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Abstract
Background: Previous studies have established a correlation between electrophoretic
polymorphism of esterase B, and virulence and phylogeny of Escherichia coli. Strains belonging to the
phylogenetic group B2 are more frequently implicated in extraintestinal infections and include
esterase B2 variants, whereas phylogenetic groups A, B1 and D contain less virulent strains and
include esterase B1 variants. We investigated esterase B as a marker of phylogeny and/or virulence,
in a thorough analysis of the esterase B-encoding gene.

Results: We identified the gene encoding esterase B as the acetyl-esterase gene (aes) using gene
disruption. The analysis of aes nucleotide sequences in a panel of 78 reference strains, including the
E. coli reference (ECOR) strains, demonstrated that the gene is under purifying selection. The
phylogenetic tree reconstructed from aes sequences showed a strong correlation with the species
phylogenetic history, based on multi-locus sequence typing using six housekeeping genes. The
unambiguous distinction between variants B1 and B2 by electrophoresis was consistent with Aes
amino-acid sequence analysis and protein modelling, which showed that substituted amino acids in
the two esterase B variants occurred mostly at different sites on the protein surface. Studies in an
experimental mouse model of septicaemia using mutant strains did not reveal a direct link between
aes and extraintestinal virulence. Moreover, we did not find any genes in the chromosomal region
of aes to be associated with virulence.

Conclusion: Our findings suggest that aes does not play a direct role in the virulence of E. coli
extraintestinal infection. However, this gene acts as a powerful marker of phylogeny, illustrating the
extensive divergence of B2 phylogenetic group strains from the rest of the species.

Background
In humans, Escherichia coli strains can be commensal (part
of the normal intestinal microbiota) and/or the cause of
various infectious diseases (intestinal and extraintestinal

infections) [1]. The extent of commensal or virulent prop-
erties displayed by a strain is determined by a complex
balance between the status of the host and the production
of virulence factors in the bacteria. The role of the intrinsic
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virulence of the isolates needs to be clarified and molecu-
lar markers of virulence are required to predict the inva-
siveness of clinical strains isolated during the course of
extraintestinal infection or patient colonization.

E. coli has a clonal genetic structure and exhibits a low
level of recombination [2]. E. coli strains can be catego-
rised into four main phylogenetic groups, A, B1, B2, and
D. These groups have been defined based on proteic
(multi-locus enzyme electrophoresis including the elec-
trophoresis of esterases [3]) and genetic markers (restric-
tion fragment length polymorphism [4], random
amplified polymorphic DNA [4] and multi-locus
sequence typing (MLST) [5,6]). Seven types of esterases
(A, B, C, D, I, F and S), differing in their ability to hydro-
lyse synthetic substrates and their sensitivity to di-isopro-
pyl fluorophosphate, have been identified by separation
on polyacrylamide agarose gels [7-9]. The most frequently
observed type in this group of enzymes corresponds to
esterase B (EC 3.1.1.1). This protein shows two types of
electrophoretic mobility: B1 from Mf = 74 to Mf = 66 and
B2 from Mf = 63 to Mf = 57 [9]. Strains with type B2 esterase
belong to the phylogenetic group B2, whereas those with
type B1 esterase belong to the non-B2 phylogenetic groups
[10]. Several studies have shown a correlation between
long-term evolutionary history (strain phylogeny) and
virulence in E. coli, with most extraintestinal E. coli patho-
gens (including urinary tract infection strains) belonging
to just one of the four main E. coli phylogenetic groups,
the phylogenetic group B2 [11-13]. This correlation sug-
gests a possible link between esterase polymorphism and
extraintestinal virulence in an asexual species with a low
level of recombination. Esterase B allozymes therefore
appear to act as efficient molecular markers of virulence
dividing E. coli strains into two genetically distinct groups,
which differ significantly in their pathogenicity. However,
the direct role of esterase B, or of its B1 and/or B2 alloz-
ymes, in the virulence process remains unknown.

The aims of this study were (i) to identify the gene encod-
ing esterase B, (ii) to analyse its polymorphic counterparts
in relation to E. coli clonal structure, (iii) to identify a
potential physical link between this genetic locus and
regions known to be associated with pathogenicity in the
E. coli genome, and (iv) to test a potential direct role of
esterase B in virulence in a mouse model of extraintestinal
infection.

