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Abstract

Background: The development of cervical cancer and its high-grade precursor lesions (Cervical Intraepithelial
Neoplasia grade 2/3 [CIN2/3]) result from a persistent infection with high-risk human papillomavirus (hrHPV) types
and the accumulation of (epi)genetic host cell aberrations. Epidemiological studies have demonstrated variable
CIN2/3 and cancer risks between different hrHPV types. Recent genomic profiling studies revealed substantial
heterogeneity in the chromosomal aberrations detected in morphologically indistinguishable CIN2/3 suggestive of
varying cancer risk. The current study aimed to investigate whether CIN2/3 with different hrHPV types vary with

respect to their chromosomal profiles, both in terms of the number of aberrations and chromosomal loci affected.

Methods: Chromosomal profiles were determined of 43 p16™“*-immunopositive CIN2/3 of women with long-

term hrHPV infection (= 5 years). Sixteen lesions harboured HPV16, 3 HPV18, 14 HPV31, 1 HPV33, 4 HPV45, 1 HPV5T,
2 HPV52 and 2 HPV58.

Results: Unsupervised hierarchical clustering analysis of the chromosomal profiles revealed two major clusters,
characterised by either few or multiple chromosomal aberrations, respectively. A majority of 87.5% of lesions with
HPV16 were in the cluster with relatively few aberrations, whereas no such unbalanced distribution was seen for
lesions harbouring other hrHPV types. Analysis of the two most prevalent types (HPV16 and HPV31) in this data set
revealed a three-fold increase in the number of losses in lesions with HPV31 compared to HPV16-positive lesions.

frequent in HPV31-positive lesions (FDR < 0.2).

In particular, losses at chromosomes 2q, 4p, 4q, 6p, 6q, 8q & 17p and gain at 1p & 1q were significantly more

Conclusions: Chromosomal aberrations in CIN2/3 are at least in part related to the hrHPV type present. The
relatively low number of chromosomal aberrations observed in HPV16-positive CIN2/3 suggests that the
development of these lesions is less dependent on genetic insult than those caused by other types like HPV31.
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Background

Persistent infection with mucosal high-risk human papil-
lomaviruses (hrHPVs) has been causally related to the
development of cervical cancer [1]. HPV types can be
grouped into genera (o, B, y, W, ) with types belonging
to the same genus generally sharing common character-
istics, such as tissue tropism and oncogenic potential
[2]. The hrHPV types encompass the a5, a6, a7, a9
and all species of the a-genus. There are around 13
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hrHPV types, of which types 16 (a9 species) and 18 (a7
species) are the cause of approximately 70% of all cervi-
cal cancers [3]. Though infection with hrHPV is com-
mon, the majority of infections are cleared by the
immune system. Only in some instances pre-cancerous
lesions arise, so-called cervical intraepithelial neoplasia
(CIN) [4]. Not all CIN represent direct precursor stages
of cervical cancer. Low-grade CIN (CIN1) mostly reflect
productive hrHPV infections, in which active viral repli-
cation and virion production are strongly related to the
differentiation programme of the infected epithelium
[5]. High-grade CIN (CIN2/3) usually harbour trans-
forming infections, characterised by deregulated
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expression of viral oncogenes E6 and E7 in proliferating
cells [5]. These lesions have the potential of malignant
progression towards invasive carcinoma, largely due to
the inactivation of tumour suppressors p53 and pRb by
viral oncoproteins. This results in the accumulation of
specific (epi)genetic changes in the host cell genome
that may further drive the progression to a malignant
phenotype [1,6]. One of the features of a transforming
infection is over-expression of p16"™*** due to deregu-
lated E7 expression, making p16™<** a suitable marker
to distinguish cervical pre-cancer from productive viral
infections [7-10].

