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Abstract

Background: Huntington disease (HD) is caused by an expanded CAG repeat in the HD gene. Although the length
of the CAG repeat strongly correlates with the age-at-onset (AAO), AAO in HD individuals may differ dramatically in
spite of similar expanded CAG repeat lengths. Additional genetic or environmental factors are thought to influence
the disease onset. Several modifier genes have been discovered so far but they do not fully explain the variability
of AAO in HD. To potentially identify a novel genetic modifier, we analyzed single nucleotide polymorphisms (SNPs)
in the kalirin (KALRN) gene. Kalirin is a protein crucially involved in spine plasticity and its interaction with
huntingtin-associated protein-1 (HAP-1) and a potential protein dysfunction might contribute to spine pathogenesis

in HD.

in an analysis of variance and covariance.

Methods: The selected SNPs were genotyped by polymerase chain reaction-restriction fragment length
polymorphism (PCR-RFLP) and association of SNPs with AAO was investigated with the framework of linear models

Results: Eleven SNPs in the kalirin gene were examined in an association study in European HD patients. The ten
coding SNPs under investigation were monomorphic, whereas SNP rs10934657 in the promoter region showed a
minor allele frequency >1%. An analysis of covariance together with the influence of the expanded HD allele was
applied in 680 HD patients. SNP rs10934657 did not affect the AAO of the examined HD population.

Conclusions: The results did not reveal an association between the analyzed kalirin polymorphisms and the AAQO in
HD. However, it does not exclude other SNPs of the kalirin gene as susceptible genetic modifiers.

Background

Huntington disease (HD) is one of the most common
autosomal-dominant neurodegenerative disorders caused
by an expansion of an instable CAG repeat in the HD
gene resulting in a polyglutamine tract near the amino
terminus of the huntingtin protein (htt) [1]. The muta-
tion leads to the selective loss of vulnerable neurons,
notably medium spiny neurons in the caudate nucleus,
which results in motor and cognitive impairment, per-
sonality changes and psychiatric illness [2]. The number
of CAG repeats in the HD gene is the primary determin-
ant of disease onset, however it only accounts for
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approximately 42-73% of the variance in age-at-onset
(AAO) in HD [3,4]. Similar to several other neurodegen-
erative disorders, the detrimental gene alone does not
fully determine the AAO in the course of the disease.
Environmental factors, although not specifically defined
yet, may contribute to different disease manifestation.
The remaining variation of AAO may be due to modifier
genes and seems to be strongly heritable [5]. Several
genetic modifiers of HD have been identified so far, in-
cluding huntingtin-associated protein-1 (HAP1) [6], ubi-
quitin C-terminal hydrolase 1 (UCHL1) [7,8], GluR6
subunit of kainate receptor (GRIK2) [9], the adenosiner-
gic A2A receptor (ADORA2A)[10,11], autophagy-related
protein 7 (Atg7) [12] and the peroxisome proliferator-
activated receptor-y coactivator la (PGC-1la) [13-15]. A
recent review on HD modifiers was provided by Arning
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and Epplen [16]. These modifiers with their respective
functions contribute to different aspects of pathogenesis
in HD.

Cell death in the striatum and aggregation of the mu-
tant huntingtin protein are pathological hallmarks of
HD [17]. Morphological alterations of dendrites and
spines are also found in HD patients and animal models
[18]. Ferrante et al. showed truncated dendritic arbors,
focal swellings on dendrites and spine loss in patients
with a severe grade of HD [19]. Similar dendritic degen-
eration has been observed in R6/2 mice expressing mu-
tant huntingtin exon 1 with 150 CAG repeats and
transgenic mice expressing full length huntingtin cDNA
[20,21]. Spine morphogenesis and plasticity are modu-
lated by actin dynamics, which is regulated by Rho-like
small GTPases (Rac, RhoA and Cdc42) and their GDP/
GTP exchange factors (GEFs) [22]. Kalirin is a brain-
specific, multifunctional Rho GEF encoded by the
KALRN gene on chromosome 3q21.2 that generates sev-
eral isoforms by alternative splicing [23]. Rat kalirin-7,
corresponding to isoform 2 of the human kalirin gene, is
undetectable at birth and increases during synaptogen-
esis [23,24]. It contains a SEC14 domain, a spectrin-like
domain, a RhoGEF domain and a Pleckstrin homology
domain (PH) [25] which controls multiple functions of
the protein. Kalirin-7 activates Racl and regulates den-
dritic spine morphogenesis, plasticity and development
[26,27]. Another probable link between kalirin and HD
pathogenesis is huntingtin-associated protein-1 (HAP-1),
a HD genetic modifier which interacts with the kalirin
protein [6,28].