Results and Discussion
The acetyl esterase gene (aes) encodes esterase B
Seven candidate genes encoding proteins with predicted
esterase activity were identified, based on their respective
PM and pI values, using the MaGe system [14] (aes [15],
yddV, glpQ, ndk, yzzH and cpdA). Of these, Aes exhibited
several characteristics particularly reminiscent of esterase

B: i) a major esterase domain, ii) a theoretical pI of 4.72
for the K-12 strain protein (esterase B1, pI ranging from
4.5 to 4.8) and 5.18 for CFT073 protein (esterase B2, pI
ranging from 4.85 to 5.0), and iii) the presence of a serine
in the active site [9]. The inactivation of aes by gene dis-
ruption in K-12 MG1655 and CFT073 strains and comple-
mentation of the mutant strains with the aes gene
confirmed that Aes was esterase B (Additional file 1: Fig.
S1 and data not shown).

We then studied the correlation between Aes sequences
and esterase B electrophoretic polymorphism. The com-
parison of the Aes phylogenetic tree with the theoretical
and observed pI values and the esterase B electrophoretic
mobilities (Mf values) for the 72 ECOR strains [10] is
shown in Fig. 1. Overall analysis of the tree confirmed sep-
aration of esterase B into two variants: esterase B1 and este-
rase B2. Indeed, the Aes tree showed a clear distinction
between Aes from the phylogenetic group B2 strains and
Aes proteins from other strains, separated by a long
branch, well supported by bootstrap (83%). Moreover,
the characterisation of the phylogenetic group B2, based
on Aes polymorphism, was consistent with the pI and Mf
values of esterase B2 (pI: 4.85 to 5.0 and Mf 57 to Mf 62),
which were previously demonstrated to be specific to the
phylogenetic group B2. Likewise, the characterisation of
the phylogenetic groups A, B1 and D, based on Aes poly-
morphism, correlated with the pI and Mf values of este-
rase B1 (pI: 4.60 to 4.80 and Mf 68 to Mf 72) [10]. Amino-
acid substitutions detected from the branches of the Aes
tree were analysed taking into account variation in este-
rase B mobility and pI values [16] (Fig. 1). In most cases,
for the Aes phylogenetic group B2 strains, substitutions of
acidic to neutral, neutral to basic or acidic to basic amino
acids corresponded to increases in pI (from 4.85 to 5.00)
and decreases in Mf values (from 62 to 57) among este-
rase B variants. However, there were some discrepancies.
For example, the substitution of a basic amino acid in the
ECOR 53 and 60 strains by a neutral amino acid in the
ECOR 61 and 62 strains (R?C) corresponded to a faster
migration in the ECOR 61 and 62 strains (Mf values 62
versus 60), with no effect on pI (4.85) (Fig. 1).

A more complex pattern of polymorphism was found
among the A, B1 and D phylogenetic group strains. Taking
the most frequent esterase B electrophoretic variant (pI:
4.60 and Mf 70) detected in the phylogenetic group A and
D strains, an acidic to neutral amino-acid change (E?G)
led to an increase in pI (from 4.60 to 4.75) and a decrease
of Mf (from 70 to 68) of the esterase B variant, as
expected. This amino-acid change was detected in 11
strains in the phylogenetic group A (Fig. 1). In contrast,
several discrepancies were found among strains belonging
to the phylogenetic B1 group: Aes polymorphism
included several substitutions of neutral to neutral amino
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acids but with increased pI values (from 4.60 to 4.75) and
in some cases paradoxical increases of Mf values (from 70
to 72) was observed (Fig. 1). These apparent discrepancies
may be due to the effects of conformational or post-trans-
lational modifications of the protein.

