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Abstract

Background: Genetic mapping and QTL detection are powerful methodologies in plant improvement and
breeding. Construction of a high-density and high-quality genetic map would be of great benefit in the production
of superior grapes to meet human demand. High throughput and low cost of the recently developed next
generation sequencing (NGS) technology have resulted in its wide application in genome research. Sequencing
restriction-site associated DNA (RAD) might be an efficient strategy to simplify genotyping. Combining NGS with
RAD has proven to be powerful for single nucleotide polymorphism (SNP) marker development.

Results: An F1 population of 100 individual plants was developed. In-silico digestion-site prediction was used to
select an appropriate restriction enzyme for construction of a RAD sequencing library. Next generation RAD
sequencing was applied to genotype the F1 population and its parents. Applying a cluster strategy for SNP
modulation, a total of 1,814 high-quality SNP markers were developed: 1,121 of these were mapped to the female
genetic map, 759 to the male map, and 1,646 to the integrated map. A comparison of the genetic maps to the
published Vitis vinifera genome revealed both conservation and variations.

Conclusions: The applicability of next generation RAD sequencing for genotyping a grape F1 population was
demonstrated, leading to the successful development of a genetic map with high density and quality using our
designed SNP markers. Detailed analysis revealed that this newly developed genetic map can be used for a variety
of genome investigations, such as QTL detection, sequence assembly and genome comparison.
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Background

Grape (2n=38) is one of the most important fruits
worldwide, with a production of ~68 million tons over a
harvested area of 7.2 million ha in 2010 (FAOSTAT,
2010). Grapes can be classified into either table or wine
varieties, based on their intended mode of consumption,
ie, eaten raw or used to make wine. Consumption of
grapes and wine has proven to be greatly beneficial for
human health [1-4], and there has been a recent rise in
the demand for high-quality grapes for human consump-
tion. There is therefore a need to focus on grape im-
provement to optimize their attractive characteristics,
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such as contents of secondary metabolites, sugars and
organic acids, resistance and yield. This can be achieved
by using different germplasms from domesticated or
wild-type grapes and then selecting for the genetic com-
ponents that control the superior traits. However, it
takes decades to produce advanced high-performing
grape cultivars with the required traits, and there is still
not enough resource which can produce grapes with
high quality and quantity. High-density genetic map, one
of the most valuable genomic resources, can largely re-
veal genome compositions and meet the requirement of
high throughput superior traits selection among a lot of
germplasms in most species, including plant and animal.
Thus, construction of a high-quality genetic map for
grape is necessary for its further studies and production.

In the past two decades, there have been a number of
reports on the construction of grape genetic maps. Lodhi
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et al. [5] developed a genetic map for Vitis with 422 ran-
dom amplified polymorphic DNA (RAPD) and 16 re-
striction fragment length polymorphism (RFLP) molecular
markers, as well as a number of isozyme markers [5], pos-
sibly the first report of a complete genetic map for grape.
From that study, a number of new genetic maps were
developed, several of them based on the framework of that
map. The latter studies generally made use of an F1 popu-
lation as the plant material, with amplified fragment length
polymorphisms (AFLP), simple sequence repeats (SSR),
and single nucleotide polymorphisms (SNP) being the
three major molecular marker types for map construction
[6-16]. Although some genetic maps for grapes already
exist, the total marker number on the linkage groups (LGs)
of these existing maps is generally < 1,000 and some of
these mapped markers have no sequence information.
Thus a high-density genetic map for grape is still lacking,
and one that covers a large number of molecular markers
with sufficient sequence information is needed to meet the
demand for improvement.