Although several susceptibility modifier genes for HD
have been identified, they are not sufficient to explain
the rest of the variance in AAO in HD. The goal of the
present study was to investigate if SNPs in the kalirin
gene also have a modifier effect on the AAO in HD. We
specifically focused on the isoform-2 of the kalirin gene
since it is the major splice variant in the adult brain,
which integrates various signaling inputs and modulates
dendritic spine maturation, plasticity and dynamics. In
this regard, we analyzed one SNP in the promoter region
and ten non-synonymous SNPs (D451E, Q520R, Q585E,
G654W, T727S, R837Q, X1112E, D1326E, N1389H,
E1588G) in the translated region of isoform-2 of the
kalirin gene.

Methods

Subjects

A total of 680 unrelated European HD patients were
analyzed. Among them, 320 patients were of German
descent and 171 patients were of Italian descent. The
remaining 189 patients were from other European coun-
tries [6,12,15]. AAO was determined by neurologists
specialized in HD, usually as the time point when motor
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symptoms were first noticed. The mean AAO was
44.0 years (SD 13.0, age range 5-80 years). CAG repeat
lengths in the HD gene had been tested in all patients
and CAG numbers had been standardized in a reference
laboratory. The number of the expanded CAG repeats
ranged from 39 to 90. All healthy individuals are samples
of the Centre d’Etude du Polymorphisme Human cohort
(CEPH).

Ethics

All participating individuals gave informed consent
according to the Declaration of Helsinki. An ethics pro-
posal was approved by the ethical review committee of
the Medical Department of the University of Tuebingen
(39/2003).

Genotyping

The selected SNPs were genotyped by polymerase
chain reaction-restriction fragment length polymorph-
ism (PCR-RFLP). The target sequences were amplified
with mismatch forward or reverse primers and digested
with specific restriction enzymes. The mismatch pri-
mers were generated using dCAPs Finder 2.0 software
(http://helix.wustl.edu/dcaps/dcaps.html) and optimized
by Primer 3 program (http://frodo.wi.mit.edu/primer3/).
Primer sequences for PCR amplification are shown in
Table 1. PCR was performed in a final volume of 25 pl
using 5 pl DNA, 1 pl of each primer, 1x buffer,
02 mM dNTP and 15U DNA Taq polymerase
(BioTherm™). The cycling profile was as follows: 95°C
5 [95°C 30”; respective annealing temperature for
each SNP is indicated in Table 1, 30”; 72°C 1’] for 35
cycles; 72°C 5’ and stored at 10°C. Five pl of the PCR
product were electrophoresed on 2% agarose gels and
only samples with positive signals were used, yielding
the total of 680 HD samples. The PCR products were
incubated with 3U Alul (rs10934657, rs111472457,

rs61746078,  rs2289838,  rs2289838), 2.5U  Bigl
(rs35057827), 19U Mscl (rs13074913), 3U BamHI
(rs61745397), 3U Spel (rs112304715), 3U Ndel

(rs2289838) or 3U Sacl (rs1062749) according to the
manufacturer’s instructions (New England Biolabs, Inc.,
Beverly, MA, USA).