The phylogenetic history of aes reflects the species 
phylogeny
To determine the evolutionary history of aes, we tested for
selection using the aes sequence from 78 studied strains.
First, we used a one-ratio model (M0) to estimate the aver-

Phylogenetic tree of Aes sequences from the 72 ECOR strains and 6 E. coli reference strainsFigure 1
Phylogenetic tree of Aes sequences from the 72 ECOR strains and 6 E. coli reference strains. The tree was recon-
structed with PHYML [50]. E. fergusonii was used as an outgroup. Bootstraps are shown for values higher than 70%. Differences 
in amino acids are indicated on the branches. Differences for each branch were derived from comparison of consensus amino-
acid sequences of the ancestors and descendants. Boxed amino-acid substitutions correspond to substitutions that change the 
overall pI of the protein. The phylogenetic groups A (blue box), B1 (green box), B2 (red box), D (yellow box) and ungrouped 
strains (UG) (white box), electrophoretic mobilities (Mf) obtained by polyacrylamide agarose gel electrophoresis [10] and the 
observed [10] and theoretical pI of Aes are indicated. nd: non determined. -: non significant results.

Phylogenetic 
group Mf

Observed
pI 

Theoritical
pI

B1 70 4.75 4.72 
B1 70 4.75 4.72 
B1 70 4.75 4.72 
B1 72 4.75 4.72 
B1 72 4.75 4.72 
B1 72 4.75 4.72 
B1 72 4.75 4.72 
B1 72 4.75 4.72 
B1 - - 4.72 
B1 72 4.75 4.72 
B1 70 4.75 4.72 
B1 72 4.80 4.72 
B1 70 4.60 4.72 
B1 70 4.60 4.72 
UG 73 4.50 4.72 
A 70 4.60 4.72 

UG 70 4.60 4.72 
B1 70 4.60 4.72 
B1 70 4.60 4.72
A 68 4.75 4.80 
A 68 4.75 4.80 
A 68 4.75 4.80 
A 68 4.75 4.80 
A 68 4.75 4.80 
A 68 4.75 4.80 
A 68 4.75 4.80 
A 68 4.75 4.80 
A 68 4.75 4.80 
A 68 4.75 4.80 
A 70 4.60 4.72 
A 70 4.60 4.72
A 70 4.60 4.72 
A 70 4.60 4.72 
A 70 4.60 4.80 
A 70 4.60 4.72 
A 70 4.60 4.72 
A nd nd 4.72 
A 70 4.60 4.72 
A 70 4.60 4.72 
A 70 4.60 4.72 
A 70 4.60 4.72 
A 70 4.60 4.72 
A 70 4.60 4.72 
A 70 4.60 4.72 
D 70 4.60 4.72 
D 72 4.50 4.64
D 72 4.50 4.64
D 72 4.50 4.57
D 70 4.60 4.80 
D 70 4.90 4.80 
D 70 4.60 4.72 
D 72 4.75 4.72 
D 70 4.60 4.72 
D 70 4.60 4.72 
D 73 4.50 4.72 
D 70 4.60 4.72 

UG 70 4.50 4.72 
B2 62 4.85 4.90 
B2 62 4.85 4.90 
B2 nd nd 4.90 
B2 62 4.85 4.91 
B2 60 4.85 5.03 
B2 60 4.85 5.03 
B2 57 5.00 5.18 
B2 57 5.00 5.18 
B2 57 4.90 5.18 
B2 nd nd 5.20 
B2 57 4.90 5.18 
B2 57 5.00 5.18 
B2 57 4.90 5.18 
B2 57 4.90 5.18 
B2 57 5.00 5.18 
B2 nd nd 5.18 
B2 57 5.00 5.18 
B2 57 5.00 5.17 
UG nd nd 4.72 
UG nd nd 4.72 
UG 70 4.60 4.72 

Esterase B1

Esterase B2

Esterase B1

0.01
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age ratio ω (dN/dS) for all sites and all lineages at 0.18.
The likelihood ratio test suggested that aes was under
strong global purifying selection (compared to the neutral
hypothesis which is ω = 0). The M1a, M2a, M7 and M8
models, estimating the selection on specific codons, con-
firmed that the vast majority (91%) of the sites are under
negative selection. Finally, the branch-site model A did
not detect positive selection along the branch separating
group B2 from group non-B2 strains. Thus, the use of sev-
eral tests for selection has shown that the evolution of aes
has been driven essentially by purifying selection, as
observed for the housekeeping genes used in the MLST
(data not shown); no positively selected site was identi-
fied for the branch separating esterase B2 from esterase B1
strains. Previous studies based on whole genome sequenc-
ing data using PAML have not identified aes to be under
positive selection [17,18].