A key step in genetic map construction is the develop-
ment of a set of testable molecular markers. In the last
decade, a number of molecular marker technologies
have been developed, including RAPD, AFLP, SSR and
SNP. RAPD and AFLP have proven to be unstable due
to many uncontrollable experimental conditions [17].
SSRs are considered to be one of the most stable and re-
liable markers for genetic map construction, but the
experiments are time- and cost-consuming [18]. Thus,
these markers are not suitable for high-density genetic
map construction with high throughput. SNPs are single
nucleotide polymorphisms or small InDels in the gen-
ome. They can be more numerous than other types of
markers, but this is difficult to test. Before next gener-
ation sequencing (NGS) technique was developed, a
number of other platforms were available for their iden-
tification, such as SNP Gene-Chip [19], high-resolution
melt (HRM) analysis [20], TILLING and EcoTILLING
[21,22]. With the improved sequencing technology, the
last two years have seen the development of NGS
combining restriction-site associated DNA (RAD) for
SNP testing [23]. Pfender et al. [24] successfully used
RAD markers to construct a high-density genetic map,
which was subsequently employed to detect the QTL
for resistance to stem rust in Lolium perenne. Using
2,383 RAD prior markers, an ultra-high-density genetic
map was also developed for barley by Chutimanitsakun
et al. [25], who showed that next generation RAD se-
quencing is a powerful high-throughput technique. Next
generation RAD sequencing has also been successfully
applied in other plants, including globe artichoke [26]
and eggplant [27].

In this study, an F1 population of grape was con-
structed by crossing two interspecies hybridization
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progeny, Z180 and Beihong. Analyses of resveratrol con-
tent in the fruit skin, sugar and acid contents in the
berry, berry size and cold resistance over several years
revealed stable segregation of these traits in this F1
population. To take advantage of this F1 population, a
high-density genetic map was constructed using next
generation RAD sequencing for genotyping. The > 1,500
SNP markers contained in this map were analyzed, and
aligned with the reference grapevine genome. Conse-
quently, additional information on the genomic struc-
tures of different Vitis species was obtained, and the
map can also be used to identify marker-linked loci that
potentially control the superior traits of the two parents.

Materials and methods

Mapping population and DNA extraction

The F1 mapping population consisted of 100 progeny
from a cross of Z180 (V. monticola x V. riparia) and
Beihong (V. vinifera x V. amurensis) in 2003. Since pollen
abortion occurred in Z180, Beihong was employed as the
male parent. The seedlings of the two parents and their
progeny were planted in the vineyard of the Germplasm
Repository at the Institute of Botany of the Chinese
Academy of Sciences in Beijing.

Young leaf samples (second and third leaves from the
apex) were harvested from each individual F1 plant and
the two parents at the beginning of the vegetative period
(late spring). The samples were immediately stored in li-
quid nitrogen and transferred to a -70°C freezer. Young
leaves (0.5 g) from each plant were ground in liquid ni-
trogen and their DNA extracted using the DNeasy plant
mini prep kit (Qiagen). DNA concentration was mea-
sured and adjusted to the same level.

In-silico analysis of restriction enzyme-recognition sites
on the reference grape genome

The sequence of the Vitis vinifera Pinot noir PN40024
12x genome assembly was downloaded from the inter-
national Grape Genome Browser (http://www.genoscope.
cns.fr/externe/ GenomeBrowser). Recognition sequences
of 30 common restriction enzymes (data not shown) were
chosen to investigate their digestion sites in the reference
genome using Perl script. Total number of digestion sites,
length of the resultant fragments, and their distribution
were calculated from the results of the in-silico analysis.