Statistical analysis

Statistical analyses were performed as in our previous
studies [12,15]. To determine allele and genotype fre-
quencies and Hardy-Weinberg distribution of the tested
genotypes GENEPOP software version 4.0.10 (http://
www.genepop.curtin.edu.au/) was used. With the frame-
work of linear models in an analysis of variance and co-
variance (IMP® Version 8.0.2 SAS institute, Inc., Cory,
NC, USA) we investigated the modifying role of the
polymorphic SNP rs10934657 in the kalirin gene on the
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Table 1 Primer design for fragment length analysis

Page 3 of 6

SNP Sequence (5'— 3) PCR product (bp) Annealing temperature (°C) Restriction enzyme

rs10934657 TGGCAAGAGGGAGAGGAG 139 55.2 Alul
CTTCCTCCTCTGTAAACCAGAGAGA

rs111472457 CATCCGAGATGCAAGACCTAGA 156 585 Alul
CCGTGAGGGATTCGGAGT

rs35057827 GCATGAGGTGTTACATCACCAGCCAC 123 609 Btgl
CAATCCAGTCCAACACCTGCT

rs61746078 CAGCAGGATGTACAGCAGGT 150 612 Alul
GTACGTATTCTGAGCCACAG

rs13074913 TCTACAAGGCAGCTCGACAC 136 58 Mscl
AGGTCTTCCATCCATGGCC

rs61745397 GCCAGGGACTCGGCTGGA 154 60.6 BamHI
TCACCTCGATGGTGTACTGC

rs112304715 CAGCAGGGACAGGATCTGCACT 170 62.5 Spel
AGCCGCTTATGAGTCTGCTCT

rs77832285 TCCTGAGTGAGCTCCTGCATAT 110 59 Ndel
GCTCGAACACCACATATTGC

rs2289838 AGCCCGGAAGAAAGAATTTA 168 58.2 Alul
TGGATGTTGCCAAAGATGATAAG

rs74389479 AAGTACGAGCAACTGCCTGAG 138 59.5 Alul
ATCAAAGAAGGTGCCCGCAA

rs1062749 CTGCAAATTCGCCTTGTGGT 162 55.2 Sacl
GCTGAAGTGGCTCCTTTAGAGCT

Mismatch positions are highlighted in italics.

AAO of HD. First, we applied a model of analysis of co-
variance with rs10934657 and the expanded HD allele as
independent variables and the AAO as a dependent vari-
able. The goodness-of-fit was assessed by the proportion
of variation in the AAO that is explained by the coeffi-
cient of determination (R*). We obtained the best fit of
our data and a minimization of the residuals by logarith-
mic transformation of the AAO and the CAG repeat
number in the HD gene. To determine the effect of SNP
rs10934657 on AAO by an analysis of variance and co-
variance, the effect of the expanded HD allele (HD
CAG) was calculated alone, as well as with SNP
rs10934657. When factor rs10934657 is added to the ef-
fect of the expanded HD allele (AR?), a change of R®
would indicate a relative improvement of the model.
This method would identify the percentage of the vari-
ance that is attributable to the candidate modifier loci
when there is a significant P-value (P<0.05).

Results

To explore the potential modifying effects of the kalirin
gene on the AAO in HD, we chose eleven single nucleo-
tide polymorphisms (SNPs) that were published in the
NCBI SNP database at the start of this study. According

to our hypothesis, via interaction with HAP-1 or due to
protein dysfunction, the abnormal kalirin protein may
contribute to spine pathogenesis in HD. Therefore, in this
study we focused on SNPs that could potentially influence
protein function or expression based on their positions in
functional domains or regulatory regions. Accordingly,
ten of the selected SNPs are non-synonymous and are
located in spectrin-like domains (rs111472457 in exon 8,
rs35057827 in exon 9, rs61746078 in exon 10, rs13074913
in exon 11, rs61745397 in exon 13, rs112304715 in exon
14, rs77832285 in exon 20), the Rho GEF domain
(rs2289838 in exon 25, rs74389479 in exon 27) and down-
stream of the pleckstrin homology domain (rs1062749 in
exon 32), respectively (Figure 1). SNP rs10934657 is in
the 5’ untranslated region (5"UTR), a predicted promoter
region. Accession numbers and alleles of the analyzed
SNPs are shown in Table 2. We first screened these SNPs
in 60 control samples (CEPH) to monitor the allele fre-
quencies of each polymorphism. SNP rs10934657 in the
5'UTR region (C>T) was polymorphic with a minor
allele frequency>1% in controls whereas the ten coding
SNPs were monomorphic in our cohort (Table 2). There-
fore, SNP rs10934657 was selected for further genotyping
of HD patients.
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Secldp-like spectrin-like DH PH PDZ binding motif
-~ ee e —™
—
rs10934657 rs111472457 / rs61746078 | rs61745397 rs77832285 rs74389479
D451E Q585E T727S X1112E N1389H
rs35057827 rs13074913 rs112304715 rs2289838 rs1062749
Q520R G654W R837Q D1326E E1588G