Visual comparison of the phylogenetic history of aes with
that of the six concatenated housekeeping genes, reflect-
ing the species phylogeny, revealed a similar topology
with four main phylogenetic groups (Fig. 2). Indeed, all
strains belonging to the B2 phylogenetic group were clus-
tered in a monophyletic group (bootstrap 99%) with
ECOR 66 at its base, as observed in the MLST tree. Like-
wise, two sub-groups were observed for phylogenetic
group D, one of which was associated with the phyloge-
netic group B2 (ECOR 35, 36, 38, 39, 40, 41) (bootstrap
85%), also observed in the MLST tree. Phylogenetic group
A also constituted two sub-groups, although these were
not sister groups. By contrast, the B1 phylogenetic group
was monophyletic overall, with only two strains (ECOR 4
and ECOR 47) clearly misclassified (Fig. 2).

We used a recently developed technique ("TreeOfTree")
allowing the level of congruence between phylogenetic
trees to be tested [19]. We tested each individual house-
keeping gene tree, the MLST tree, and the aes tree. All the
bootstraps are low enough (less than 67%) to suggest that
all the gene trees can be view as not incongruent, the aes
gene tree itself clustering with pabB and trpA gene trees
with very low bootstrap (44%) (Fig. 3). Thus, aes tree
topology showed that aes is a powerful marker of the spe-
cies phylogeny, as observed for each housekeeping gene
used in the MLST scheme.

Aes B1 and B2 protein variants were then compared by pro-
tein modelling. We found that residues S 157, D 254 and
H 284 had a geometry similar to that of the esterase cata-
lytic site. Thirty-eight polymorphic sites were identified by
comparing the 319 Aes amino-acid sequences obtained
for the 72 ECOR strains and six reference strains. For four
of these sites, variation has become fixed in both B1 and
B2 types, with the identified residues differing between the
two types at each site. These polymorphisms could thus be

used to distinguish between the types: the B1 conserved
amino acids A 53, M 64, E 73 and C 78 correspond to the
B2 conserved amino acids V, R, K and Y, respectively. These
four polymorphic sites were found on the long B2/non B2
branch in the proteic tree, explaining the observed high
bootstrap (83%) (Fig. 1). Fig. 4 shows the location of 24
additional sites at the protein surface with observed
amino-acid variants for either type B1 (green) or type B2
(red). No one site was polymorphic for both B1 and B2
types. But for all the polymorphic sites within types B1 and
B2, some of the amino-acid variants are shared by the two
types. Consequently, these sites cannot be considered to
be specific to either one type or the other and cannot be
used to distinguish between the two types of protein. Pol-
ymorphic sites were clustered, localised at the surface and
were not found in the active site, consistent with previous
observations of similarity in the catalytic activity of B1 and
B2 esterases with synthetic substrates [7,9]. These differ-
ences in location of the polymorphic sites between the
two variants support the divergence of the B2 phyloge-
netic group strains from the A, B1 and D phylogenetic
groups strains within this species.

Is Aes involved in virulence?
The previously observed correlation between electro-
phoretic esterase B polymorphism and the distinction
between B2 and non-B2 phylogenetic group strains [10] -
and thus with the extraintestinal virulence of the strains -
suggested a putative role for the enzyme, or certain vari-
ants, as a virulence factor. The esterase B hydrolase func-
tion may have a direct role in the colonization or invasion
of the eukaryotic cells as it was observed for esterases in
other bacteria [20,21]. Indeed, esterase B2 variants belong-
ing to phylogenetic group B2 may confer higher levels of
virulence to the strain during extraintestinal infection.
There are several examples of proteins with variants play-
ing different roles in extraintestinal infections: the adhes-
ins FimH [22], PapG [23] and the somatic antigen O
[24,25].