Sample preparation and data analysis

Sample preparation for sequencing followed that in a
number of published papers for NGS combined with
RAD [23-25,28], with a few modifications. Illumina
Solexa adapters (2006 Illumina, Inc., all right reserved.),
largely unmodified, were used for library construction.
In brief, 2 ug genomic DNA from each sample (100 F1
progeny and both parents) was treated with 20 units (U)
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Msel (New England Biolabs [NEB]) for 60 min at 37°C
in a 50 pl reaction. A quick blunting kit (NEB) was used
to convert 30 pl of the digested sample to 5'-phosphory-
lated, blunt-ended DNA in a 50-pl reaction mixture; the
reaction was performed with 30 ul of digested sample,
5 ul 10X blunting buffer, 5 ul 1 mM dNTP mix, 2 pl
blunting enzyme mix and 8 pl sterile dH,O at room
temperature for 30 min. A 3'-adenine overhang was
added to the resulting samples in a 50-pl reaction with
32 pl blunt-ended DNA sample, 5 pl Klenow buffer
(10X), 10 pl dATP (1 mM), 3 pl Klenow fragments
(3° —> 5" exo’, 5U/ul) and sterile dH,O to the final vol-
ume at 37°C for 1 h. Then 2 pl of 100 nM P1 and P2
adapter with a 3- to 5-bp plant-specific index (barcode)
at the 5' end and a thymine overhang at the 3* end was
added to each sample in a 50-pl reaction. The sequence
of P1 and P2 adaptors: P1F: 5'-ACACTCTTTCCC
TACACGACGCTCTTCCGATCTxxxT-3"(xxx indicated
barcode); P1R: 5'phos-yyyAGATCGGAAGAGCGTCGT
GTAGGGAAAGAGTGT-3" (yyy, reverse complement
of xxx); P2F: 5 phos-AGATCGGAAGAGCGGTTCAG
CAGGAATGCCGAG-3"; P2R: 5'-CTCGGCATTCCTG
CTGAACCGCTCTTCCGATCTT-3'. A ligation reac-
tion was carried out overnight at 16°C with T4 DNA lig-
ase and 16 samples with different plant indices were
pooled into one. DNA fragments from 400 to 500 bp
(including the ~120-bp adaptor) were separated on a
1.5% agarose gel and purified using a MiniElute gel ex-
traction kit (Qiagen). Finally, all pooled samples were
amplified with Phusion High-Fidelity PCR Master Mix
(NEB) for 18 cycles in a 100-pl reaction including 20 pl
Phusion master mix, 5 pl of 10 pM modified Solexa
amplification primer mix (AP1 and AP1; 2006 Illumina,
Inc. , all right reserved) and sterile dH,O to the final vol-
ume. The AP1 and AP2 primers contained Illumina se-
quencing primer sites. The sequences are: AP1: 5'-AAT
GATACGGCGACCACCGAGATCTACACTCTTTCCC
TACACGACGCTCTTCCGATCT-3'; P2: 5'-CAAG
CAGAAGACGGCATACGAGATCGGTCTCGGCATT
CCTGCTGAACCGCTCTTCCGATCT-3"; the under-
lined sequences are identical to Illumina sequencing pri-
mer sites. PCR products were repurified using the
QIAquick PCR purification kit (Qiagen) and sequenced
on a genome analyzer II instrument. All of these experi-
ments were performed at Beijing's Biomarker Technolo-
gies Co. Ltd. (http://www.biomarker.com.cn/english/).
SNP identification and F1 plant genotyping were per-
formed according to the method of Pfender et al. [24],
with a few modifications. A number of Perl scripts (Bio-
marker Technologies Co. Ltd.) were programmed to
conduct the analysis. In brief, low-quality data were dis-
carded (five bases with Q score < 20) first, and Solexa
sequences were assigned to the 102 plants according to
their given index. The first 30 bp of each read
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(designated as RAD tags) were employed for subsequent
analysis. For SNP marker identification, a cluster analysis
was performed for both parents' data together. RAD tags
were compared and nearly identical tags, with one or
two mismatches (SNPs or 1- to 2-bp InDels), were
assigned to one cluster. Clusters with > 200 or < 5 reads
were discarded. More than one mismatch on the 30-bp
sequence of the same RAD tag was considered a haplo-
type and regarded as one potential SNP marker in the
subsequent analyses. In one RAD tag cluster, mis-
matches among different plants in the F1 population
were considered putative polymorphisms and the differ-
ent mismatches were regarded as multiple alleles. The
parental genotypes for each RAD tag cluster were also
analyzed according to the origin of the 30-bp tag se-
quence. To genotype all 100 F1 plants, their 30-bp
sequences were also clustered and analyzed separately
following the strategy applied in the cluster analysis of
the two parent RAD tags. The genotypes for each RAD
tag cluster of a single F1 plant were then determined by
the identity between them and the corresponding clus-
ters in the two parents.

