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Abstract

Background: Epidemiology of celiac disease (CD) is increasing. CD mainly presents in early childhood with small
intestinal villous atrophy and signs of malabsorption. Compared to healthy individuals, CD patients seemed to be
characterized by higher numbers of Gram-negative bacteria and lower numbers Gram-positive bacteria.

Results: This study aimed at investigating the microbiota and metabolome of 19 celiac disease children under
gluten-free diet (treated celiac disease, T-CD) and 15 non-celiac children (HC). PCR-denaturing gradient gel
electrophoresis (DGGE) analyses by universal and group-specific primers were carried out in duodenal biopsies and
faecal samples. Based on the number of PCR-DGGE bands, the diversity of Fubacteria was the higher in duodenal
biopsies of T-CD than HC children. Bifidobacteria were only found in faecal samples. With a few exceptions, PCR-
DGGE profiles of faecal samples for Lactobacillus and Bifidobacteria differed between T-CD and HC. As shown by
culture-dependent methods, the levels of Lactobacillus, Enterococcus and Bifidobacteria were confirmed to be
significantly higher (P = 0.028; P = 0.019; and P = 0.023, respectively) in fecal samples of HC than in T-CD children.
On the contrary, cell counts (CFU/ml) of presumptive Bacteroides, Staphylococcus, Salmonella, Shighella and Klebsiella
were significantly higher (P = 0.014) in T-CD compared to HC children. Enterococcus faecium and Lactobacillus
plantarum were the species most diffusely identified. This latter species was also found in all duodenal biopsies of
T-CD and HC children. Other bacterial species were identified only in T-CD or HC faecal samples. As shown by
Randomly Amplified Polymorphic DNA-PCR analysis, the percentage of strains identified as lactobacilli significantly
(P =0.011) differed between T-CD (ca. 26.5%) and HC (ca. 34.6%) groups. The metabolome of T-CD and HC
children was studied using faecal and urine samples which were analyzed by gas-chromatography mass
spectrometry-solid-phase microextraction and 'H-Nuclear Magnetic Resonance. As shown by Canonical
Discriminant Analysis of Principal Coordinates, the levels of volatile organic compounds and free amino acids in
faecal and/or urine samples were markedly affected by CD.

Conclusion: As shown by the parallel microbiology and metabolome approach, the gluten-free diet lasting at least
two years did not completely restore the microbiota and, consequently, the metabolome of CD children. Some
molecules (e.g., ethyl-acetate and octyl-acetate, some short chain fatty acids and free amino acids, and glutamine)
seems to be metabolic signatures of CD.
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Background

Celiac disease (CD) is the chronic gastrointestinal (GI)
tract disorder where ingestion of gluten from wheat, rye
and barley, and their cross related varieties, leads to
damage of the small intestinal mucosa by an autoimmune
mechanism in genetically susceptible individuals [1].
Epidemiology of CD is increasing, the prevalence is esti-
mated to be ca. 1% in the European and North American
populations [1,2]. CD mainly presents in early childhood
with small intestinal villous atrophy and signs of malab-
sorption [3]. Nowadays, the gluten-free diet (GFD) is the
only effective and safe treatment for CD. Nevertheless,
compliance with this dietary therapy is very complex and
patients may suffer of health risks and nutritional defi-
ciencies [4,5]. Recently, some reports also suggested that
the GI microbiota is somewhat affected during CD
pathogenesis and GFD [6-10].

The human GI tract is a complex ecosystem integrated
by up to 10'* total bacteria. The genomes of all intestinal
microbes form the “microbiome”, representing more than
100 times the human genome. This latter, in association
with the microbiome, is considered as the “metagenome”
[11]. As the consequence, the microbiome provides the
human host with additional metabolic functions, described
as the “metabolome”.

Some of the main activities provided by the gut micro-
biota in human health are: (i) to provide a barrier for
colonization of pathogens; (ii) to exert important meta-
bolic functions such as fermentation of non-digestible
fibers, salvage of energy as short chain fatty acids (SCFA)
and synthesis of vitamin K; and (iii) to stimulate the
development of the immune system [12]. Besides, specific
strains of the GI microbiota and/or supplied probiotics
decrease intestinal inflammations and normalize dysfunc-
tions of the GI mucosa [13,14]. Indeed, GI microbiota is
also involved in the pathogenesis of chronic inflamma-
tory bowel diseases (IBD) and other immune-related dis-
orders [15]. Overall, IBD patients have altered densities
of mucosa-associated bacteria (of duodenal bacterial
population) in comparison to healthy subjects. In particu-
lar, cell numbers of protective Bifidobacterium and Lac-
tobacillus decreased, while harmful Bacteroides and
Escherichia coli increased [15]. Recently, microbial infec-
tions and, especially, imbalances of the composition of
the GI microbiota were associated with the presentation
of CD also [7-10,16]. Compared to healthy individuals,
CD patients seemed to be characterized by higher num-
bers of Gram-negative bacteria and lower numbers
Gram-positive bacteria [10,16]. Overall, Gram-negative
bacteria could activate pro-inflammatory pathways, while
Gram-positive bacteria such as lactic acid bacteria and
bifidobacteria could inhibit toxic effects induced by other
GI species [17] or gluten antigens [18,19]. Duodenal and
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faecal bacterial populations, especially Bifidobacteria,
significantly varied within individuals, being influenced
either by diet or CD [20,21]. The composition of Lacto-
bacillus sp. and Bifidobacterium species differed between
CD patients and healthy children [9]. Recent studies indi-
cated that CD patients at diagnosis or under GFD had
unbalanced serum, faecal and urine metabolites [10,22].
It was hypothesized that qualitative and quantitative dif-
ferences of the microbiota influenced the level of volatile
organic compounds (VOC) of CD patients [10]. More in
depth characterization of the GI microbiota and related
metabolites is strongly needed for CD patients and the
role of bacteria during CD development and treatment
has to be elucidated [8,9,23].

This study aimed at comparing the differences of the
microbiota and metabolome between CD children under
GFD (treated celiac disease, T-CD) and non-celiac chil-
dren (healthy control, HC). The intestinal and faecal
microbiota was characterized by culture-independent and
-dependent methods whereas metabolomic studies were
carried out using gas-chromatography mass spectrome-
try/solid-phase microextraction (GC-MS/SPME) and "H
nuclear magnetic resonance (NMR) spectroscopy.

Results

Molecular analysis of the bacterial community of
duodenal biopsies and faecal samples

The dominant microbiota and specific subgroups (Bifido-
bacteria and Lactobacillus) from stool samples and from
duodenal biopsies (mucus and mucosa associated bac-
teria) were analyzed by PCR (Polymerase chain reaction)-
DGGE (denaturing gradient gel electrophoresis). Univer-
sal primers targeting V6-V8 regions of the 16S rRNA
gene were used. Eubacterial profiles from PCR-DGGE
analysis of duodenal biopsies of treated celiac disease (T-
CD) children showed high richness with two to eight well
resolved and strong bands (Figure 1A). Only the electro-
phoretic profile of 19 T-CD duodenal biopsy contained
one band. Profiles of non-celiac children (HC) had only
one to three strong bands. Banding patterns were pro-
cessed using the Bionumerics software. Pearson correla-
tion coefficients ranged from 4.6 to 99.5%. Except for two
duodenal biopsies (33 and 34 HC) which showed high
similarity to T-CD samples, all HC banding patterns
were grouped together with 98.2% similarity coefficient.
The major part of the T-CD samples were grouped
together at 95% of the similarity. Overall, DGGE profiles
of the PCR amplicons obtained with primers Lacl and
Lac2 had two strong, common and well-resolved bands,
and a few bands with low intensity (Figure 1B). High
similarity was found among samples belonging to T-CD
and HC groups. Most of the T-CD and HC duodenal
biopsies were grouped together at ca. 90% of similarity
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Figure 1 Clustering of denaturing gradient gel electrophoresis (DGGE) profiles of biopsies from thirty-four children (1-34). Universal V6-
V8 (A) and Lac1/Lac2 Lactobacillus group (B) primers were used. Clustering was carried out using the unweighted pair-group method with the
arithmetic average (UPGMA) based on the Pearson correlation coefficient. T-CD, treated celiac disease children; and HC, non-celiac children; band
a, L. plantarum; band b, human DNA. See materials and methods for correspondence of numbered duodenal biopsies.
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and all samples at 72.9%. Sequencing of the DGGE bands
revealed the common presence of L. plantarum (band a).
Although Lacl and Lac2 primers were commonly used to
detect Lactobacillus species [9,24,25], human DNA (band
b) was also found. Finally, no PCR amplicons were found
by using three different sets of primers targeting the Bifi-
dobacteria group. This suggested that Bifidobacteria
were probably absent from duodenal biopsies of both
T-CD and HC.