Previous studies of Aes have not demonstrated a role of
the protein in virulence. Firstly, experimental studies char-
acterising Aes as an enzyme with esterase activity have
demonstrated the inhibitory interaction of Aes with MalT,
a transcriptional regulator of the maltose regulon. These
findings suggested a role for Aes in the regulation of mal-
tose metabolism [15,26]. Aes may also play a role in the
regulation of raffinose metabolism by inhibiting α-galac-
tosidase [27]. However, these data were obtained from
overexpression of aes from plasmids, thus raising the
question of their relevance in vivo. An illustration of aes
overexpression from the plasmid pACS2 [28] is shown in
Additional file 1: Fig. S1. Secondly, a previous study of aes
expression in the K-12 strain in vitro did not find signifi-
cant effects on expression under the various metabolic,
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Phylogenetic trees for the 72 ECOR strains and six E. coli reference strainsFigure 2
Phylogenetic trees for the 72 ECOR strains and six E. coli reference strains. The trees were constructed from (A) 
aes sequences and (B) multi-locus sequence typing of six housekeeping genes representing the species phylogeny (trpA, trpB, 
pabB, putP, icd and polB) [5], obtained using PHYML procedure [50]. E. fergusonii was used as an outgroup. Bootstraps are 
shown for values higher than 70%. Strains studied and belonging to phylogenetic groups A (blue boxed), B1 (green boxed), B2 
(red boxed), D (yellow boxed) and UG (white boxed) are indicated.
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stress or environmental conditions tested http://gen
expdb.ou.edu/, with the exception of aes overexpression
observed in strains cultured in the presence of acetate
[29]. Interestingly, esterase B exhibits Michaelis-Menten
kinetics for the hydrolysis of 1-naphtyl acetate [9]. Finally,
aes expression was found to be homogeneous across 10
representative strains of E. coli/Shigella cultured in 869
medium [30].

Our previous findings from the study of the genetic
sequence surrounding aes did not suggest a role for the
encoded protein in virulence. Indeed, comparisons, using
the MaGe system, of 75 kbp of sequence upstream and
downstream from aes in the 20 strains of E. coli [31]
showed that aes is not located in/or adjacent to any
regions linked to extraintestinal pathogenicity specific to
B2 strains (Additional file 2: Table S1).

To gain insight into Aes function we tested the mutants
under different conditions. Firstly, we studied the in vitro
growth of parent-type strains and their respective mutants
on several carbon sources. We did not observe any differ-
ence between parent-type strains K-12 or CFT073 and
their respective mutants K-12 Δaes and CFT073 Δaes in
competition studies with LB and gluconate minimum
media (data not shown). Additionally, growth of the
strains CFT073, K-12, CFT073 Δaes and K-12 Δaes, in the
presence of different carbon sources, was the same for par-

ent and mutant strains. These results suggested that Aes
does not play a role in regulation of the growth of the
strains in these conditions. Secondly, we studied whether
Aes is involved in the virulence of E. coli in vivo using a sep-
ticaemia mouse model. Kaplan-Meyer curves obtained for
CFT073 and its mutants CFT073 Δaes and CFT073
Δaes:Cm were similar, suggesting that Aes is not involved
in the virulence process (p = 0.87) (Additional file 1: Fig.
S2).

Conclusion
Selection tests and phylogenetic analyses indicate that aes
is under purifying selection, showing a similar evolution-
ary history to that of the species. The differences in electro-
phoretic properties between the variant types B1 and B2
were consistent with analyses of the amino-acid sequence
tree for Aes and protein structure models obtained for
these variants. These findings illustrated the marked diver-
gence of the B2 phylogenetic group from the A, B1 and D
phylogenetic groups in this species. This confirms the clas-
sical characteristics of esterases as excellent markers in the
study of population genetics for prokaryotes, particularly
Enterobacteriaceae [32], and eukaryotes such as Drosophila
spp [33]. Findings from an in vivo experimental model of
septicaemia did not show direct involvement of Aes in
extraintestinal virulence. Moreover, we did not find any
virulence-associated genes in the chromosomal region
surrounding aes. Thus, esterase B does not appear to play

Tree representing the distance matrix generated from comparisons between gene tree structuresFigure 3
Tree representing the distance matrix generated from comparisons between gene tree structures. Gene tree 
structure comparisons were between trees based on aes sequences, six individual housekeeping genes (trpA, trpB, pabB, putP, 
icd and polB) and multi-locus sequence typing (concatenation of the six housekeeping genes), with distances derived from path-
length difference. Numbers are bootstraps.

putP

icd

trpB pabB

trpA

polB aes

34
MLST

26 42 44 67
Page 6 of 11
(page number not for citation purposes)

http://genexpdb.ou.edu/
http://genexpdb.ou.edu/


BMC Microbiology 2009, 9:273 http://www.biomedcentral.com/1471-2180/9/273
a direct role as a virulence factor in E. coli extraintestinal
infection, but may serve as an informative marker of phy-
logeny.

