4 is a membrane bound marker and is upreg-

ulated in many tumors, including breast cancer and its
metastases [12,13]. Claudins represent the structural
backbones of tight junctions [14] and have distinctive
functions, such as ensuring cell adhesion. Loss of cell
adhesion and communication constitutes one hallmark
of malignancy and may reflect a more aggressive pheno-
type [15]. For example, loss of Claudin-4 from the cell
surface has been shown to coincide with disintegration
of fibrils at tight junctions and increased junctional per-
meability [16]. In addition, Claudin-4 expression in un-
differentiated or poorly differentiated carcinomas [17] is
lower than in well-differentiated counterparts. On the
other hand, while loss of Claudin-4 and other members
of the Claudin family may facilitate invasion by increas-
ing cell mobility, re-expression of Claudin-4 may confer
survival advantages within host tissue, potentially by
promoting cohesion in established metastases [18]. As
these events are also related to tumor size [19], this
might explain the finding of the significant association
of Claudin-4 and larger tumor size.
EGFR belongs to the epidermal growth factor receptor

subfamily of tyrosine kinase receptors. Its upregulation
has been associated with epithelial proliferation, low re-
sponse to hormone therapy and a poor prognosis in
patients with node-negative breast cancer [20,21]. In
addition, EGFR is linked to higher mitotic rate and a
shorter relapse free interval and survival [22] and triple
negative and basal-like breast tumors [23,24]. Negative
to positive conversion for EGFR occurred especially in
high MAI and PR negative cases.
CAIX and GLUT-1 are both hypoxia-upregulated pro-

teins [25]. CAIX catalyzes the conversion of CO2 to bi-
carbonate and proton and is therefore involved in pH
homeostasis, which is often deregulated as a result of
hypoxia [26]. Besides that, CAIX is also involved in cell-
adhesion, growth and tumor cell survival [27]. GLUT-1
is a glucose transporter that shows elevation of expres-
sion during hypoxic and acidotic conditions [28]. The
negative to positive conversion of CAIX and GLUT-1 in
distant metastases may be related to their key role in pH
homeostasis and neo-angiogenesis, as downstream tar-
gets of hypoxia inducible factor 1α (HIF-1α) [29,30], the
key regulator of the hypoxia response which can be
maintained by IGF1R [31-33]. A preferential selection of
CAIX and GLUT-1 positive subclones in the primary
tumor upon metastasis or adaptation to the local hyp-
oxic environment may explain their negative to positive
conversion in distant breast cancer metastases and might
also explain the fact that GLUT-1 was positively associated
with time to metastasis formation, as these processes
might take time to develop and occur. This phenomenon
could equally explain why primary tumors expressing
CAIX or GLUT-1 show a higher MAI, as these tumors
have a favourable proliferation profile.
Negative to positive conversion of GLUT-1 in the me-

tastasis was seen preferentially in cases that received
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(neo)adjuvant chemotherapy which may be related to
the resulting genetic drift [34] and treatment-related clone
selection [35,36].
CAIX and GLUT-1 expression in the primary tumor

were associated with a high MAI, which can be explained.
Preanalytical (e.g. fixation and processing) and analyt-

ical (e.g. staining and scoring of IHC) variability have to
be taken into account as possible confounding factors in
this study [37-39]. In addition, intratumoral heterogen-
eity may lead to a false-positive or false-negative result
in a small biopsy sample [40], as is the case in tissue mi-
croarrays. Nonetheless, the use of tissue microarrays is
accepted in diagnostic and prognostic biomarker studies
[41]. A general approach is that a cohort or database
with larger sample numbers allows smaller core diame-
ters [42] and as a consequence most studies use 2–3
cores of 0.6 mm per sample [43], as was the case for our
study. Since EGFR overexpression is fairly rare in breast
cancer [20], the sample size in the present study might
have been insufficient to render significant results for
this specific biomarker.

Conclusion
Claudin-4 is frequently expressed in primary breast can-
cers but especially in their metastases and is thereby an
attractive membrane bound molecular imaging and drug
target. Conversion in expression of the studied proteins
from the primary tumor to metastases was fairly fre-
quent, except for IGF1R, implying that the expression
status of metastases cannot well be predicted from the
primary tumor, probably necessitating biopsy for reliable
assessment.
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