Compared to duodenal biopsies, the PCR-DGGE pro-
files of faecal samples were more rich. Although finger-
prints contained many well-resolved and strong bands,
unresolved bands or very weak separate fragments were
present in some regions of the gel. The PCR-DGGE pro-
files from universal primers (Table 1) targeting V6-V8
regions of the 16S rRNA gene were very rich in bands
quite different for each of the 34 children (Figure 2A).
Only some common bands were present. The uniqueness

of the patterns was confirmed by cluster analysis. The
values of Pearson similarity were always low. The mean
similarity coefficient was 24.1%. No clustering differen-
tiated T-CD and HC samples. Figure 2B shows the PCR-
DGGE profiles from primers Lacl and Lac2 specific for
Lactobacillus group. Depending on the faecal sample,
one to four strong and well-resolved amplicons were
detected. Nevertheless, the values of Pearson similarity
coefficient were low and all samples grouped together at
ca. 4.2%. According to PCR-DGGE profiles of duodenal
biopsies, the UPGMA clusterization grouped separately
T-CD and HC samples with the only exceptions of sam-
ple 5 T-CD coupled to HC, and samples 22, 20 and
25 HC which showed high similarity to T-CD. Anyway
significant differences were present within groups of
T-CD or HC children.

As shown by PCR-DGGE analysis, all faecal samples
contained Bifidobacterium DNA (Figure 2C). The level



Table 1 Primers

used and conditions for denaturing gradient gel electrophoresis (DGGE) analysis

Primer Primer sequence (5'-3') Amplicon size (bp) Annealing temperature (°C) DGGE gradient (%) Target group Reference
V6-V8: F968-GC GC clamp®™AACGCGAAGAACCT 489 55 45-55 (feces) Eubacteria This study
V6-V8: R1401 CGGTGTGTACAAGACCC 40-65 (biopsies)
g- Bifid F CTCCTGGAAACGGGTGG 596 65 45-60 Bifidobacterium This study
g-Bifid R-GC GC clamp®-GGTGTTCTTCCCGATATCTACA
Lac1 AGCAGTAGGGAATCTTCCA 380 61 35-50 (feces) Lactobacillus groupb [24]
Lac2GC GC clamp® - ATTYCACCGCTACACATG 35-70 (biopsies)
Bif164-f GGGTGGTAATGCCGGATG 520 62 45-55 Bifidobacterium [47]
Bif662-GC-r GC clamp °- CCACCGTTACACCGGGAA
Bif164-GC-f GC clamp ? - GGGTGGTAATGCCGGATG 520 62 45-55 Bifidobacterium [47]
Bif662-r CCACCGTTACACCGGGAA

?GC clamp sequence: CGCCCGCCGCGCCCCGCGCCCGGCCCGCCGCCCCCGCCCC.
bLactobacillus group comprises the genera Lactobacillus, Leuconostoc, Pediococcus and Weisella.
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Figure 2 Clustering of denaturing gradient gel electrophoresis (DGGE) profiles of faecal samples from thirty-four children (1-34).
Universal V6-V8 (A), Lac1/Lac2 Lactobacillus group (B), g- Bifid F/g-BifidRGC Bifidobacterium group (C) primers were used. Clustering was carried
out using the unweighted pair-group method with the arithmetic average (UPGMA) based on the Pearson correlation coefficient. T-CD, treated
celiac disease children; and HC, non-celiac children. See materials and methods for correspondence of numbered faecal samples.
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of similarity among faecal samples varied from 16.8 to
100%. Identical profiles were found for some T-CD
stool samples (numbers 1, 8 and 12). The UPGMA ana-
lysis grouped most of T-CD and HC profiles separately,
with similarity Pearson coefficients > 48%.

Enumeration of cultivable bacteria

Selective media were used to enumerate cultivable cells of
the main microbial groups (Figure 3). No statistical differ-
ence (P = 0.161) was found between T-CD and HC for
total microbes. The median values of presumptive lactoba-
cilli and enterococci of T-CD was lower (P = 0.035) than
those of HC. The number of presumptive Bifidobacteria
significantly (P = 0.023) differed between T-CD (median
value of 5.34 + 0.020 log CFU/g) and HC (median value of
6.72 + 0.023 log CFU/g). Compared to HC, significantly
(P = 0.014) higher counts of presumptive Bacteroides, Por-
phyromonas and Prevotella, presumptive staphylococci/

micrococci and Enterobacteria were found in faecal sam-
ples of T-CD. Presumptive Salmonella, Shighella and Kles-
biella, and Clostridium did not significantly (P = 0.830)
vary between groups. Total anaerobes were the highest
(P = 0.018) in HC.

Identification and typing of lactic acid bacteria

Colonies of presumptive lactic acid bacteria were ran-
domly isolated from the highest plate dilutions of MRS
or Blood Azide agar and used for further analysis. Gram-
positive, catalase-negative, non-motile cocci and rods
able to acidify MRS or Blood Azide broth (ca. 438 isolates
corresponding to ca. 13 isolates per child) were identified
by sequence analysis of at least 700 bp of the 5’ region of
the 16S rRNA gene (Table 2). Discrimination between
Enterococcus faecalis/E. faecium/Enterococcus durans,
L. plantarum/Lactobacillus pentosus/Lactobacillus para-
plantarum or Lactobacillus paracasei/Lactobacillus
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Figure 3 Cultivable cells (log cfu/g) of the main microbial groups in faecal samples of treated celiac disease (T-CD) children and non-
celiac children children (HC). The data are the means of three independent experiments (n = 3). The top and bottom of the box represent
the 75th and 25th percentile of the data, respectively. The top and bottom of the error bars represent the 5th and 95th percentile of the data,

respectively.

Table 2 Species of the Lactobacillus and Enterococcus genera identified in faecal samples by 16S rRNA and pheS or
recA gene sequencing

Sample

Number of isolates Number of

strains identified®

Closest relative and identity (%)

Accession Number

Treated celiac disease (T-CD) children

1 3 3-VP Pediococcus pentosaceus (99%) [GenBank:FJ844959.1]
1,7 1-VII, 5-XI Enterococcus faecium (99%) [GenBank:FJ982664.1]
1 1-XII Enterococcus avium (99%) [GenBank:HQ169120.1]
1 1-20I Lactobacillus plantarum (99%) [GenBank:HQ441200.1]
1 1-71 Lactobacillus delbrueckii subsp. bulgaricus (99%) [GenBank:CP002341.1]
2 12 6-1V Pediococcus pentosaceus (99%) [GenBank:FJ844959.1]
3 2, 1,1 2-XIV, 1-6l, 1-11 Enterococcus faecium (99%) [GenBank:HQ293070.1]
6 6-XVI Enterococcus faecalis (99%) [GenBank:HQ293064.1]
1 1-91 Lactobacillus salivarius (99%) [GenBank:GU357500.1]
4 1,32 1-1, 3-V, 2-ViI Enterococcus faecium (99%) [GenBank:HQ293070.1]
3, 1,1 34U, 14V, 1-V Enterococcus avium (99%) [GenBank:HQ169120.1]
1 1-241 Lactobacillus casei (99%) [GenBank:HQ379174.1]
1 1-111 Lactobacillus plantarum (99%) [GenBank:EF439680.1]
5 5 5-VII Enterococcus faecium (99%) [

GenBank:FJ982664.1]
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Table 2 Species of the Lactobacillus and Enterococcus genera identified in faecal samples by 16S rRNA and pheS or
recA gene sequencing (Continued)