Linkage map construction

Because of the lack of an anchor marker in this study,
we first identified a set of SNP markers to assign the 19
grapevine chromosomes to19 LGs. This was performed
in two steps: 1) we marked the segregation patterns of
all 1,814 SNP markers as ab x cd, ef x eg, hk x hk, Im x 1l
and nn x np. Three types of markers, ab x cd, ef x eg and
hk x hk, which could be mapped to both parental linkage
maps, were regarded as candidate anchor markers; 2)
the two representative 30-bp sequences (because all
alleles of a SNP marker had two nearly identical 30-bp
sequences, we could take the sequence of any allele
representing the genotype of this SNP marker) of these
candidate anchor markers were aligned with the se-
quence of the 12x genomic assembly of V. vinifera Pinot
noir PN40024 using local BLAST software. The positions
of each sequence for one SNP marker on the genome
were identified by their highest number of hits. Three
strict criteria were used to screen the candidate anchor
marker: 1) it had to show a normal segregation ratio
among the 100 F1 progeny; 2) both 30-bp end sequences
had to align with the same chromosome position in the
reference PN40024 genome; 3) the distance between the
positions for the two end sequences on the reference
genome had to fall between 200 and 500 bp (the
expected size of the digested fragments was ~300—
400 bp). The strategy for alignment of RAD tags with
the reference genome was also used for the 1,646 SNP
markers with the 19 chromosomes for subsequent
comparison.
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The double pseudo-test cross strategy of Grattapaglia
and Sederoff [29] was applied, using JoinMap® 4.0 soft-
ware, during the map construction. After data had been
imported, a “CP” model was used for data mining. The
ratio of marker segregation was calculated by Chi-square
test. Markers showing significantly distorted segregation
(P-value < 0.001) were excluded from the map construc-
tion. The genotypes of the 1,814 SNP markers were ana-
lyzed for linkage and recombination by applying the
Kosambi function to estimate genetic map distances. To
group all 1,814 markers, logarithm of odds (LOD) score
thresholds > 7 were used. After the LGs had been com-
puted, their number was assigned according to the an-
chor markers mapped on them. The integrated map for
both male and female plants was computed using the
‘Combine Group for Map Integration’ function.

Results and discussion

Selection of suitable restriction enzymes for RAD
sequencing library construction

In this study, we did not sequence the whole genome of all
F1 plants; rather, we sequenced the two ends of the ~300-
to 400-bp RAD tags to simplify the grape genome and in-
crease sequencing efficiency. Thus, selection of a suitable
restriction enzyme for DNA digestion was key. Theoretic-
ally, two characteristics are required for an appropriate re-
striction enzyme: 1) because the NGS technology can only
cover 75 to 100 bp of DNA at each end concurrently, the
enzyme must be able to digest the genome of interest to a
suitable size (e.g. ~300—400 bp); 2) the number of digested
fragments of the expected size should be sufficient for sub-
sequent manipulation (100,000—150,000 RAD tags). The V.
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vinifera Pinot noir PN40024 genome sequence was taken
as the reference to search for an appropriate restriction
enzyme.

In-silico digestion with ~30 restriction enzymes
showed great differences in recognition sites (data not
shown). One restriction enzyme, Msel, which recognized
4 nucleotides (T/TAA), was predicted to produce
149,921 digested DNA fragments for a grape genome of
300—400 bp in size, suiting our requirements. The distri-
bution of binding sites for this restriction enzyme is
shown in Figure 1. Based on these results, we selected
Msel as the restriction enzyme to construct the DNA se-
quencing library.

SNP markers and their characteristics

Once the DNA of the F1 individuals and their parents
had been treated with MSel, all samples were genotyped
by high-throughput sequencing. In total, ~16 G of raw
sequence data containing 117,084,991 pair-end (PE)
reads was obtained, with each read being ~70 bp in length.
To avoid sequence errors, only reads showing < 5 bases
with Q score > 20 were further analyzed. Of these high-
quality data, ~149 Mb were from one of the parents,
Beihong, with 2,136,496 reads, and ~148 Mb were from
7180 with 2,126,872 reads. To assign these reads to their
corresponding loci, a cluster strategy was used for the two
parents' data (described in Materials and Methods). As
the grape genome harbors a large number of repeat
sequences [30,31], these might affect the coverage calcula-
tion and lead misidentification of polymorphisms. To
overcome this obstacle, clusters containing highly redun-
dant reads were excluded (clusters with > 200 reads),
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which removed the repeat sequences from the data. Clus-
ters with a low number of reads were also excluded due to
little coverage of the loci (clusters with < 5 reads). Finally,
37,871,193 high-quality reads without repeat sequences
were retained, and were assigned to 80,709 clusters for the
whole F1 population (Table 1). Thus we obtained 80,709
valid loci representing the whole grape genome. This
number was less than the expected number of digested
fragments (100,000-150,000); however, it excluded the re-
peat sequences and thus roughly corresponded to the in-
silico digestion result. Further calculation indicated that
the coverage of these loci was ~469-fold at the population
level (number of valid reads: 37,871,193 per number of
clusters: 80,709). With the aim of screening polymorphisms
for these 80,709 clusters, a strict in-silico procedure was
carried out for SNP identification (described in Materials
and Methods). In total, 21,599 clusters showed more than
one genotype according to their sequence diversity in the
whole F1 population (Table 1). This indicated an average
26.8% polymorphism rate for the F1 population. A total of
11,144,665 reads were involved in these polymorphic loci
and thus the average coverage was ~516-fold at the popu-
lation level. In addition, we calculated the polymorphic
loci for each F1 plant and its parents. According to
Figure 2, we obtained an average of ~12,840 reads
involved in the polymorphic loci and thus a 17.0-fold
coverage per cluster per each individual. The reads num-
ber involved in the polymorphic loci ranged from 10,912
to 13,649 and the coverage ranged from 7.7 to 41.5-fold
(Figure 2).