CIN2/3 are believed to represent a heterogeneous dis-
ease. While these may be rapidly induced within 2-3
years following hrHPV infection, progression to invasive
cervical carcinoma may still take another 10-30 years
[5,11,12]. The heterogeneous nature is substantiated by
the fact that some features common to cervical carcino-
mas are only found in a subset of CIN2/3. These include
for instance up-regulated hTERT, VEGF, c-fms and
COX-2 expression, but also methylation-mediated silen-
cing of (candidate) tumour suppressor genes such as
CADM1I, MAL, CALCA, RAR[B2, TFPI2, SPARC, CCNA
and hsa-miR-124 [13-20]. Our previous studies demon-
strated that heterogeneity also exists at the chromoso-
mal level [21]. Comparative genomic hybridisation
microarray (arrayCGH) analysis of p16INK4a—positive
CIN2/3 demonstrated two subsets, one showing few
chromosomal aberrations and the second subset con-
taining multiple aberrations akin to those found in cer-
vical carcinomas [21]. We found that this heterogeneity
is, at least in part, related to varying duration of lesion
existence, as was approximated by the duration of pre-
ceding hrHPV infection [6]. CIN3 with a long-term
HPV infection (> 5 years) had a significantly higher
number of chromosomal aberrations compared to CIN3
with a short-term HPV infection (< 5 years).

There is now compelling evidence that different
hrHPV types confer variable risks of CIN2/3 and cervi-
cal cancer. This likely reflects various viral properties
that become manifest at different stages during cervical
cancer development. Firstly, the risk of developing
CIN2/3 is strongly coupled to type-specific differences
in viral persistence, most likely reflecting different effi-
ciencies in evading the immune system [22,23]. Sec-
ondly, carcinogenic properties seem to vary between
different hrHPV types, as reflected by their diverse pre-
valence in CIN2/3 versus cervical cancer [24-31]. Parti-
cularly HPV types 16 and 18 predominate in cervical
cancers, whereas other types, like 31 and 33 are rela-
tively more prevalent in CIN2/3 [24-31]. To what extent
these differences in transforming properties are reflected
by type-specific differences in chromosomal aberrations
is still unknown.
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The aim of the current study was to investigate
whether CIN2/3 containing different hrHPV types also
differ with respect to their chromosomal signatures,
both at the numerical level (i.e. the number of aberra-
tions) and structural level (i.e. the specific loci affected).
Since our previous study showed that the difference in
number of aberrations was correlated to duration of
preceding hrHPV infection, we only included cases with
more than 5 years preceding hrHPV infection in order
to minimise bias due to duration of existence. In addi-
tion to comparison of HPV16-positive lesions to those
harbouring all other high-risk types (HPV,,16) and
HPV31-positive cases, also, CIN2/3 with HPV types
from the a9 species (HPVa9, types 16, 31, 33, 52, 58)
were compared to those with a5&a7 species combined
(HPVa5&a7, types 18, 45, 51). The latter branches are
located in close proximity to each other in the phyloge-
netic tree of HPV types and are clearly separated from
the a9 species [32].

Methods

Tissue specimens

Formalin-fixed paraffin embedded CIN2/3 biopsies (4
CIN2, 29 CIN3) of 43 women who participated in the
population based screening study Amsterdam (POBAS-
CAM) were used in this study [33]. A subset (n = 24) of
these lesions has also been described previously [6].
Lesions were detected in the second screening round of
the POBASCAM trial in women who at baseline, 5
years earlier, had an hrHPV-positive smear with normal
cytology. The lesions contained the same hrHPV type
present in the baseline smear, as determined using the
GP5+/6+ RLB system [34]. Sixteen lesions harboured
HPV16 (a9), 3 HPV18 (a7), 14 HPV31 (a9), 1 HPV33
(09), 4 HPV45 (a7), 1 HPV51 (a5), 2 HPV52 (0.9) and
2 HPV58 (09). With exception of two cases the lesions
only harboured one hrHPV type. In case of lesion num-
ber HPV16.12, HPV16 was the type detected at both
baseline and in the biopsy. However, the biopsy con-
tained HPV51 as well. In case of lesion number
HPV18.1, HPV18 was detected at both baseline and in
the biopsy, the latter contained HPV16 as well. Given
the history of HPV type persistence, these lesions were
classified as being caused by HPV16 and HPV1S,
respectively. Immunohistochemical staining for p16™ **
was performed using p16™*** Ab-4, Clone 16P04 (Lab
Vision Corporation, Neomarkers, Fremont, California,
USA). All lesions showed diffuse staining for p16™"** in
at least the lower 2/3 of the epithelium, indicating the
presence of a transforming infection. Histological review
of lesions was performed by two experienced patholo-
gists (dr. F.J.van Kemenade and dr. M.C.G Bleeker). The
average age of the women was 41, ranging from 34-56
years. There was no significant difference in the average
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age of the women diagnosed with lesions containing
HPV16 compared to those containing HPV31 or other
types of hrHPV. This study was approved by the Institu-
tional Review Board of the VU University Medical
Center.