1,3 1-61, 2-XIX Enterococcus sp. (99%) [GenBank:AB470317.1]
1 1-111 Lactobacillus rhamnosus (99%) [GenBank:HM218396.1]
1,1 1-11, 1-8 Lactobacillus fermentum (99%) [GenBank:HQ379178.1]
6 5 1(51-111-71-121-21) Enterococcus avium (99%) [GenBank:HQ169120.1]
4 3-XXII Enterococcus sp. (99%) [GenBank:AB470317.1]
1,1 1-11, 1-31 Lactobacillus plantarum (99%) [GenBank:EF439680.1]
7 1 1-121 Enterococcus avium (99%) [GenBank:HQ169120.1]
11 4-XX Streptococcus macedonicus (99%) [GenBankEU163501.1]
8 1 1-ViI Enterococcus faecium (99%) [GenBank:HQ293070.1]
1 1-14l Enterococcus sp. (99%) [GenBank:AB470317.1]
4,3,1,1,1,1 411, 3-IV, 1-6l, 1-121, 1-141, 1-15I Lactobacillus salivarius (99%) [GenBank:FJ378897.1]
9 2,3 1-11,3-IV Enterococcus faecalis (99%) [GenBank:HQ293064.1]
1,1,1,31 101, 1-V, 1-VI, 3-VII, 1-2I Enterococcus faecium (99%) [GenBank:HQ293070.1]
Treated celiac disease (T-CD) children
1 1-14P° Lactobacillus casei (99%) [GenBank:HQ318715.2]
10 1 1111 Enterococcus faecalis (99%) [GenBank:HQ293064.1]
1 1-Vil Enterococcus durans (99%) [GenBank:HM218637.1]
1 1-VII Enterococcus faecium (99%) [GenBank:HQ293070.1]
2 2-VIII Enterococcus sp. (99%) [GenBank:AB470317.1]
2,1 2-11, 1-3I Lactobacillus salivarius (99%) [GenBank:FJ378897.1]
2 vV Lactobacillus coryniformis (99%) [GenBank:HQ293050.1]
11 1,1 1-41, 1-121 Enterococcus sp. (99%) [GenBank:AB470317.1]
1 1-8 Pediococcus acidilactici (99%) [GenBank:GU904688.1]
1 1-111 Enterococcus durans (99%) [GenBank:HM218637.1]
2,1,31,1 2-1, 1-11, 1(61, 51,71), 1-31, 1-21 Enterococcus faecium (99%) [GenBank:U385351.1]
12 10 5-1V Pediococcus acidilactici (99%) [GenBank:GU904688.1]
1 1-6l Enterococcus sp. (99%) [GenBank:AB470317.1]
13 1 3l Enterococcus sp. (99%) [GenBank:AB470317.1]
1,7 1-VII, 3-XVIII Enterococcus faecium (99%) [GenBank:HQ293070.1]
14 8,2 4-ll, 2-IX Enterococcus avium (99%) [GenBank:HQ169120.1]
1 1-IV Pediococcus acidilactici (99%) [GenBank:GU904688.1]
2,1,1,2 2-1, 1-221, 1-IlI, 2-VI Lactobacillus plantarum (99-100%) [GenBank:HQ441200.1]
15 8,1 81V, 1-2I Pediococcus acidilactici (99%) [GenBank:GU904688.1]
1 1-8l Enterococcus sp. (99%) [GenBank:AB470317.1]
1 1-XVIII Enterococcus faecium (99%) [GenBank:HQ293070.1]
1 1-Ml Lactobacillus casei (99%) [GenBank:HQ379174.1]
16 2 2-X Enterococcus faecium (99%) [GenBank:AB596997.1]
2,8 2-XV, 7-XXI Streptococcus pasteurianus (99%) [GenBank:AB457024.1]
3 1(131-141-51) Enterococcus sp. (99%) [GenBank:AB470317.1]
17 1 1-Vi Enterococcus faecium (99%) [GenBank:AB596997.1]
8 7-XIl Enterococcus avium (99%) [GenBank:HQ169120.1]
3,1 2-XIl, 1-131 Enterococcus sp. (99%) [GenBank:AB470317.1]
18 6, 6 3-VI, 2-XVII Enterococcus faecium (99%) [GenBank:AB596997.1]
1 1-131 Enterococcus sp. (99%) [GenBank:AB470317.1]
3 34l Lactobacillus rhamnosus (99%) [GenBank:HM218396.1]

Treated celiac disease (T-CD) children

1 1-14° Lactobacillus casei (99%) [GenBank:HQ318715.2]
19 1 1-Vil Enterococcus durans (99%) [GenBank:HM218637.1]
6 5-111 Lactobacillus salivarius (99%) [GenBank:FJ378897.1]
2 2-ll Lactobacillus paracasei (99%) [GenBank:HQ423165.1]
1,4,1 241, 3-1I, 23l Lactobacillus casei (99%) [GenBank:HQ379174.1]
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Table 2 Species of the Lactobacillus and Enterococcus genera identified in faecal samples by 16S rRNA and pheS or
recA gene sequencing (Continued)

3 3-V Lactobacillus coryniformis 99%) [GenBank:HQ293050.1]
Heathy children (HO)
20 3 11l Enterococcus sp. (99%) [GenBank:AB470317.1]
1,6 1-21, 3-Vii Enterococcus avium (99%) [GenBank:HQ169120.1]
2 2-XI Enterococcus faecalis (99%) [GenBank:HQ228219.1]
1 1-61 Lactobacillus plantarum (99%) [GenBank:EF439680.1]
21 3,5 3-VI, 4-VII Enterococcus avium (99%) [GenBank:HQ169120.1]
2 2-XII Enterococcus sp. (99%) [GenBank:AB470317.1]
1,1 1-31, 1-XI Lactobacillus plantarum (99%) [GenBank:EF439680.1]
22 1,1 1-11, 1-10! Enterococcus sp. (99%) [GenBank:AB470317.1]
4 3-Vi Enterococcus faecium(99%) [GenBank:DQ305313.1]
5 5-VI Enterococcus avium (99%) [GenBank:HQ169120.1]
1 1-91 Enterococcus durans (99%) [GenBank:HM218738.1]
1 1-XI Lactobacillus plantarum (99%) [GenBank:EF439680.1]
1 1-111 Lactobacillus mucosae (99%) [GenBank:AB425938.1]
23 3 34l Enterococcus sp. (99%) [GenBank:AB470317.1]
4 3-IV Enterococcus durans (99%) [GenBank:HM218637.1]
2 2-VI Enterococcus faecium(99%) [GenBank:FJ982664.1]
3,2 3-VI, 2-VII Enterococcus avium (99%) [GenBank:HQ169120.1]
24 1,1 1-51, 1-8l Enterococcus faecalis (99%) [GenBank:HM480367.1]
1,1,1,1,1 1-91, 1-41, 1-XVI, 1-71, 1-11 Enterococcus faecium (99%) [GenBank:HQ293070.1]
1,1 1-XVI, 1-31 Enterococcus durans (99%) [GenBankHM218637.1]
1 1-21 Lactobacillus plantarum (99%) [GenBank:EF439680.1]
25 3,1, 1,1 2-11, 1=V, 1-XIV, 1-21 Enterococcus sp. (99%) [GenBank:DQ305313.1]
1 1-Vill Enterococcus faecium (99%) [GenBank:AB596997.1]
Heathy children (HO)
1 1-P Lactobacillus casei (99%) [GenBank:HQ379174.1]
3,1 341, 1-XI Lactobacillus plantarum (99%) [GenBank:EF439680.1]
26 4 3-IX Enterococcus sp. (99%) [GenBank:DQ305313.1]
2,1 2-XI, 1-111 Enterococcus faecium (99%) [GenBank:FJ982664.1]
1 1-71 Lactobacillus plantarum (99%) [GenBank:HQ441200.1]
1,2,1,1,1 1-131, 2-V1, 1-81, 1-21, 1-7I Lactobacillus casei (99%) [GenBank:HQ379174.1]
27 2,1,1 131-131), 1-11, 1-6l Enterococcus sp. (99%) [GenBank:DQ305313.1]
1,1,1,2 1-51, 1-21, 1-71, 2-XVI Enterococcus faecium (99%) [GenBank:AB596997.1]
3 2-XV Enterococcus durans (99%) [GenBank:HM209741.1]
1 1-111 Lactobacillus plantarum (99%) [GenBank:EF439680.1]
28 4,1 4-VIII, 1-11 Enterococcus faecium (99%) [GenBank:AB596997.1]
1,1,2 1(41-51), 2-XIV Enterococcus sp. (99%) [GenBank:AB470317.1]
3 2- Lactobacillus plantarum (99%) [GenBank:HQ441200.1]
3 34l Lactobacillus rhamnosus (99%) [GenBank:HM218396.1]
1 1-4| Lactobacillus brevis (99%) [GenBank:HQ293087.1]
29 1, 1,1 121, 1(101-111), 1-11 Enterococcus sp. (99-100%) [GenBank:AB470317.1]
51,1 34, 141V, 1-V Enterococcus durans (99%) [GenBank:HM218637.1]
30 9,1 5-XVII, 1-11 Enterococcus faecium (99%) [GenBank:HQ293070.1]
1 % Lactobacillus casei (99%) [GenBank:HQ379174.1]
1,1,2 1-41, 1-131, 2-X1Il Lactobacillus plantarum (99%) [GenBank:EF439680.1]
31 1 1-11 Enterococcus sp. (99%) [GenBank:AB470317.1]
1 1-3l Enterococcus faecium (99%) [GenBank:HQ293070.1]
2,2,1,2,1,2 2-V, 2-VII, 1-121, 2-X, 1-41, 2-XII Lactobacillus plantarum (99%) [GenBank:HQ441200.1]
1 1-Vill Lactobacillus pentosus (99%) [GenBank:HM067026.1]
32 11 2- Enterococcus faecium (99%) [GenBank:B470317.1]
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Table 2 Species of the Lactobacillus and Enterococcus genera identified in faecal samples by 16S rRNA and pheS or