As already noted, the main advantages of NGS tech-
nology are low cost and high throughput. However, it
also has a very serious disadvantage in its high probabil-
ity of sequence error [32]. To overcome this problem,
high coverage of a specific sequence must be obtained.
We digested the DNA and only then sequenced the
RAD tags, greatly reducing the size of the genome.
Jaillon et al. (2007) claimed that grapevine harbors a se-
quence that is ~470 Mb. During the genotyping of our
102 plants, we only manipulated ~80,709 valid clusters
and each contained an ~70-bp sequence. Thus the grape
genome was simplified to ~5.65 Mb (80,709 x 70 bp).
This amounts to an ~83-fold reduction compared with
the original 470 Mb reference genome, resulting in the
requirement of very little data to achieve high coverage.
According to our data, the average coverage for each tag
was 17.0-fold in an individual plant. Moreover, because

Table 1 SNP modulation for the F1 population

Clusters No. of reads Coverage
Polymorphisms 21,599 11,144,665 515.98
Non-polymorphisms 59,110 26,726,528 45215
Total 80,709 37,871,193 469.23
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all sequence tags were from the two parents, Beihong
and Z180, the number of alleles for each locus was < 4.
The total coverage for each tag at the population level
was ~469-fold, leading us to adjust the SNPs in some
loci where their coverage in an individual plant was in-
sufficient. In addition, with these and subsequent strict
criterions, we found the coverage of clusters correspond-
ing to final SNP markers on the genetic map showed al-
most larger than 7 in an individual plant; only 24
showed from 5- to 7-fold coverage. Based on the above
analyses, we concluded that the applied strategy provides
high-throughput and high-quality identification of SNPs.

There were a number of possible patterns for the poly-
morphic markers in an F1 population (ab x cd, ef x eg,
hk x hk, Im x 1, nn x np and aa x bb). However, the last
pattern, aa x bb, could not be applied to the genetic map
construction due to its lack of segregation in our F1
population, even though it probably constituted the lar-
gest proportion of all marker types. Thus, calculation of
the segregating patterns for all loci would be necessary be-
fore a linkage map could be constructed. In addition, des-
pite a high average coverage for the predicted RAD tag
clusters, there were still a number of RAD tag clusters
with low coverage in some F1 plants. To increase the ac-
curacy of our data, only the clusters showing three or
more fold coverage of > 80% of the F1 plants were used
for subsequent development of SNP markers. We
screened all 21,599 polymorphic clusters based on the
above criteria and obtained 1,814 valid SNP markers with
segregating patterns of ab x cd, ef x eg, hk x hk, Im x Il or
nn x np (note that if two polymorphic clusters came from
the same Msel-digested fragment, they were regarded as
one marker). In addition to the coverage of the se-
quence data, the integrity for each locus among these
100 F1 individuals and their two parents was a key par-
ameter in controlling map quality. We therefore investi-
gated the data on missing rate for these plants, and
found full integrity for the two parents, Z180 and Beihong,
and 92.3% integrity on average for the 100 F1 plants. For a
single SNP marker, the lowest integrity was ~85%, meeting
the requirement for LG construction. Of these 1,814
SNP markers, 1,545 were homozygous for one parent
and heterozygous for the other (960 for Im x 1l and 585
for nnxnp), constituting 85.2% of all selected SNP
markers. However, the other three types of markers that
could be mapped on both female and male linkage
maps only amounted to 14.8% (ab x cd: 77, ef x eg: 171
and hk x hk: 21). This indicated that at most, 269 SNP
markers could be used as shared markers for the inte-
gration of the two parents’ maps into one.