ArrayCGH of microdissected tissues

Microdissection of dysplastic areas of the biopsies, DNA
extraction, amplification, labeling and across arrayCGH
hybridisation to the 2x105 K arrayCGH platform (Agi-
lent Technologies, Palo Alto, USA) as well as hierarchi-
cal clustering was performed as described previously [6].
ArrayCGH analysis of a subset (n = 24) of lesions
included in the present study was also performed in this
previous study. Array data is available from the Gene
Expression Omnibus (GEO, http://www.ncbi.nlm.nih.
gov/projects/geo/) through series accession number
GSE31241.

Statistical analysis

Cluster assignment of lesions with HPV16 and those
with types other than HPV16 (HPV,,,16) Was compared
using the two-tailed Fisher exact-test. The non-para-
metric Mann-Whitney-U test was used for comparisons
of the proportion of altered features (percentage of oli-
gonucleotides deviating from the normal state) between
lesions with HPV16 versus those with HPV .16 or
HPV31, as well as comparisons between lesions with
hrHPV types from the a9 species (HPVa9) versus those
from the a5 and a7 species combined (HPVa5&a.7).
The y*-test (CGHtest_version_1.1) was used to deter-
mine whether there was an association between chro-
mosomal aberration patterns of CIN2/3 and hrHPV
type [6,35]. The test procedure includes a permutation-
based false discovery rate (FDR) correction for multiple
testing. Chromosomal profiles with < 1.5% altered
probes in total were excluded from this test in order to
only investigate regions that were differentially affected.
It should be noted that the lesions excluded from this
analysis were equally distributed over the HPV types
present. Differences were considered significant if the
false discovery rate (FDR) was < 0.2. Pathway analysis
was performed on all genes located within the signifi-
cantly different chromosomal regions using Ingenuity
Pathway Analysis version 8.7, build 99759; content ver-
sion 3203, build ing_merak (Ingenuity Systems, Red-
wood City, California).

Results

Clustering analysis displays the heterogeneity of CIN2/3
Chromosomal profiles of 43 p16™***_positive, microdis-
sected CIN2/3 were determined using high-resolution
arrayCGH. Unsupervised hierarchical clustering analysis
was performed to compare these profiles in an unbiased
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manner as a first investigation into a possible association
of aberration pattern with hrHPV type. Two main clus-
ters were identified (Figure 1). Cluster 1 contained 30
samples with few aberrations, including 14 cases with
HPV16, 2 with HPV18, 7 with HPV31, 1 with HPV33, 2
with HPV45, 1 with HPV51, 1 with HPV52 and 2 with
HPV58. Cluster 2 contained 13 samples, including 2
cases with HPV16, 1 with HPV1S8, 7 with HPV31, 2
with HPV45 and 1 with HPV52. The difference in distri-
bution of lesions with HPV16 compared to HPV .16
over clusters 1 and 2 was borderline significant (p =
0.086), with 87.5% of lesions with HPV16 belonging to
cluster 1. Lesions with HPV31 were equally distributed
over the clusters. Comparison of the distribution of
other hrHPV types individually was not possible due to
the small numbers of each of these individual types. The
major differences in chromosomal aberrations occurring
in lesions of clusters 1 and 2 were determined by the
maximum pair-wise symmetrised Kullback-Leibler diver-
gence. In Figure 2 the importance scores are shown per
chromosomal region, with a higher score indicating a
larger contribution of the related aberration to the clus-
tering results. This revealed gains of chromosomal
regions on 1q, 3p and 20q to be most discriminatory
between the clusters. Yet, within cluster 1 a subgroup of
13 lesions could be discerned that are characterised by
gains of chromosome 3q and/or 1. Interestingly, the
majority of these lesions (n = 9) harboured HPV16.