Methods
Bacterial strains
We used E. coli K-12 MG1655 (phylogenetic group A) and
CFT073 (phylogenetic group B2) reference strains, their
mutants, K-12 Δaes (obtained from the KEIO collection
[34]) and CFT073 Δaes (obtained during the course of this
study) and the aes complemented mutant strains K-12
Δaes pACS2 [28] andCFT073 Δaes pACS2 for the identifi-
cation of the esterase B-encoding gene. The strains K-12
MG1655, CFT073 and their aes mutants were also used for
the investigation of the putative role of esterase B. We
used the 72 strains from the E. coli reference (ECOR) col-
lection, encompassing commensal and pathogenic strains
representative of the genetic diversity of the species [35],
and four additional pathogenic reference strains (536,
UTI89, Sakaï and EDL 933) for the sequencing of aes. The
E. fergusonii strain ATCC 35469T, the most closely related
species to E. coli [36], was used as an outgroup.

Candidate gene selection using bioinformatic tools
The MaGe (Magnifying Genome) software program [14]
was used for candidate gene selection and comparative
analysis of genetic sequences surrounding aes. The MaGe

software program allows gene annotation and compara-
tive analysis of available E. coli and closely related
genomes, with visualisation of E. coli genome annotations
enhanced by a synchronized display of synteny groups in
the other genomes chosen for comparison [14]. Protein
motifs and domains can be identified using the InterPro
databank [37]. Candidate genes were obtained after the
selection of proteins showing esterase motifs and compat-
ible molecular weights (from 15,000 to 60,000 Da) and pI
values (from 4.0 to 5.5) [9].

Inactivation of the aes gene and control experiments
Inactivation was carried out as previously described [38],
using a PCR product obtained with primers aesW1 (5'-
TTTCATGGCAGTGGTTCCTTACAATGACGTAATTTG
AAAGGAGTTTTTGCGTTAGGCTGGAGCTGCTTC-3') and
aesW2 (5'-GCCACGCCG
GAACATATCGAAATGATGGCTAATCTTGTTGCCGCG-
TATCGCATATGAAATATCCTCCTTAG-3'). The PCR prod-
uct contained (i) the FRT-flanked chloramphenicol
acetyltransferase (cat) gene responsible for chloramphen-
icol resistance and (ii) the adjacent sequences homolo-
gous to the 5' and 3' flanking regions of aes. Inactivation
of the aes gene was confirmed by PCR using the following
primers: aes1 (5'-ACTGAGCGGCGAATGTTAACA-3') and
aes2 (5'-ATTGTCTGGAGACGCTGGAA-3'), targeting
sequences upstream and downstream from the aes gene,

Models of the Aes protein variantsFigure 4
Models of the Aes protein variants. Of the 38 polymorphic sites identified, only the 24 sites at the protein surface are rep-
resented. Polymorphic sites are in green for carboxylesterase type B1 and red for type B2. The views A and B correspond to 
two opposite faces of the structure obtained by a rotation of 180° around the Y axis. Images were generated using PMG [57].

A B
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respectively; and c1 (5'-TTATACGCAAGGCGACAAGG-3')
and c2 (5'-GATCTTCCGTCACAGGTAGG-3'), targeting
sequences within cat gene. The antibiotic resistance gene
was removed using the pCP20 plasmid [38].

Complementation analysis of the mutant strains was car-
ried out by electroporation of the multicopy plasmid
pACS2 [28] containing the aes gene under its native pro-
moter.

The esterase B phenotype was investigated by vertical slab
polyacrylamide gel electrophoresis of crude extracts of
parent type, mutant and complemented mutant strains,
using 12% (w/v) acrylamide and discontinous Tris/gly-
cine buffer, pH 8.7. Esterase activity was detected by test-
ing for the hydrolysis of 1-naphtyl acetate, as previously
described [39].

Nucleotide sequencing, sequence alignments and selection 
tests
The aes gene was amplified by PCR, using the primers aes1
and aes2 (see above). The resulting 1250 bp PCR product
was then sequenced by the Sanger method [40]. We com-
pared aes sequences of 894 bp by sequence alignment
using the ClustalW program [41]. The 72 aes sequences of
the ECOR strains have GenBank accession numbers
GQ167069 to GQ167140.