Because all of the SNP markers in this study were
uniquely developed and no LG information was avail-
able, we identified a set of anchor markers that would
indicate their chromosomal location. As described in
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Materials and Methods, the chromosome location of the
269 markers with ab x cd, ef x eg and hk x hk segrega-
tion patterns were detected according to their sequence
alignment to the grape reference genome. After a series
of strict selections and calculations, 212 markers clearly
showed their chromosome location (Additional file 1:
Table S1). Of these anchor markers, two were located on
random chromosomes because the grape genomic se-
quence has not been completely assembled. The lowest
number of anchor markers was on chromosome 15, with
only two being usable for map construction (Additional
file 1: Table S1). The average number of anchor markers
for each chromosome was ~11.2 and only one chromo-
some had < 5 markers. This indicated that these anchor
markers were sufficient for LG assignment.

Genetic maps

When the data preparation was complete, the 1,814 SNP
markers were imported into JoinMap4.0 for map con-
struction. In total, 1,121 markers fell into 19 LGs for
7180 (female), 759 markers for the Beihong (male), and
1,646 markers for the integrated map, with a grouping
LOD value of 7 to 13 (Figures 3, 4, 5, and 6, Additional file

2: Figure S1 and Additional file 3: Table S2). The differ-
ence in the number of markers between Z180 and Bei-
hong might indicate the heterozygosity of Z180 is larger
than Beihong; and it is corresponding to the result of an
ongoing research which is conducting in our group for in-
vestigation of diversity among different vitis germplasm
(unpublished). For these 19 LGs, the Z180 LG08 and Bei-
hong LG14 did not form a uniform bar, but divided into
two short LGs. Of the 212 anchor markers, 19 did not
map to either Z180 or Beihong LGs, and 5 markers were
specific to Beihong LGs. Thus 188 markers could be
mapped on both Z180 and Beihong maps (Table S1). Fur-
ther analysis of the location of the anchor markers
revealed that their assignment to each chromosome by
alignment to the reference genome and by LG clustering
was identical. This suggested conservation of the genome
structure among different species and the accuracy of our
genotyping data.

Taking into account the size of all LGs, marker
coverage amounted to1,884.3 c¢cM for Z180 (female),
1,740.5 cM for Beihong (male), and 1,917.3 ¢cM for the
integrated map (Table 2). The average intervals between
two adjacent mapped markers were 1.68 cM, 2.29 cM
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Figure 3 Integrated linkage group1 to 5 for Z180xBeihong.
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and 1.16 cM for the Z180, Beihong and integrated maps,
respectively. The total physical size of the grape genome
was ~470 Mb [30,31], meaning that each 1,000-kb DNA
sequence was equal to an average of ~4.0 cM genetic
distance in this study. Though we found there was no
significant correlation between genetic and physical size
in the subsequent analysis, the data still could indicate
that the average intervals between two adjacent mapped
markers on their genome were ~420 kb (1.68/4.0 x
1000) for Z180, ~573 kb for the Beihong, and 290 kb for
the integrated map. Comparing previous reports of vitis
genetic map, the total marker number on the linkage
groups (LGs) of these existing maps is generally < 1,000
[6-16], therefore, the density for linkage maps developed
for the F1 population of Z180 x Beihong was very high.
In addition, the total sizes of grape genetic map ranged
from ~1100 to ~1700 cM in previous study [6-16] and
were much smaller than our map. More markers applied
and interspecies crossed F1 population in this study
might be attributed to this difference. More markers ap-
plied in the genetic map could detect more recombin-
ation, whereas, interspecies cross could produce more
recombination. Further analysis revealed that the mar-
kers on these 19 LGs were not evenly distributed. The
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95 markers for the female, 74 for the male and 148 for
the integrated map. The minimum number of markers
occurred on LG15—15 for Z180, 22 for Beihong and 34
for the integrated map. The size of the LGs also varied
widely (Table 2): the longest LGs were LGO5 for Z180
(133.2 cM), LGO7 for Beihong (122.8 ¢cM) and LG13 for
the integrated map (118.5 cM); the shortest were LG15,
LG11 and LG11 for Beihong, Z180 and the integrated
maps, with 57.4 cM, 76.3 ¢cM and 79.2 cM, respectively.
Compared with the physical size of the corresponding
chromosomes [31], the longest and shortest chromo-
somes were LG18 and LG17 with 34.4 and 17.9 Mb, re-
spectively. The different physical and genetic rankings of
the LGs led us to investigate the correlation between the
two. Both females and males showed a very weak correl-
ation (r=0.25) between genetic and physical size among
these 19 LGs/chromosomes, which might indicate that
different recombination rates exist on the different chro-
mosomes during meiosis.