Figure 1 Domain structure of the kalirin gene, isoform 2. Dbl-homology (DH) and pleckstrin homology (PH) domains are responsible for the
GEF activity of kalirin. The C terminus contains a unique 20 amino acid sequence with a PDZ domain-binding motif (STYV) that is specific for
isoform 2. The localization of all SNPs examined in this study and rs numbers and changes on the protein level are indicated.

To examine the effect of the polymorphic SNP
rs10934657 on disease onset, the respective genotypes
were determined in a total of 680 HD patients. Geno-
typed allele frequencies are listed in Table 2. The allele
frequencies of SNP rs10934657 in our European popula-
tion were consistent with the HapMap-CEU population
studies reported in the International HapMap project
(www.hapmap.org) (C: 0.8; T: 0.2). In order to identify a
possible modifying effect of SNP rs10934657 on the
AAO of the analysed HD patients, an analysis of covari-
ance together with the influence of the expanded HD
allele was applied. Analysing the effect of the expanded
CAG repeat in the HD gene itself, R* in the statistical
model reaches a value of 0.5394 (Table 3). This indicates
that the expanded HD alleles accounts for about 53% of
the variance in the AAO, which is in good accordance to
other studies [3,4]. However, the inclusion of SNP

Table 2 Overview of the SNPs studied

rs10934657 as covariant did not improve our model. This
SNP did therefore not affect the AAO of the disease in
the examined HD population (P=0.9713). Furthermore,
there is no significant effect of the non-expanded CAG
repeat on the AAO in our analysed population (data not
shown).

Discussion

To our knowledge, this is the first study that examines
an association of the kalirin gene with the AAO in HD.
Previous studies have established a connection between
kalirin variants and susceptibility to schizophrenia, Alz-
heimer disease, adult attention deficit hyperactivity dis-
order (ADHD), coronary artery disease and ischemic
stroke [29-34]. In the present study, we hypothesized
that isoform 2 of the kalirin gene, corresponding to rat
kalirin-7, the predominant kalirin isoform in adult brain,

SNP ID Chromosome  Alleles® Gene SNP type Protein  Controls (CEPH) HD patients

chrc?:\s(itst)r:e 3 (172)  location level Allele frequency  Genotype frequency  Allele frequency
1 2 1-1 1-2 2-2 1 2

rs10934657 123812836 c/T 5-UTR Non-coding 0.8 0.2 487 174 19 0.844 0.156
rs111472457 124048782 G/T exon 8 non-synonymous D451E 1 0 - - - - -
1s35057827 124053260 G/A exon9 non-synonymous Q520R 1 0 - - - - -
1561746078 124066099 G/C exon 10 non-synonymous Q585E 1 0 - - - - -
rs13074913 124113985 T/G exon 11 non-synonymous G654W 1 0 - - - - -
rs61745397 124117557 T/A exon 13 non-synonymous T727S 1 0 - - - - -
rs112304715 124132486 A/G exon 14 non-synonymous R837Q 1 0 - - - - -
1577832285 124165034 G/T exon20 non-synonymous X1112E 1 0 - - - - -
rs2289838 124181433 G/T exon 25 non-synonymous D1326E 1 0 - - - - -
1574389479 124196161 C/A  exon 27 non-synonymous N1389H 1 0 - - - - -
1s1062749 124211666 G/A exon 32 non-synonymous E1588G 1 0 - - - - -

Chromosome positions were obtained from NCBI single nucleotide polymorphism (SNP) browser (http://www.ncbi.nlm.nih.gov/SNP/).
Reference sequence for coding SNPs: NM_003947.4.