Amino-acid sequences deduced from the nucleotide
sequences of aes were also analysed. After the generation
of the maximum likelihood tree (see below), amino-acid
substitutions for each branch of the Aes tree were identi-
fied by comparison of consensus sequences between dif-
ferent branches using the SEAVIEW program [42].

We tested for selection with code ML, implemented in
PAML [43,44]. Using a maximum likelihood algorithm,
PAML assigns likelihood scores to the data according to
the various models of selection. Assignment of a higher
likelihood score to a model incorporating selection than
to a null model without selection and a significative like-
lihood ratio test are indicative of selection. The overall Ka/
Ks ratio (or ω, dN/dS), reflecting selective pressure on a
protein-encoding gene, was estimated using the M0
model (one-ratio) [45] for all isolate sequences, with the
E. fergusonii sequence as an outgroup. We also used the
M1a (null) and M2a (positive selection) models [46,47]
and the more powerful M7 and M8 models [46,48] to
detect positive selection on specific codons (sites). We
used the branch-site model A [47,49] for the B2/non-B2
partition. This model is based on the hypothesis that pos-
itive selection occurs only in certain branches/lineages.

Tree reconstruction
Maximum-likelihood phylogenetic trees were all recon-
structed using the PHYML program [50] and the GTR+G+I
model. This general model is not necessarily the most par-
simonious one. However, we also wanted to obtain the
bootstrap support values for each partition. Given that (i)
the most parsimonious model may differ from one boot-
strap resampling to another, and (ii) a very long computer
processing time would be required to choose the best
model among the 88 possible models for each of the 500
resamplings, we chose a less time-consuming strategy,
simply selecting the most general model (GTR+G+I) for
all resamplings. We checked that the trees remain the
same for the different models, whether the most parsimo-
nious or the most general model is used. Additional file 2:
Table S2 gives the different parsimonious models, and
their estimated parameters, selected by the Akaike crite-
rion (jMODELTEST version 0.1.1, written by Posada [51],
available at http://darwin.uvigo.es/software/jmodel
test.html).

Tree comparisons
We compared the phylogenetic history of aes to the phyl-
ogenetic history of the strains, based on the concatenated
nucleotide sequences of six housekeeping genes (trpA,
trpB, pabB, putP, icd and polB) and individual gene
sequences, as described elsewhere [19]. Briefly, each phy-
logenetic tree Ti is firstly transformed into a tree-distance
matrix Di, the distance between two strains being the
number of branches with positive length connecting them
along the tree. The resulting tree distance matrix Di allows
the initial tree structure Ti to be recovered, independently
of branch length. Two tree distance matrices (Di and Dj)
(corresponding to two gene trees i and j) can be compared
by calculating the Euclidian distance between them (δij)
[52]. A low δij value means that the similarity between the
two tree distance matrices Di and Dj is high, and, conse-
quently, that their tree structures Ti and Tj are close. As sev-
eral gene tree structures are compared through this
Euclidian distance metric, a new distance matrix Δ can be
built with the δij elements. This Δ matrix can then be trans-
formed into a "tree of gene trees" using a neighbour-join-
ing algorithm [53].

To obtain a support value for each partition of this tree, we
applied this same procedure to 500 bootstrapped sets of
data, obtaining 500 Δ matrices and finally, a bootstrapped
consensus "tree of gene trees". A high bootstrap support
value separating two sets of gene trees allows incongruent
sets of gene trees to be identified; however, a low boot-
strap value suggests that the two sets of trees are not incon-
gruent or that there is insufficient phylogenetic
information to reject the hypothesis of incongruence. The
"TreeOfTree" package is available from the website http:/
/bioinformatics.lif.univ-mrs.fr.
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Protein structure modelling and analysis
Modelling of the Aes protein structure was based on com-
parison of the available models from MODBASE [54]
with models previously obtained using the Tasser-Lite
homology modelling server [55,56]. Although some dif-
ferences were observed between the models obtained by
these two independent approaches, in particular in the N
terminus region, the best models proposed by Tasser-Lite
and MODBASE were similar overall. Given that our aim
was to determine only the approximate location of the Aes
polymorphism within the protein structure, the MOD-
BASE model was used for further analysis. The model was
finally tested to ensure that it contains an active site con-
sistent with esterase activity. This was carried out using the
3D MSS-Sites program http://bioserv.rpbs.jussieu.fr/[57]
and the Catalytic Site Atlas [58]. Polymorphic sites were
identified by sequence alignment using ClustalW [41] for
B1 and B2 variants separately.