recA gene sequencing (Continued)

1,1, 1 1-11, 1-151, 1-121 Lactobacillus casei (99%) [GenBank:HQ379174.1]
33 6 2-X Enterococcus sp. (99%) [GenBank:AB470317.1]
3,1,1,2 341, 1=V, 1=V, 241X Lactobacillus plantarum (99%) [GenBank:HQ441200.1]
Heathy children (HC)
34 1 1-4/° Enterococcus sp. (99%) [GenBank:AB470317.1]
1 111 Lactobacillus rhamnosus (99%) [GenBank:HM?218396.1]
2 1-IV Lactobacillus casei (99%) [GenBank:HQ379174.1]
6 2-XI Lactobacillus plantarum (99%) [GenBank:HQ441200.1]

2Randomly Amplified Polymorphic DNA-Polymerase Chain Reaction (RAPD-PCR) analysis was carried out to exclude clonal relatedness. °Number of cluster in

Figure 4-5-6 A-B).

casei/Lactobacillus rhamnosus was allowed by partial
sequencing of recA or pheS genes. Enterococcus was the
genus most largely isolated within the lactic acid bacteria
group for both T-CD and HC children (Table 2).
E. faecium was the species identified in almost all faecal
samples (13 of 19 and 10 of 15 for T-CD and HC, respec-
tively). E. avium (6/19 and 4/15 for T-CD and HC,
respectively), E. faecalis (3/19 and 2/15 for T-CD and
HC, respectively), E. durans (3/19 and 5/15 for T-CD
and HC, respectively) and Enterococcus spp. (11/19 and
12/15 for T-CD and HC, respectively) were variously
identified. Streptococcus macedonicus (1/19), Streptococ-
cus pasteurianus (1/19), Pediococcus acidilactici (4/19)
and Pediococcus pentosaceus (2/19) were only isolated in
T-CD children. L. plantarum (4/19 and 12/15 for T-CD
and HC, respectively), L. casei (5/19 and 5/15 for T-CD
and HC, respectively) and L. rhamnosus (2/19 and 2/15
for T-CD and HC, respectively) were the species of lacto-
bacilli which were most largely isolated in both T-CD
and HC. On the contrary, Lactobacillus salivarius (4/19),
Lactobacillus coryneformis (2/19), Lactobacillus del-
brueckii subsp. bulgaricus (1/19), Lactobacillus fermen-
tum (1/19) and L. paracasei (1/19) were only identified in
faecal samples of T-CD. Lactobacillus brevis (1/15), Lac-
tobacillus pentosus (1/15) and Lactobacillus mucosae
(1/15) were only identified in faecal samples of HC.

To exclude clonal relatedness and to characterize lacto-
bacilli and enterococci, three primers (M13, P4 and P7),
with arbitrarily chosen sequences, were used for RAPD-
PCR analysis. The number of strains identified for each
faecal sample is shown in Table 2 and Figures 4, 5 and
6A-B. The percentage of strains identified as lactobacilli
significantly (P = 0.011) differed between T-CD (ca.
26.5%) and HC (ca. 34.6%) groups.

Volatile organic compounds (VOC)

VOC (107 compounds) were identified from faecal and
urine samples (Table 3 and Additional file 1, Table S1).
VOC were grouped according to chemical classes: esters
(14 compounds identified); sulfur compounds (3), ketones

(21), hydrocarbons (15), aldehydes (16), alcohols (15),
alkane (4), alkene (1), aromatic organic compounds (6),
hetpane (1) and short chain fatty acids (SCFA) (11). Dur-
ing sampling, the level of VOC of each child did not differ
(P > 0.05). On the contrary, high variability was found
among children. Statistical differences (P < 0.05) were
found between T-CD and HC children. As expected, faecal
samples had higher level of VOC compared to urines. The
median value of esters was higher than in HC children.
Nevertheless, the levels of ethyl-acetate, octyl-acetate, pro-
pyl-butyrate, propyl-propanoate and butyl 2-methylbitano-
ate were higher than in faecal samples of T-CD. Among
sulfur compounds, carbon disulfide was at higher level
than in faecal samples of HC. Dimethyl trisulfide and
dimethyl disulfide were at higher level than in the urine
samples of HC. With a few exceptions, hydrocarbons were
found at higher levels than in urine and, especially, faecal
samples of HC. Faecal samples of HC contained higher
median values of aldehydes compared to T-CD. The level
of aldehydes did not differ (P > 0.05) between urine sam-
ples of T-CD and HC. Compared to faecal samples of HC,
some alcohols (e.g., 1-octen-3-ol, ethanol and 1-propanol)
were present at higher level in T-CD. Median values of
alkane and alkene did not significantly (P > 0.05) differ
between T-CD and HC. Overall, faecal samples of T-CD
showed the lowest levels of aromatic organic compounds.
The median value of total short chain fatty acids (SCFA)
was significantly (P < 0.05) higher in faecal samples HC
compared to T-CD. Major differences were found for iso-
caproic, butyric and propanoic acids (P < 0.038, 0.021, and
0.012, respectively). On the contrary, acetic acid was
higher in T-CD compared to HC samples. The differences
of the metabolomes between faecal or urine samples of T-
CD and HC was highlighted through CAP analysis which
considered only significantly different compounds (Figure
7A and 7B). Variables appearing with negative values
represent bins whose values decreased in T-CD compared
to HC samples. On the contrary, variables represented
with bars pointing to the right indicate bins whose values
were the highest in T-CD samples.
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Figure 4 Dendrogram of combined RAPD patterns for Enterococcus using primer P7, P4 and M13. Isolates were from faecal samples of
treated celiac disease (T-CD). Cluster analysis was based on the simple matching coefficient and unweighted pair grouped method, arithmetic
average. Enterococcus and Lactobacillus isolates (1) are coded based on partial 16S rRNA, recA and pheS gene sequence comparisons and

correspond to those of Table 2.
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Figure 5 Dendrogram of combined RAPD patterns for Enterococcus using primer P7, P4 and M13. Isolates were from faecal samples of
non-celiac children (HC). Cluster analysis was based on the simple matching coefficient and unweighted pair grouped method, arithmetic
average. Enterococcus and Lactobacillus isolates (1) are coded based on partial 16S rRNA, recA and pheS gene sequence comparisons and
correspond to those of Table 2.
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Figure 6 Dendrogram of combined RAPD patterns for Lactobacillus using primer P7, P4 and M13. Isolates were from faecal samples of
treated celiac disease (T-CD) (A) and non-celiac children (HC) (B). Cluster analysis was based on the simple matching coefficient and unweighted
pair grouped method, arithmetic average. Enterococcus and Lactobacillus isolates (I) are coded based on partial 16S rRNA, recA and pheS gene
sequence comparisons and correspond to those of Table 2.