CIN2/3 with HPV16 have fewer and different
chromosomal aberrations than those with other hrHPV
types
The average percentage of all the microarray oligonu-
cleotides that deviated from the normal state (a proxy
for the number of aberrations) occurring in the CIN2/3
was determined and compared between lesions with dif-
ferent hrHPV types (Table 1). The percentage of aber-
rant oligonucleotides for lesions with HPV16 was 11.4%,
for lesions with HPV .16 16.1% and those with HPV31
18.3%. The percentage of aberrant oligonucleotides in
lesions with hrHPV types from the 09 species (HPVa.9)
was 13.6% and 17.8% for lesions with hrHPV types from
the a5 and a7 species combined (HPVa5&a7). Whereas
the percentage of total aberrations, or losses and gains
separately, was not significantly different amongst these
groups, lesions with HPV .16 and HPV31 specifically
displayed an approximately three-fold increase in the
percentage of losses compared to lesions with HPV16.
Comparison of lesions with HPVa9 versus HPVa5&a7
revealed a two-fold increase in the number of losses in
lesions with HPVo5&a.7.

To determine whether there was a difference in
affected regions in CIN2/3 with different hrHPV types
as well as different species, the frequency of gains and
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Figure 1 Results of WECCA clustering on all the CIN2/3. Cluster 1 contains CIN2/3 with few chromosomal aberrations; the majority of the
samples in the right subcluster primarily show a gain of 3g. Samples in cluster 2 have more chromosomal aberrations, including gained regions
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losses per oligonucleotide was plotted (Figure 3). Aber-
rations occurring in > 20% of the CIN2/3 cases with
HPV16 included gained regions on chromosomes 1p,
3q, 8q and X. For CIN2/3 with HPV 4,16 these included
gained regions on 1, 3, 15q, 20 and Xq and lost regions
on 2q, 4p, 7q, 12q and 17p, and, for CIN2/3 with
HPV31 gained regions on 1, 3, 8q, 14q, 19p, 20 and Xq
and lost regions on 2q, 4, 6p, 7q, 8q, 12q and 17. For
CIN2/3 with HPVa9, aberrations in > 20% of the cases

involved gains on chromosomes 1, 3q, 8q and 20 and
losses on 17q. For CIN2/3 with HPVa5&a7 these were
gains on 1, 3, 4q, 5q, 15q, 16q and 20 and lost regions
on 2, 4, 6q, 7, 14q, 17 and Xp.

We next determined whether specific chromosomal
regions were differentially affected between lesions har-
bouring the various hrHPV types. Comparison of lesions
with HPV16 (n = 14) to HPV ,n16 (n = 20) did not
reveal regions that were significantly different. However,
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Figure 2

Figure 2 Importance score plot between lesions in cluster 1
versus lesions in cluster 2. For each chromosomal region the
maximum pair wise symmetrised Kullback-Leibler divergence was
determined. Gains of chromosomal regions 1q, 3p and 20q are
revealed as the most striking differences of the lesions the two
clusters.

comparison of lesions with HPV16 (n = 14) to those
with HPV31 (n = 10) indicated both lost and gained
chromosomal regions that were significantly more
affected in lesions harbouring HPV31 (Table 2). These
included lost regions on chromosomes 2q, 4p, 4q, 6p,
6q, 8q & 17p and gained regions on 1p & 1q. Compari-
son of lesions with HPVa9 (n = 28) to HPVa5&a7 (n =
6) did not reveal regions that were significantly different.

All known genes within the affected chromosomal
regions differing between lesions with HPV16 compared
to HPV31 were subjected to Ingenuity Pathway Analysis.
The top 3 canonical pathways allocated to these genes
involve the antigen presentation pathway, allograft rejec-
tion signaling and cytotoxic T-lymphocyte-mediated
apoptosis of target cells. The majority of the genes in
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these pathways overlap and involve major histocompat-
ibility complex molecules located at chromosome 6p,
which was found to be more frequently lost in HPV31-
positive lesions (see Additional file 1: Table S1).

Discussion

Chromosomal profiles of CIN2/3 infected with different
hrHPV types were compared in order to determine the
potential contribution of different hrHPV types to the
heterogeneity in chromosomal profiles as observed pre-
viously in CIN2/3 [21].