Theoritical pIs of Aes were calculated using the program
compute pI of the ExPASY home page http://
www.expasy.ch/tools/pi_tool.html.

In vitro growth studies
Competition studies of parent strains K-12 and CFT073,
with their respective mutants K-12 Δaes:Kan and CFT073
Δaes:Cm (1/1 ratio), were performed in Luria Bertani (LB)
and gluconate minimum liquid media. Gluconate mini-
mal medium mimics the intestinal environment [59]. For
each medium and for each competition experiment, bac-
teria were plated on media with or without the appropri-
ate antibiotic and counted after 2 h (exponential phase)
and 18 h (stationary phase). Each experiment was
repeated twice. Biolog GN2 (Biolog, Inc., Hayward, CA)
plates were used to detect carbon utilisation of 95 sub-
strates. Utilisation of various C sources is coupled to the
reduction of a tetrazolium dye and generation of a purple
colour [60]. Each strain was grown in LB medium, washed
and resuspended to an optical density of 0.01 at 600 nm
in mineral medium [60]. Plates were incubated at 37°C
and colour changes were measured by changes in optical
density (measured on a Tecan microplate reader) at a
wavelength of 600 nm. The cut-off for positive results was
an optical density of 0.2.

Septicaemia mouse model
A mouse model of systemic infection was used to assess
the intrinsic virulence of the strains [11]. For each strain,
10 outbred female swiss OF1 mice (3-4 weeks old, 14-16
g) were challenged with a standardized subcutaneous bac-
terial inoculum (2 × 108 CFU of E. coli). Mortality was
assessed over seven days following the challenge. Assays
were performed using the CFT073 strain as a positive con-
trol (killing 10/10 mice), the K-12 strain as a negative con-
trol (killing 0/10 mice) [61] and the CFT073 Δaes and

CFT073 Δaes:Cm mutant strains. Data were analysed
using the StatView software to obtain Kaplan-Meyer
curves; statistical analysis was carried out using the
logrank test, with p values < 0.05 considered as signifi-
cant.
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Additional material

Additional file 1
Supplemental figures. A figure showing the electrophoretic patterns of 
esterases from various E. coli strains. Fig. S1: Polyacrylamide gel electro-
phoresis of Aes. Gels were stained using 1-naphtyl acetate hydrolysis to 
detect esterase activity. Esterases B was detected in strains. K-12 (lane 1) 
and K-12 Δaes pACS2 (lane 3), but not in strain K-12 Δaes (lane 2), 
thus confirming that aes encodes esterase B. The dilution factor used for 
the crude extract of the complemented strain K-12 Δaes pACS2 was 40 
times greater than that of the parent and mutant strains due to overexpres-
sion of the aes gene on the plasmid. This did not allow us to detect esterase 
A in the complemented strain, whereas it was clearly visible for the K-12 
and K-12 Δaes strains. Fig. S2: Kaplan-Meyer curves showing the com-
parative scores of virulence in the mouse model of septicaemia as a func-
tion of the presence or absence of Aes in the K-12 strain (blue line), 
CFT073 strain (green line and squares), CFT073 Δaes:Cm strain (red 
line and circles) and CFT073 Δaes strain (violet line and triangles). Mice 
inoculated with K-12 strain were still alive at day 7.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2180-9-273-S1.PPT]

Additional file 2
Supplemental Tables. A table describing the genes surrounding the aes 
gene. Table S1: List of genes of the strain CFT073 and their characteris-
tics within a total region of 150 kbp surrounding the aes gene. The aes 
gene and its characteristics are highlighted in red. Table S2: Parsimonious 
models, and their estimated parameters, selected by the Akaike criterion 
(jMODELTEST version 0.1.1, written by Posada, 2008, available at 
http://darwin.uvigo.es/software/jmodeltest.html) used for each tree recon-
struction.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2180-9-273-S2.DOC]
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