Table 3 Median values and ranges of the concentration (ppm) of volatile organic compounds (VOC) of faecal and
urine samples from treated celiac disease (T-CD) children and non-celiac children (HC) as determined by gas-
chromatography mass spectrometry/solid-phase microextraction (GC-MS/SPME) analysis

Chemical class Treated celiac disease (T-CD)children Non-celiac children (HC)
Faeces Urines Faeces Urines

Median Range Median Range Median Range Median Range
Esters 2031° 0 - 846.97 047¢ 0 -40.00 4773° 1.83 - 496.83 0.99¢ 0-805
Sulfur compounds 214.83° 0 - 890.86 1.46° 0-2544 387.07° 0 - 499.88 349° 0 - 6367
Ketones 90.88° 0 - 2402.50 54.01° 0-29503 112.83° 0-416.20 64.49° 0 -458.78
Hydrocarbons 16.69° 0-1327.15 425¢ 0-6707 119.13° 0.22 - 635.25 3.14¢ 0.15 - 62.56
Aldehydes 17.59° 0-51228 64.31° 0.34 - 16631 37.46° 2.08 - 365.25 7337° 0.50 - 199.56
Alcohols 230.14° 0-2311.29 2.25¢ 0-175 122.56° 0-934.22 2.14° 0 - 3496
Alkane 6.73° 0 - 653,61 03° 0.05 - 157 937° 0-43274 043° 0-147
Alkene 0° 0-3251 0° 0 0° 0-3199 0° 0
Aromatic organic compounds 178.24° 0 - 14367 2.10° 0.04 - 28.16 480.20° 23374 - 99394 2.78° 0-1630
Heptane 23.01° 0 - 83750 0° 0-137 26.37° 0-6575 0.34° 0-237
Short chain fatty acids (SCFA) 2164° 0 - 143828 3P 0.08 - 31.14 27.85° 0-1037.50 3.82° 144 - 24.87

Data are the means of three independent experiments (n = 3) for each children.
“Means within a row with different superscript letters are significantly different (P < 0.05).
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Figure 7 Canonical Discriminant Analysis of Principal Coordinates (CAP) loading coefficient plot of the volatile organic metabolites
from faecal (A) and urine (B) samples of treated celiac disease (T-CD) and non-celiac children (HC). Data are the means of three
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"H Nuclear Magnetic Resonance (NMR) metabolite
profiling of faeces and urine samples

Overall, 'H NMR results confirmed the trends and the
major differences found between T-CD and HC samples
through GC-MS/SPME analysis. Besides, other metabo-
lites were found (Table 4). Try, Pro, Asn, His, Met, tri-
methylamine-N-ox and tyramine were higher in faecal
samples of T-CD than HC children. By comparing the
spectra of urine samples, median values of Lys, Arg,
creatine and methylamine were higher than in T-CD
children. On the contrary, median values of carnosine,
glucose, glutamine and 3-methyl-2-oxobutanoic acid
were the highest in HC children.

Discussion
This study used culture-independent and culture-depen-
dent methods and metabolomics analyses to investigate

the differences in the microbiota and metabolome of 19
treated celiac disease (T-CD, under remission since 2
years) children and 15 non-celiac children (HC). The pre-
sent study showed that the whole eubacterial community
significantly changed between the duodenal microbiota
of T-CD and HC children. In agreement, other authors
[9] reported similar results when faecal samples of CD
children were compared to those of HC. This result was
surprising since an heterogeneous group like the ‘healthy
controls’ should have more heterogeneity in DGGE
microbial profiles. However, also Schippa et al [26]
showed a peculiar microbial TTGE profile and a signifi-
cant higher biodiversity in CD pediatric patients’ duode-
nal mucosa after 9 months of GFD compared to healthy
control. As determined by PCR-DGGE analysis, the
population of lactobacilli from duodenal biopsies of chil-
dren was relatively simple and homogeneous, having only
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Table 4 Median values and ranges of the relative concentration (%o) of organic compounds of faecal and urine
samples from treated celiac disease (T-CD) children and non-celiac children (HC) as determined by "H nuclear

magnetic resonance (NMR) spectroscopy analysis

Chemical class

Treated celiac disease (T-CD) children

Non-celiac children (HC)

Median Range Median Range

Faeces
Tryptophane 1132 029 - 138 0.68° 0.19-133
Proline 274° 0-1968 187° 071 - 647
Trimethylamine-N-ox 3.36° 1.16 - 11.60 182° 046 - 10.94
Histidine 5.56° 3.05 - 19.95 2.89° 093 - 11.03
Asparagine 201° 1.02 - 2.75 1.21° 051 -217
Tyramine 2.81° 1.34 - 3.21 1.88° 0.74 - 7.87
Methionine 1.78° 099 - 330 1.50° 0.64 - 2.06

Urines
Carnosine 0.28° 0.12 - 048 043° 022 -137
Glucose 14.66° 4.80 - 31.00 19.76° 1533 - 53.73
Creatinine 38517 15.83 - 83.23 2131° 1040 - 61.80
Methylamine 1452 0.80-7.72 0.93° 032 -236
Glutamine 405° 172 - 803 565° 314 - 855
Lysine-Arginine 8.96" 4.07 - 25.72 7.10° 559-11.08
Ornithine 1.87° 0.09 - 2340 1.17° 1.03 - 2.08
3-Methyl-2-oxobutanoic acid 1.84° 112 - 260 2.35° 163-278

Data are the means of three independent experiments (n = 3) for each children.

@PMeans within a row with different superscript letters are significantly different (P < 0.05).

one dominant bacterial band which corresponded to
L. plantarum. Under the experimental conditions of this
study, bifidobacteria were not detected on duodenal
biopsies of T-CD and HC children. Recently, it was
shown that bifidobacteria were present at high levels in
duodenal biopsies of CD children at diagnosis and they
decreased in T-CD and, especially, in HC [27]. Bifidobac-
terium species were demonstrated to have species- and
strain-specific influence on immunity, and they might
exert various effects on T-helper 1 pro-inflammatory
response which characterizes CD [17]. Nevertheless, the
association between the prevalence of Bifidobacterium
species and CD is still debated [27].

Compared to duodenal biopsies, the microbial diversity
was larger in faecal samples. If some bands seem to be
clearly present only in HC or T-CD duodenal biopsies, on
the other hand, this is not so evident in faecal samples
very likely because of the high number of bands quite dif-
ferent among all samples. With a few exceptions, PCR-
DGGE profiles of Lactobacillus and Bifidobacterium
differed between faecal samples of T-CD and HC children.
Overall, the faecal bacterial population is significantly
affected by individuals, diet and CD [9,10,20,21,27].

As determined by culture-dependent methods, cell den-
sities of the main faecal microbial groups differed between
T-CD and HC children. In agreement with the previous
report [10], the ratio between lactic acid bacteria-Bifido-
bacterium and Bacteroides-Enterobacteria was lower in T-