Unsupervised hierarchical clustering analysis revealed
considerable heterogeneity between CIN2/3 with respect
to their chromosomal aberrations, with one subset hav-
ing relatively few aberrations (cluster 1) and the other
with an increased number of aberrations (cluster 2),
similar to our observations in earlier studies [21]. It
should be noted that, even though all lesions were asso-
ciated with long-term hrHPV infections (> 5 years),
there was still a subset of lesions with few chromosomal
aberrations. This is in line with our previous study com-
paring lesions with < 5 years versus > 5 years preceding
hrHPV infection. In addition to the majority of lesions
with short-term infection (< 5 years), also a subset of
lesions with long-term HPV infection (> 5 year) showed
rather few chromosomal aberrations as well. Interest-
ingly, the majority of lesions with HPV16 (87.5%) were
in the relatively quiet cluster (cluster 1) and had few
aberrations. Within this cluster a subgroup could be
recognised that consisted primarily of lesions with
HPV16 that had gain of 3q and/or 1. The fact that
CIN3 with a short-term HPV16 infection, likely reflect-
ing the fast-progressing HPV16 lesions, also showed few
chromosomal aberrations [6], indicates that the overall
detection of fewer aberrations in HPV16 positive lesions
is not dependent on duration of HPV16 infection. It
should, however, be noted that only women over 30
years of age were included in the study since they were
derived from the POBASCAM trial.

The detection of fewer copy number aberrations in
HPV16-positive lesions was furthermore corroborated
by hrHPV-typing analysis of an independent set of

Table 1 The percentage of aberrant probes in lesions with different hrHPV types

Losses% Gains% Total%

average range average range average range
HPV16 (n = 16) 2.19% 0.005-9.82% 9.18% 0.028-43.33% 11.37% 0.19-43.91%
HPVhone (N = 27) 6.65% 0.015-37.75% 949% 0.015-37.75% 16.14% 0.12-54.04%
HPV31 (n = 14) 6.67% 0.015-37.75% 11.64% 0.081-31.40% 1831% 0.20-46.46%
HPVa9 (n = 35) 4.20% 0.005-37.75% 9.38% 0.028-43.33% 13.58% 0.19-46.46%
HPVa5+a7 (n = 8) 845% 0.093-36.60% 9.36% 0.025-30.18% 17.80% 0.12-54.04%

Shown are the average percentage and the range of deviating array oligonucleotides. An increased amount of aberrations can be seen in the lesions with types

other than HPV16
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Figure 3 Frequency plots of the chromosomal aberrations. Lesions with HPV16 display fewer chromosomal losses than lesions with other

CIN2/3 previously analysed by arrayCGH [21], which
also demonstrated that the majority of CIN2/3 with
HPV16 (81.8%) clustered together and showed relatively
few aberrations (data not shown).

Related to the clustering results, the average percen-
tage of chromosomal losses in lesions with HPV31 was
three-fold higher compared to the HPV16-positive
lesions, i.e. 6.7% versus 2.2% (Table 1). No conclusion
on the distribution over the two clusters of the

remaining lesions harbouring other hrHPV types could
be drawn due to their low numbers. However, lesions
harbouring a5&a.7 types had two-fold more losses com-
pared to a9 positive lesions, i.e. 8.5% versus 4.2% (Table
1).

The observation that lesions with HPV16 tended to
contain fewer aberrations than those with different types
may indicate that HPV16 causes faster progression than
other types and/or may not need as many chromosomal
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Table 2 Altered chromosomal regions showing significant differences between lesions with HPV31 compared to those

with HPV16 (FDR < 0.2).