A number of future studies can be based on the high-
density genetic map developed in this work. First, several
excellent traits exist in one of the two parents. Thus, a
given trait might be improved by selection of markers
which are linked to elite loci or alleles after QTL detec-

maximum number of markers occurred on LG18, with  tion. Moreover, several excellent traits might be
Table 2 Genetic map for 19 linkage groups (LGs)
Number of markers Genetic sizes (cM) Chromosome

Female (Z180) Male (Beihong) Integrated map Female (Z180) Male (Beihong) Integrated map size (Mb) *
LGO1 63 30 85 1180 80.1 1122 236
LGO02 46 31 68 101.1 79.5 108.9 18.7
LGO03 55 40 78 80.0 79.0 89.0 20.5
LG04 71 35 94 94.1 83.7 93.7 239
LGO5 71 32 93 1332 100.5 108.8 254
LG06 62 38 88 90.4 939 107.6 215
LGO07 87 58 133 1137 1228 1165 224
LGO08 79 53 17 103.3 92.6 109.5 224
LG09 51 30 70 85.6 100.1 94.4 23
LG10 66 42 98 1089 1124 114.6 18.8
LG11 28 23 44 92.2 76.3 79.2 20.0
LG12 64 49 94 103.3 97.5 108.1 242
LG13 83 53 115 1204 91.1 1185 274
LG14 53 39 80 107.5 81.5 92.1 303
LG15 15 22 34 574 855 65.1 20.3
LG16 28 27 47 83.1 872 87.3 228
LG17 50 53 87 918 769 88.8 179
LG18 95 74 148 104.8 1118 108.5 344
LG19 54 30 73 95.5 883 1145 24.02
Total 121 759 1646 1884.3 1740.5 19173 4416

? the physical sizes are according to Jaillon et al. (2007).
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combined in one grape plant, thereby producing a new
cultivar, through a series of crosses and marker-assisted
selection (MAS). Second, compared to other genetic maps
for grape, there are two obvious advantages: high density
and complete sequence information for all markers
(Additional file 3: Table S2). These advantages could
greatly benefit comparative mapping and genome assem-
bly. The markers' combined 60-bp sequences mapped to
the LGs could be used as anchors for the genome. Al-
though the genome sequence of grapevine was published
several years ago, it still has a number of gaps and random
sequences [30,31]. In this study, a set of markers could be
aligned to the random chromosomes of V. vinifera Pinot
noir PN40024 (data not shown). According to their posi-
tions on LGs, it might be easy to put the random chromo-
somes into the common one. On the other hand, the
published grape genome is only for V. vinifera, and the
genome structures of different Vitis species are expected
to be more or less different due to the long evolutionary
history of the Vitaceae [33]. Thus, comparing the genome
characteristics of the different species could give us a bet-
ter understanding of grape. The 1,646 mapped markers'
combined 60-bp sequences could be used as shared
anchors to compare genetic and physical maps (Additional
file 3: Table S2). These studies might facilitate use of the
grape genomic resource.

Comparison of genetic and physical maps

To compare the genetic and physical maps, we investi-
gated the locations of all 1,814 SNP markers on the
reference genome. The high-quality 30-bp sequences
from both ends of each SNP marker were employed for
the location search by aligning them to the reference
genome. A total of 1,456 SNP markers showed a match
between their two ends and the same positions (intervals
of 200-500 bp) on the reference genome; 106 markers
only showed a match for one end to one position on the
reference genome, while the other end had no match;
the remaining 252 markers showed no match to the
reference genome, showed a conflict in matching posi-
tions for the two ends, or were mapped on the random
genome. To increase accuracy, only the first type of mar-
kers (1,456 SNP markers) was used to compare the gen-
etic and physical maps.