CD compared to HC children. Increased numbers of Bac-
teroides are usually found in faecal samples of children
affected by GI inflammatory diseases, including CD
[13,16]. In the present study, lactic acid bacteria were
identified and subjected to RAPD-PCR analysis for deter-
mining qualitative and quantitative differences between
T-CD and HC. E. faecium was the dominant species of
both T-CD and HC children. L. plantarum, L. casei and
L. rhamnosus were found on faecal samples of both T-CD
and HC. Str. macedonicus, Str. pasterianus, P. pentosaceus
and P. acedilactici were only isolated from T-CD.
Although the RAPD-PCR and 16S rRNA gene analyses
were successfully applied in this study as well as in others
[10,28], more performing techniques (e.g., species and/or
strain specific probes for real time PCR or end-point PCR)
[29,30], would be desirable for a rapid enumeration of live
lactic acid bacteria in the human microbiota. Contrarily to
the previous study [10], L. fermentum and L. delbrueckii
subsp. bulgaricus were only isolated from faecal samples
of T-CD. Recently, it was shown that the prevalence of
amplicons of the species L. fermentum was higher in CD
compared to HC children [27]. Since lactobacilli are routi-
nely present in fermented foods, some of the differences
found in this study could be related to CD, but also to
dietary differences [27]. As showed by RAPD-PCR analy-
sis, the percentage of isolation of Lactobacillus strains was
the lowest in T-CD which agreed with other reports
[10,27].
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The qualitative and quantitative differences found for GI
microbiota affected the level of volatile organic compounds
(VOC) and amino acids in faecal and urine samples. A few
studies considered the metabolome of faecal or urine sam-
ples [10,22]. The concept of human metabolome encom-
passes the idea of microbial and metabolic cooperation,
and it aims to systematically examine changes in numerous
low molecular mass metabolites of biological fluids as the
response to different stimuli such as drugs or diseases
[31-33]. The combination of GC-MS/SPME and *H NMR
metabolic profiles together with CAP analysis allowed the
identification of specific molecules which significantly
changes in T-CD children. The largest level of esters was
found for HC, whereas ethyl-acetate and octyl-acetate
seemed to be over-synthesized in T-CD children. Overall,
esterification reactions at the colon level are considered as
the microbial strategy to remove or detoxify acids or alco-
hols [34]. Median values of aldehydes were the highest in
HC compared to T-CD children. Previously, the highest
level of alcohols was found in CD children at diagnosis
compared to T-CD and HC [10]. In this study, some alco-
hols such as 1-octen-3-ol, ethanol and 1-propanol were
higher in T-CD than HC children. Ethanol seems to be an
important mediator to develop of non-alcoholic steatohe-
patitis (NASH). It was hypothesized that when intestinal
bacteria synthesize alcohol they may induce endotoxemia
[35]. NASH was also associated to occult CD [36]. The
present study confirmed the higher level of some short
chain fatty acids (SCFA) of HC compared to T-CD chil-
dren [10,37]. It was suggested that Lactobacillus and Bifi-
dobacterium modified the metabolism of the large intestine
by increasing the synthesis of SCFA [10,38]. SCFA are
some of the most important by-products of anaerobes in
the colon. They represent the main fuel for colonocytes
and are involved in water and electrolyte absorption by
colon mucosa, even under diarrheic conditions [39]. The
increase of butyric acid is especially significant since it
plays a key role in the regulation of cell proliferation and
differentiation of colon epithelial cells. It was also shown
that faecal and urine samples of T-CD had an altered level
of free amino acids compared to HC children. Indeed, a
large number of free amino acids and related compounds
were found at the highest level in T-CD children. Another
report [22], also showed that serum and urine samples of
adult CD patients had altered level of amino acids. Peptides
enter enterocytes either after preliminary digestion by
brush border peptidases into amino acids or as di- and tri-
peptides which are split inside the cell by cytoplasmic pep-
tidases. Non specific inflammatory alterations of the intest-
inal mucosa (e.g., CD), which are associated with a
significant decrease of the absorptive surface and brush
border enzyme activity, may cause the decrease of amino
acid/peptide absorption which are consequently lost with
stools [40]. Dietary amino acids are the major fuel for the
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small intestinal mucosa as well as they are important sub-
strates for the synthesis of intestinal proteins such as nitric
oxide polyamines and other products with enormous biolo-
gical activity [41]. Glutamine was one of the few free amino
acid related compounds which was found at the highest
level in HC children. A low level of glutamine was also pre-
viously found in CD children and adults [22]. Specific
amino acids and related compounds, including glutamine,
were shown to possess a therapeutic role in gut diseases
[41]. This study confirmed the hypothesis that CD is asso-
ciated with intestinal and faecal dysbiosis, which is related
to certain bacterial species. Recently, it was shown that
potential celiac subjects and overt celiac subjects show dif-
ferences in the urine metabolites and a very similar serum
metabolic profile [42]. Metabolic alterations may precede
the development of small intestinal villous atrophy and
provide a further rationale for early institution of GFD in
patients with potential CD [42]. As shown by both micro-
biology and metabolome analyses, the GFD lasting at least
two years did not completely restore the microbiota and,
consequently, the metabolome of CD children. Probably,
the addition of prebiotics and probiotics to GFD might
restore the balance of microbiota and metabolome of CD
children.

Conclusions

As shown by the microbiology and metabolome studies,
the gluten-free diet lasting at least two years did not com-
pletely restore the microbiota and, consequently, the meta-
bolome of CD children. Combining the results of this
work with those from previous reports [9,10,16,22,27,37],
it seems emerge that microbial indeces (e.g., ratio between
faecal cell density of lactic acid bacteria-Bifidobacterium
vs. Bacteroides-Enterobacteria) and levels of some metabo-
lites (e.g., ethyl-acetate, octyl-acetate, SCFA and gluta-
mine) are signatures of CD patients. Further studies, using
a major number of children and a complete characteriza-
tion of all microbial groups, are in progress to find a statis-
tical correlation between the microbiota and metabolome
of T-CD compared to HC children.

Methods

Subjects

Two groups of children (6 - 12 years of age) (Table 5)
were included in the study: (i) nine-teen symptom-free
CD patients, who had been on a GFD for at least 2 years
(treated CD children, T-CD) (children numbered: 1 - 19
T-CD); and (ii) fifteen children without celiac disease and
other known food intolerance undergoing upper endo-
scopy for symptoms related to functional dyspepsia and
in whom endoscopy showed no signs of disease (non-
celiac children) (children numbered: 20 - 34 HC). The
pathology was diagnosed according to criteria given by
the European Society for Pediatric Gastroenterology,
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Table 5 Demographic and clinical characteristic of the children included in the trial

Age Median (range) F/M Cesarean section Feeding habits IEC* Marsh score*
Median (range)
Celiac children 9.7 (6 - 12) years 11/8 68% Strict gluten free diet 34 (26-50) 3c
Non-celiac children 104 (6-12) 8/7 60% Unrestricted 5(0-12) 0

years

*At diagnosis

Hepatology, and Nutrition. Children included in the
study were not treated with antibiotics and/or functional
foods (probiotics and/or prebiotics) for three months
before sampling. Children were enrolled in the study
after written informed consent, that was obtained both
from the respective parents and the institutional ethics
committee of the Faculty of Medicine and Surgery of the
University of Bari Aldo Moro, Italy.

Collection of duodenal biopsies, faecal and urine samples
Each child had fasted overnight, and biopsies, which were
taken always from the second duodenum, faecal and urine
were collected in the morning pre-prandial. Urine samples
were collected after the second mittus. Each child pro-
vided a duodenal biopsy and three faecal and urine sam-
ples over the time. Duodenal biopsy specimens were
obtained from the second duodenum by upper intestinal
endoscopy, frozen immediately at -80°C and kept until
further processing. After collection, faeces (ca. 15 g), con-
tained in sterile plastic box, were immediately mixed (1:1
wt/wt) with the Amies Transport medium (Oxoid LTD,
Basingstoke, Hampshire, England) under anaerobic condi-
tions (AnaeroGen, Oxoid LTD). Samples were immedi-
ately subjected to analysis (plate counts) or frozen at -80°C
(DNA extraction). The urine samples were collected into
pre-labeled sterile collections cups. Three aliquots per
patient were immediately frozen and stored at -80°C until
use.

DNA extraction from duodenal biopsies and faecal
samples

Biopsies specimens, the average weight was ca. 3.5 mg
(biopsies are not usually weighted, however all were taken
by the same endoscopist using the same biopsy forceps),
were homogenized using a sterile plastic pestle in 200 pl
of 20 mM Tris-HCI, pH 8.0, 2 mM EDTA buffer. The
homogenate was subjected to mechanical disruption in a
FastPrep® instrument (BIO 101) and total DNA was
extracted with a FastDNA® Pro Soil-Direct Kit (MP Bio-
medicals, CA., USA) according to the manufacturer’s
instructions. Three samples of faecal slurry of each child
were mixed and used for DGGE analysis [43]. An aliquot
of about 300 pl of each faecal slurry sample containing
150 pg of faeces was diluted in 1 ml of PBS-EDTA (phos-
phate buffer 0.01 M, pH 7.2, 0.01 M EDTA). After centri-
fugation (14,000 x g at 4°C for 5 min), the pellet was

washed two times to decrease the content of PCR inhibi-
tors. The resulting pellet was resuspended in 300 pl of
PBS-EDTA and used for DNA extraction [44] with a Fas-
tPrep instrument as above. The final product was 100 pl
of application-ready DNA both for stool and tissue sam-
ples [45]. Quality and concentration of DNA extracts were
determined in 0.7% agarose-0.5X TBE gels stained with
Gel Red ™ 10,000X (Biotium, Inc.) and by spectrophoto-
metric measurements at 260, 280 and 230 nm using the
NanoDrop® ND-1000 Spectrophotometer (ThermoFisher
Scientific Inc., ML, Italy).