Number of CIN2/3 cases loss vs. no loss

Region Cytoband HPV16 loss HPV31 loss FDR HPV16 gain HPV31 gain
chr2:222405165-227437895 2q36.1-936.3 0 3 0.123 0 0
chr2:229728860-238929377 2036.3-g37.3 0 3 0.123 0 0
chr4:49276564-62563622 4p11-g13.1 0 3 0.132 1 0
chr4:71160319-78914719 4913.3-g21.1 0 3 0.132 1 0
chr4:79281456-84030000 4921.21-g21.22 0 3 0.132 1 0
chr4:88363994-132792857 4021.3-q28.3 0 3 0.132 1 0
chr4:133037098-163174205 4028.3-q32.2 0 3 0.132 1 0
chr4:163304315-191027815 4032.2-q35.2 0 3 0.132 1 0
chr6:431607-3540777 6p25.3-p25.2 0 3 0.121 1 0
chr6:7902624-26085970 6p24.3-p22.2 0 3 0121 0 0
chr6:27956910-31362796 6p22.1-p21.33 0 3 0.121 0 0
chr6:32718990-36975126 6p21.32-p21.2 0 3 0.121 0 0
chr6:42755363-48175246 6p21.1-p12.3 0 3 0.121 0 0
chr6:48648135-106496239 6p12.3-g21 0 3 0.121 0 0
chr6:107106382-169915340 6q21-927 0 3 0.121 0 0
chr8:142600766-145818157 8q24.3 0 3 0127 5 3
chr17:3564934-7259932 17p13.2-p13.1 0 3 0122 0 0
chr17:7328200-10781444 17p13.1-p12 0 3 0122 0 0
chr17:12531028-22078641 17p12-p11.2 0 3 0.122 0 0
Number of CIN2/3 cases
gain vs. no gain

Region Cytoband HPV16gain HPV31gain FDR HPV16loss HPV31loss
chr1:107415557-114310216 1p13.3-p13.2 3 7 0.163 0 0
chr1:114666834-146812099 1p13.2-921.2 3 7 0.163 0 0
chr1:148081768-151210846 1921.2-921.3 3 7 0.163 0 0
chr1:151380037-167624107 1921.3-924.3 3 7 0.163 0 0
chr1:168079451-172935386 1024.3-925.2 3 7 0.163 0 0
chr1:172950731-177727312 1925.2-925.3 2 7 0.063 0 0
chr1:177742624-194855793 1925.3-931.3 2 8 0.029 0 0
chr1:195212008-208655399 1931.3-932.3 2 8 0.029 0 0
chr1:212426726-217520338 1941 2 8 0.029 0 0
chr1:218155880-223642833 1941-g42.13 2 8 0.029 0 0
chr1:223683098-230121747 1042.13-g42.2 2 7 0.063 0 0
chr1:231048153-234780716 1942.3-943 2 7 0.063 0 0
chr1:236021319-242608344 1943-g44 2 8 0.029 0 0
chr1:242848259-246751472 1944 2 8 0.029 0 0

All lesions included in the analysis had > 1.5% aberrations

aberrations for progression to CIN2/3. The idea that
lesions with HPV16 may progress faster seems to be
supported by data from Vinokurova et al. [36], who
reported a significant difference in the age of cervical
cancer patients harbouring different hrHPV types. While
the age at CIN3 diagnosis was not significantly different
for HPV16-positive women compared to HPV31-posi-
tive women, women with an HPV16-positive carcinoma

had a median age of 43 years, whereas those with
HPV31-containing carcinomas were on average 64 years
of age (p < 0.01). Also, other studies reported hrHPV
type-related differences in that women with HPV16-and
HPV18-positive carcinomas were younger than those
infected with other types [26,31,37-39].

Comparison of lesions with HPV16 to HPV31 revealed
significant differences in the affected chromosomal
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regions. In particular, losses at chromosomes 2q, 4p, 4q,
6p, 6q, 8q & 17p and gain of 1p & 1q were significantly
more frequent in lesions with HPV31. Ingenuity Path-
way Analysis indicated that genes located within signifi-
cantly more frequently altered chromosomal regions in
HPV31-positive lesions were particularly involved in
pathways related to the immune response, most of
which are related to loss of the locus encoding the
major histocompatibility complex molecules (human
leukocyte antigen, HLA) at chromosome 6p.

While not significant, lesions with HPV16 had the
highest incidence of 3q gain, which was almost two-fold
higher compared to HPV 4,16 or HPV31. Gain of 3q is
one of the most consistent chromosomal aberrations in
cervical carcinoma [40-46] and has been suggested to
predict progression of CIN [47]. Genes located at 3q, as
was recently shown for PIK3CA [48], may have an
important role in malignant transformation. It is tempt-
ing to speculate that HPV16-positive lesions with this
particular aberration may not require many additive
copy number aberrations for progression.