From Tables 3 and Additional file 3: Table S2, 892
common markers were found between the physical and
7180 (female) genetic map; 606 common markers were
found between the physical and Beihong (male) genetic
map. This indicated that 79.6% (892/1,121) of the mar-
kers on the female LGs could be mapped on the refer-
ence genome; similarly, 79.8% of the markers on the
male LGs could be mapped on the reference genome.
Among the 19 chromosomes or LGs, LG18 showed the
highest number of common markers between the
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physical and genetic maps for Z180 and Beihong (75 and
61, respectively); LG15 showed the lowest number of
common markers, only 13 for the Z180 map and 15 for
the Beihong map. To compare the order of the common
markers, a dot-plot diagram (Figure 7) was generated
using the physical position of each common marker on
the reference genome against its genetic position on the
LGs; at the same time, all LGs of the two parental maps
were aligned with the reference genome (Additional file
4: Figure S2). According to these two analyses, most of
the markers showed good linear agreement between
physical and genetic maps on the basic framework.
However, there were also chromosomes showing re-
arrangement of some regions. Among the 19 LGs,
Chr01, 03, 04, 05, 06, 08 (two LGs for male), 09, 10, 12,
13, 14, 17, 18, 19 showed high collinear results for both
female and male maps. The remaining LGs only showed
high collinear results for one map. Because both parents
were produced by interspecies crosses (V. monticola x V.
riparia and V. vinifera x V. amurensis), some of the
regions in the two parent genetic maps might be identi-
cal to the reference genome (V. vinifera); nevertheless,
most of the regions are expected to come from the other
three Vitis species. Therefore, the same order for the two
types of map most probably indicates conservation of

Table 3 Number of common markers between genetic
and physical maps for 19 individual chromosomes

Marker Number of markers
names Z180 Beihong
LGO1 55 24
LGO02 36 18
LGO03 50 36
LG04 50 31
LGO5 64 30
LG06 53 32
LGO7 54 40
LGO08 68 41
LG09 43 27
LG10 35 27
LG11 25 20
LG12 50 37
LG13 62 45
LG14 45 31
LG15 13 17
LG16 21 22
LG17 47 42
LG18 75 61
LG19 46 25
Total 892 606
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genomes among the different grape species; the non-
collinearity for some chromosome regions might indicate
some variations among different grape species during
evolution.

Moreover, using the high-quality, high-density genetic
map, we could investigate not only the variation in genome
structure among different species but also the variation
that occurred during interspecies crosses. There have been
a number of studies on interspecies hybridization in the
past decade. Chromosome rearrangement, retrotransposon
activation and SSR mutations have been seen in interspe-
cies crosses between different types of Brassica species
[34]. For our plant material, the parents came from two
separate interspecies crosses (V. monticola x V. riparia and
V. vinifera x V. amurensis), and thus the population con-
tained four grape pedigrees. An overview comparative ana-
lysis of the genetic map and the reference genome
(Figure 7) reveals a number of markers in some regions
that were not in the same order. Moreover, we achieved a
similar result by comparing the Z180, Beihong and

integrated genetic maps (Additional file 2: Figure S1). The
variations among the different species might be the first
reason for this non-uniformity; however, genomic variation
occurring due to Vitis interspecies crosses might also exist
because we observed variations in the positions of a num-
ber of markers as a uniform block between the male gen-
etic map and the V. vinifera physical map; the male parent
(Beihong) harboured half of the V. vinifera pedigree. Thus,
with our detailed and complete investigation of the genetic
map, more knowledge of the variation among different
species and interspecies crosses can be obtained in the
future.

Conclusions

We constructed a genetic map of a Z180 x Beihong F1
population of high density and quality. According to the
analysis of the SNPs and their sequence information, we
conclude that next generation RAD sequencing is a power-
ful strategy for genotyping. With further characterization
of the genetic map, variations and conservation between
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the genetic map and reference genome were clearly
detected. This genetic map is expected to be useful for
QTL detection, sequence assembly and genome structure
comparisons.

Additional files

Additional files 1: Table S1. Information on anchor markers.

Additional files 2: Figure S1. Genetic maps for 2180 (female), Beihong
(male) and their integration.

Additional files 3: Table S2. SNP markers on the 19 linkage groups
(LGs) and their presented sequence.

Additional files 4: Figure S2. Comparison between 2180 (female), and
Beihong (male) genetic and physical maps. The SNP markers in blue are
common markers between one of the two parents and the physical
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