Polymerase chain reaction (PCR) amplification and
denaturing gel electrophoresis (DGGE) analysis

DNA isolated from duodenal biopsy and faecal samples
was subsequently used as the template in PCR assays
applying eubacterial universal and group-specific 16S
rRNA gene primer sets. All primers used in this study are
listed in Table 1. The forward or the reverse primer of
each set was extended with a 40 mer GC-clamp at the 5’
end to separate the corresponding PCR products in the
gradient gel [46]. The specificity of each primer pair was
experimentally tested by using DNA extracted from the
following bacteria species: Bacteroides fragilis DSM 2151,
Bifidobacterium bifidum DSM 20082, L. plantarum
ATCC 14917, Weissella confusa DSM2196, P. pentosoceus
DSM 20336, Leuconostoc lactis DSM 20202, E. durans
DSM 20633, E. faecium DSM 2918, Clostridium coccoides
DSM 935, Staphylococcus aureus DSM 20714, Enterobac-
ter aerogenes DSM 30053, Escherichia coli DSM 30083
and Yersinia enterocolitica DSM 4780. Each primer set
gave positive PCR results for the corresponding target bac-
teria and did not cross-react with any of the non target
microorganisms. Each PCR mixture contained 80 - 100 ng
and 40 ng of template DNA extracted from bioptic materi-
als and faecal samples respectively, 50 pmol of each pri-
mer, 10 nmol of each 2’-deoxynucleoside 5’-triphosphate
(dANTP), 3 U of Taq DNA polymerase (EuroTaq, Euro-
Clone, Italy) and 2.5 mM MgCl, in a buffered final volume
of 50 pl. The following PCR core program was used for
the first three primer pairs listed in Table 1: initial dena-
turation at 95°C for 3 min; 30 cycles of denaturation at
95°C for 20 s, annealing at primer-specific temperature for
45 s and extension at 72°C for 1 min; and final extension
at 72°C for 7 min. DNA extracted from duodenal biopsies
was amplified by two additional set of primers targeting
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Bifidobacterium group and the PCR thermocycling pro-
gram used for both Bif164-{/Bif662-GC-r and Bif164-GC-
f/Bif662-r was: 94°C for 5 min; 35 cycles of 94°C for 30 s,
62°C for 20 s, and 68°C for 40 s; and 68°C for 7 min [47].
PCR amplification products were checked by electrophor-
esis in 1.5% agarose Gel Red 10,000X stained gels and
stored at -20°C. Amplicons were separated by DGGE,
using the Bio-Rad DCode™ Universal Mutation detection
System (Bio-Rad Laboratories, Hercules, CA, USA). Differ-
ent linear denaturing gradients of urea and formamide
were applied depending on the amplified target sequence
and type of samples (Table 1). The denaturing gradient
conditions proposed by Vanhoutte et al. [43] were modi-
fied as described below. For eubacterial amplicons the
denaturing gradient was 45-55% for faecal samples and
40-65% for duodenal biopsies, respectively; Lacl-Lac2GC
PCR products relative to faecal and biopsies samples were
separated in 35-50% and 35-70% denaturing gradient,
respectively and, finally, g-BifidF/gBifidR-GC amplicons
from faecal samples were resolved by 45-60% gradient.
Gels were electrophoresed at 60°C at 75 V for 15 h. Sybr
Green I stained gels were photographed and acquired by
the Bio-Rad Gel Doc 2000 documentation system (Bio-
Rad Laboratories). To compensate for internal distortions
occurring during the electrophoresis, binding patterns
were digitally aligned using the Bionumerics software ver-
sion 4.5 (Applied Maths, Belgium) by comparison with an
external reference pattern obtained by appropriately mix-
ing DGGE marker II, III and V (Nippon gene, Tokyo),
depending on the gradient used. This normalization
enabled comparison among DGGE profiles from different
gels, provided that these were run under comparable
denaturing and electrophoretic conditions. Comparison
and cluster of profiles were carried out using the
unweigthed pair-group method with the arithmetic aver-
age (UPGMA) clustering algorithm based on the Pearson
product-moment correlation coefficient (r) [25,48] and
resulted in a distance matrix. DGGE fragments from pri-
mers Lacl and Lac2 were cut out using sterile scalpel. The
DNA of each band was eluted in 100 pl of sterile water
overnight at 4°C. Two pl of the eluted DNA were reampli-
fied as described above. PCR products were separated by
electrophoresis on 1.5% (wt/vol) agarose gel (Gibco BRL,
France) stained with ethidium bromide (0.5 pug/ml). The
amplicons were eluted from gel and purified by the
GFXTM PCR DNA and Gel Band Purification Kit (GE
Healthcare Life Sciences, Milan, Italy). DNA sequencing
reactions were performed by MWG Biotech AG (Ebers-
berg, Germany). Sequences were compared to the Gen-
Bank database with the BLAST program.

Enumeration of cultivable bacteria
Diluted faecal samples (20 g) were mixed with 80 ml ster-
ilized peptone water and homogenized. Counts of viable
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bacterial cell were carried out as described by Macfarlane
et al. [45,49] The following selective media were used:
MRS agar (lactobacilli); Beerens agar (bifidobacteria);
Baird-Parker (staphylococci and micrococci); Blood
Azide agar (enterococci); Wilkins-Chalgren agar (total
anaerobes); Wilkins-Chalgren agar plus GN selective sup-
plements (Bacteroides, Porphyromonas and Prevotella);
Reinforced Clostridial Medium supplemented with 8 mg/
1 novobiocin, 8 mg/1 colistin (Clostridium), MacConkey
agar No2 (enterobacteria); and nutrient agar (total anae-
robes) [50].

Lactic acid bacteria isolation

Fifteen to twenty colonies of presumptive lactic acid bac-
teria were isolated from the highest plate dilutions of MRS
and Blood Azide agar media. Gram-positive, catalase-
negative, non-motile rods and cocci isolates were culti-
vated in MRS or Blood Azide broth (Oxoid Ltd) at 30, 37
or 42°C for 24 h, and re-streaked into the same agar
media. All isolates considered for further analyses showed
the capacity of acidifying the liquid culture medium. All
cultures were stored at -80°C in 10% (vol/vol) glycerol.

DNA extraction and molecular identification by 16S rRNA,
pheS and recA genes sequencing

Total DNA of presumptive lactic acid bacteria isolates was
extracted from 2 ml samples of overnight cultures grown
at 37°C in MRS or Blood Azide broth. Total DNAs were
obtained as described by De Los Reyes-Gavilan et al. [51].
The concentration and purity of DNA was assessed by a
NanoDrop®™ ND-1000 Spectrophotometer (Thermo Fisher
Scientific Inc.). A primer pair (Invitrogen Life Technolo-
gies, Milan, Italy), LpigF/LpigR (5-TACGGGAGGCAG-
CAGTAG-3" and 5-CATGGTGTGACGGGCGGT-3)
[52], corresponding to the position 369-386, and 1424-
1441, respectively, of the 16S rRNA gene sequence of
L. mucosae, (accession number AF126738) was used to
amplify the 16S rRNA gene fragment of presumptive lactic
acid bacteria. Fifty microliters of each PCR mixture con-
tained 200 pM of each ANTP, 1 uM of both forward and
reverse primer, 2 mM MgCl,, 2 U of Taqg DNA polymer-
ase (Invitrogen Life Technologies) in the supplied buffer,
and approximately 50 ng of DNA. PCR amplification was
carried out using the GeneAmp PCR System 9700 thermal
cycler (Applied Biosystems, USA). PCR products were
separated by electrophoresis on 1.5% (wt/vol) agarose gel
(Gibco BRL, France) stained with ethidium bromide
(0.5 mg/ml). The amplicons were eluted from gel and pur-
ified by the GFX™ PCR DNA and Gel Band Purification
Kit (GE Healthcare Life Sciences, Milan, Italy). DNA
sequencing reactions were carried out by MWG Biotech
AG (Ebersberg, Germany) using both, forward and reverse,
primers. Taxonomic identification of strains was per-
formed by comparing the sequences of each isolate with
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those reported in the Basic BLAST database http://www.
ncbi.nlm.nih.gov. Primers casei/para were used to discri-
minate between the species L. casei, L. paracasei and
L. rhamnosus [53]. Primers pheS-21-F/pheS-23-R were
used to identify Enterococcus species [54]. Primers
designed on recA gene were also used to discriminate
between the species L. plantarum, L. pentosus and L. para-
plantarum. Part of the recA gene was amplified using the
degenerate primer pair (MWG Biotech AG, Ebersberg,
Germany) recALb1F 5-CRRTBATGCGBATGGGYG-3/
recALbIR 5-CGRCCYTGWCCAATSCGRTC-3’ derived
from the homologous regions of the recA gene sequences
of L. plantarum (accession no. AJ621668). PCR reactions
and separation, and purification and sequencing of ampli-
cons were carried out as described for 16S rRNA gene.