It should be noted that by arrayCGH analysis only
copy number aberrations can be detected. Hence, it can-
not be excluded that lesions with HPV16 have other,
potentially more subtle genomic or (epi)genetic aberra-
tions, such as mutations, loss of heterozygosity or DNA
methylation. The fact that HPV16E6E7 have convin-
cingly been demonstrated to induce genetic instability in
in vitro model systems (reviewed by Korzenievski [49]),
would argue for the presence of a genetic instable envir-
onment in HPV16-positive CIN3. We anticipate that the
aberrations detected with arrayCGH result from their
selective growth advantage becoming evident upon
selection pressure during multiple cell divisions. This is
substantiated by a recent paper by Bester et al. [50]
showing an immediate induction of replication induced
DNA damage upon HPV16E6E7 expression, whereas
loss of heterozygosity and copy number variations only
became evident after 100-250 population doublings.

Immune evasion is important for the persistence of HPV
and may be achieved by various mechanisms, including
HLA loci being affected by chromosomal loss, loss of het-
erozygosity, viral integration or mutations, which may
result in functional loss [51-58]. Indeed expression of HLA
class I has been reported to decrease progressively with cer-
vical lesion grade, [59,60]. Immune evasion may also occur
via direct interaction between viral and host proteins. For
HPV16, for instance, direct interaction of E5 with the
hydrophobic domain of HLA class I heavy chain was found
to prevent its transport to the cell surface [61], whereas
HPV16 E7 can trigger down-regulation of HLA class I gene
transcription [62]. However, neither the mechanisms nor
efficiency of HLA class I down-regulation has been investi-
gated for HPV31 and as such it is not feasible to perform
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comparisons to HPV16. It may be that the respective viral
proteins of other hrHPV types, such as HPV31, are less
capable of interfering with antigen presentation, so that
persistence in transforming infections becomes more
dependent on (epi)genetic aberrations within the HLA
locus. Interestingly, lesions with HPV31 also had signifi-
cantly more losses at the location of the p53 gene on chro-
mosome 17. It is still questionable to what extend p53
activity is affected in these cases. It may be that the E6 pro-
tein of HPV16 is more efficient in inactivation of p53 at the
posttranslational level than E6 of HPV31 and that for this
type additional events are needed to inactivate p53. Indeed,
the study of Ku et al. reported that in cervical carcinomas
the majority of cases with p53 mutations and LOH at 17p
occurred in carcinomas harbouring types other than
HPV16 [63]. However, in vitro experiments do not provide
evidence of differences in degradation efficiency of the E6
proteins of these different hrHPV types [64].

To the best of our knowledge, there are no other stu-
dies in which the relation between specific hrHPV types
and chromosomal aberrations in precursor lesions has
been examined. So far, only a study on cervical carcino-
mas demonstrated the presence of type-dependent chro-
mosomal aberrations [65]. Carcinomas without
detectable HPV or containing HPV18 in a single or
multiple infection showed a higher incidence of gains at
20q compared to cases containing HPV16 or other types
[65]. Comparison of the frequency of 20q gain in CIN2/
3 with HPV16 versus HPV18 was not possible in our
data set due to the low numbers of lesions harbouring
HPV18. Comparison of the frequency of 20q gain in
HPVa9-versus HPVa5&a7-positive lesions, however,
indicated an increased frequency in lesions harbouring
types from the o5 and a7 species (i.e. 25.8% vs. 36.7%).
Gain of 20q was also more frequent in lesions with
HPV on16 or HPV31 in particular, compared to those
with HPV16 (29.6%, 35.7% vs. 25.0% respectively).

Conclusions

Present data indicate that the chromosomal signatures
in CIN2/3 are at least in part related to the hrHPV type
present. Lesions with HPV16 displayed fewer chromoso-
mal aberrations than lesions with other hrHPV types.
Specific differences, when comparing lesions with
HPV16 to HPV31, included losses at chromosome 6p
encoding major histocompatibility genes. One could
speculate that these type-specific aberrations in lesions
with HPV .16 types facilitate viral persistence and high-
grade CIN development.

Online supporting information

Array data is available from the Gene Expression Omni-
bus (GEO, http://www.ncbi.nlm.nih.gov/projects/geo/)
through series accession number GSE31241.
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