The studied genotype distributions were consistent with Hardy-Weinberg distribution P=0.4716.

2 Alleles are described as 1 (wild type allele) or 2 (variant allele).
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Table 3 Effect of SNP rs10934657 on AAO in HD (Analysis
of covariance)

Variable R? AR?  p-value Least significant
number of patients

HD CAG 0.539%4 <0.0001 7

HD CAG + 0.5394 0 09713 70065

SNP rs10934657

may also contribute as a novel genetic modifier for HD
based on its role in spine plasticity and its interaction
with HAP-1.

Although the length of the expanded CAG tract in the
HD gene is the main determinant of the HD phenotype,
the manifestation of the disease is also modified by other
risks, such as environmental or genetic factors. To date,
two strategies have been applied for identifying genetic
modifiers, the genome-wide approach and the candidate
gene approach. The genome-wide studies are based on
genetic linkage to search for specific chromosome
regions, which might be associated with an alteration of
age at neurological onset, including the HD-MAPS pro-
ject which identified 6q23-24 as an association region
[34] and the Venezuela pedigrees study [35]. The identi-
fied genomic regions in both studies were relatively large
and it is difficult to detect specific modifiers, which are
now analyzed with a combination of densely spaced
SNPs and copy number probes. On the other hand, as-
sociation studies that investigate candidate genes that
are speculated to be involved in HD pathogenesis pro-
vide a straight forward option to identify these modifiers,
although they are not comprehensive. Recent studies
have demonstrated several genetic modifiers related to
various mechanisms implicated in HD pathology, such
as metabolic impairment, transcription dysregulation,
oxidative stress and excitotoxicity [6,8,36,37]. Among
them, the polymorphism T441M of HAP-1 showed an
8-year delay in AAO due to a tighter interaction of
HAP-1 with mutant huntingtin (htt) protein and thus
ameliorated htt-mediated toxicity [6]. HAP-1 is asso-
ciated with huntingtin, dynactin p150/kinesin light chain
(KLC), endosomal organelles and BDNF, suggesting its
role in intracellular trafficking and endocytosis.

Here we examined polymorphisms in the kalirin gene
due to its crucial role in spine plasticity and its inter-
action with HAP-1. Recently, several genome-wide
association studies (GWAS) had revealed genetic associa-
tions of the kalirin gene with several diseases. An in-
tronic SNP rs9289231 was associated with early onset
coronary artery disease in an American white population
[29], while intronic SNPs rs11712039, rs17286604 and
rs11712619 were associated with ischemic stroke in a
small Portuguese population [33]. A recent GWAS in a
Japanese population showed that a missense mutation in
the kalirin gene, P2255T (ss250607859), may be a genetic
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risk factor for schizophrenia [32]. In the present study we
did not include any intronic SNPs, as we drew our atten-
tion to potential functional changes on the protein level.
Also SNP 55250607859 was excluded from our analyses,
as it affects another isoform of the kalirin gene.

Conclusions

Among the eleven SNPs that were screened in our study,
we found only SNP rs10934657 to be polymorphic in
our European control cohort. However, in an analysis of
covariance, there was no significant effect (P=0.9713) of
this SNP on the AAO in our cohort of European HD
patients. Also testing for additional factors, such as sex
or German or Italian ancestry, did not reveal a signifi-
cant effect either (data not shown). Further power ana-
lysis was performed to determine the population size
that would be required to show potentially significant
effects of rs10934657. Our calculations revealed a mini-
mum of 70065 samples, indicating that this SNP is very
unlikely to have a big impact on AAO in HD.

In summary, although the genetic variations of the
kalirin gene investigated here showed no effect on the
AAO in HD, this does not exclude other SNPs of the
kalirin gene as susceptible genetic modifiers.
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