Genotypic characterization by Randomly Amplified
Polymorphic DNA-Polymerase Chain Reaction (RAPD-PCR)
analysis

Genomic DNA from each isolates was extracted as
described above. Three oligonucleotides, P4 5-CCG
CAGCGTT-3, P7 5-AGCAGCGTGG-3" and M13 5'-
GAGGGTGGCGGTTCT-3’ [55,56], with arbitrarily cho-
sen sequences, were used for isolates biotyping. Reaction
mixture and PCR conditions for primers P4 and P7, and
primer M13 were according to De Angelis et al. [55,56].
PCR products (15 pl) were separated by electrophoresis at
100 V for 200 min on 1.5% (wt/vol) agarose gel and DNA
was detected by UV transillumination after staining with
ethidium bromide (0.5 pg/ml). Molecular sizes of the
amplified DNA fragments were estimated by comparison
with 1-kb DNA molecular size markers (Invitrogen Life
Technologies). RAPD-PCR profiles were acquired by Gel
Doc EQ System (Bio-Rad Laboratories) and compared
using Fingerprinting II Informatix™ Software (Bio-Rad).
The similarity of the electrophoretic profiles was evaluated
by determining the Dice coefficients of similarity and
using the UPGMA method.

Gas-chromatography mass spectrometry/solid-phase
microextraction (GC-MS/SPME) analysis

After preconditioning according to the manufacturer’s
instructions, the carboxen-polydimethylsiloxane coated
fiber (85 um) and the manual SPME holder (Supelco
Inc., Bellefonte, PA, USA) were used. Before head space
sampling, the fiber was exposed to GC inlet for 5 min
for thermal desorption at 250°C. Three grams of faecal
sample were placed into 10 ml glass vials and added of
10 pl of 4-methyl-2-pentanol (final concentration of
4 mg/l), as the internal standard. Samples were then
equilibrated for 10 min at 45°C. SPME fiber was
exposed to each sample for 40 min. Both phases of equi-
libration and absorption were carried out under stirring
condition. The fiber was then inserted into the injection
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port of the GC for 5 min of sample desorption. GC-MS
analyses were carried out on an Agilent 7890A gas-chro-
matograph (Agilent Technologies, Palo Alto, CA, USA)
coupled to an Agilent 5975C mass selective detector
operating in electron impact mode (ionization voltage
70 eV). A Supelcowax 10 capillary column (60 m length,
0.32 mm ID) was used (Supelco, Bellefonte, PA, USA).
The temperature program was: 50°C for 1 min, 4.5°C/
min to 65°C and 10°C/min to 230°C, which was held for
25 min. Injector, interface and ion source temperatures
were 250, 250 and 230°C, respectively. The mass-to-
charge ratio interval was 30-350 a.m.u. at 2.9 scans per
second. Injections were carried out in splitless mode
and helium (1 ml/min) was used as the carrier gas.
Sodium 3-(trimethylsilyl)propionate-2,2,3,3-d4 (TSP)
was used as the internal standard. Identification of
molecules was carried out based on comparison of their
retention times with those of pure compounds (Sigma-
Aldrich, Milan, Italy). Identification was confirmed by
searching mass spectra in the available databases (NIST
version 2005 and Wiley Vers. 1996) and literature [57].
Quantitative data of the identified compounds were
obtained by interpolation of the relative areas versus the
internal standard area [33].

"H Nuclear Magnetic Resonance (NMR) spectroscopy
analysis

To study the water soluble fraction of the faeces by means
of 'H NMR spectroscopy, 40 mg of thawed faecal or urine
mass were thoroughly homogenized by vortex-mixing
with 400 ul of cold deuterium oxide (D,O) at pH 7.4 +
0.02, containing 1 mM TSP as the internal standard. Mix-
tures were centrifuged at 14,000 rpm for 5 min and the
supernatant was collected. To ensure the complete recov-
ery of the water soluble species and highly reproducible
spectra, the extraction procedure was repeated two times
[31]. "H NMR spectra were acquired on the collected
supernatants, with no further treatments, at 300 K on a
Mercury-plus NMR spectrometer from Varian, operating
at a proton frequency of 400 MHz. Residual water signal
was suppressed by means of presaturation. "H NMR spec-
tra were processed by means of VNMR] 6.1 software from
Varian. To minimize the signals overlap in crowded
regions, all free induction decays (FID) were multiplied by
an exponential function equivalent to a -0.5 line-broaden-
ing factor and by a gaussian function with a factor of 1.
After manual adjustments of phase and baseline, the spec-
tra were scaled to the same total area, in order to compare
the results from samples of different weight and water and
fiber content. The spectra were referenced to the TSP
peak, then digitized over the range of 0.5 - 10 ppm. By
means of R scripts developed in-house the residual water
signal region, 4.5 - 5.5 ppm, was excluded from the follow-
ing computations [58]. To compensate for chemical-shift
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perturbations, the remaining original data points were
reduced to 218 by integrating the spectra over ‘bins’, spec-
tral areas with a uniform size of 0.036 ppm. A 34 x 218
bins table was thus obtained for statistical analysis. As
some parts of the spectra are very crowded, some bins
may contain peaks pertaining to different molecules. In
order to consider this potential source of error the bins
containing peaks ascribed to the same molecules were not
summed up [33].

Statistical analysis

All data coming from culture-dependent analysis and
metabolomic analysis were obtained at least in triplicates.
The analysis of variance (ANOVA) on culture-dependent
analysis, GC-MS/SPME and '"H-NMR analysis, was car-
ried out on transformed data followed by separation of
means with Tukey’s HSD, using a statistical software Sta-
tistica for Windows (Statistica 6.0 per Windows 1998,
(StatSoft, Vigonza, Italia). Letters indicate significant dif-
ferent groups (P < 0.05) by Tukey’s test. Canonical discri-
minant Analysis of Principal coordinates (CAP) analysis
was carried out for GC-MS/SPME data [33]. This was
preferred to the more common Canonical Discriminant
Analysis (CDA), because it does not assume any specific
distribution of the data, thus giving more robust results
in the case of reduced number of samples. The CAP con-
strained ordination procedure that was carried out is
summarized as follows: (i) data were reduced by perform-
ing a Principal Coordinate analysis (PCO) of the para-
meters, using the dissimilarity measure calculated on
euclidean distances; (ii) an appropriate number of PCO
was chosen non-arbitrarily, which maximizes the number
of observations correctly classified; (iii) the power of clas-
sification was tested through a leave-one-out procedure;
and (iv), finally, a traditional canonical analysis on the
first PCO was carried out. The total variance obtained in
PCO used to perform CAP was 70 and 73% for faeces
and urine data, respectively. The hypothesis of no signifi-
cant difference in the multivariate location within groups
was tested using the trace statistic based on 9999 permu-
tations [33]. The permutation test performed correctly
assigns ca. 90% of the samples.

Additional material

Additional file 1: Table S1: Concentration (ppm) of volatile organic
compounds (VOC) of faecal and urine samples as determined by
gas-chromatography mass spectrometry/solid-phase
microextraction (GC-MS/SPME) analysis.
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