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Abstract

Background: Expression QTL analyses have shed light on transcriptional regulation in numerous species of plants,
animals, and yeasts. These microarray-based analyses identify regulators of gene expression as either cis-acting
factors that regulate proximal genes, or trans-acting factors that function through a variety of mechanisms to affect
transcript abundance of unlinked genes.

Results: A hydroponics-based genetical genomics study in roots of a Zea mays IBM2 Syn10 double haploid
population identified tens of thousands of cis-acting and trans-acting eQTL. Cases of false-positive eQTL, which
results from the lack of complete genomic sequences from both parental genomes, were described. A candidate
gene for a trans-acting regulatory factor was identified through positional cloning. The unexpected regulatory
function of a class I glutamine amidotransferase controls the expression of an ABA 8’-hydroxylase pseudogene.

Conclusions: Identification of a candidate gene underlying a trans-eQTL demonstrated the feasibility of eQTL
cloning in maize and could help to understand the mechanism of gene expression regulation. Lack of complete
genome sequences from both parents could cause the identification of false-positive cis- and trans-acting eQTL.

Background
Genomic sequencing of crop species has shed light on
causative relationships between sequence polymorph-
isms and traits of agronomic interest. Ongoing efforts in
maize QTL (quantitative trait locus/loci) mapping have
identified genetic intervals whose underlying genes vari-
ably contribute to interesting phenotypes such as oil
content [1], root architecture [2], and pest resistance [3].
While many trait variations (quantitative and qualitative)
result from amino acid differences [1,4], gene expression
differences can also result in observable phenotypes [5].
Considering the burgeoning fields of epigenetics and
transcriptomics, analysis of gene expression regulation is
playing an important role in understanding gene interac-
tions that lead to traits of interest.
The concept of “genetical genomics” [6] was proposed

with the advance of high throughput gene expression
profiling technologies. In traditional QTL analyses, link-
age mapping leads to the detection of genomic regions
which are associated with phenotypic variations within a
population. Genetical genomics employs this same

approach, except that the phenotypes are levels in gene
expression resulting in the detection of expression QTL
(eQTL). eQTL do not necessarily result from sequence
polymorphisms proximal to the gene being measured
(cis-acting) but could result from differences in genes
unlinked to the target. In these cases, the eQTL function
in a trans-acting manner.
The field of genetical genomics has allowed eQTL

analysis within mapping populations in a multitude of
species of plants [7-10], yeast [11,12], and mammals
[13-16]. An Arabidopsis study [17] describes that while
there are more trans-acting factors within the genome,
cis-acting elements are more significant and therefore
stronger in regulatory ability than those acting in trans.
The results suggest a generalization that while multiple
trans-acting factors can each weakly contribute to the
total expression regulation of a given gene, a single cis-
acting variation plays a far greater role.
The mapping and positional cloning of a trans-acting

eQTL may reveal an expression regulator such as a
transcription factor or small regulatory RNA. While
many eQTL have been identified, few trans-acting fac-
tors have been cloned. Yvert et al. [12] mapped and
cloned two yeast trans-eQTL that regulate genes known
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to be involved in pathways regulating pheromone
response and daughter cell separation following bud-
ding. Interestingly, neither of the causative genes func-
tions as expression regulators such as transcription
factors nor through other expected mechanisms. How-
ever, their work suggests that the continued high-
throughput eQTL studies will identify novel genes to
better understand the regulation of known biochemical
pathways. Master regulators such as LEAFY, an Arabi-
dopsis regulator of at least seven components involved
in reproductive development [18], were previously only
identifiable through mutagenesis. Genome-wide trans-
eQTL analyses may identify more master regulators that
function to control several components of a single
pathway.
We report a genome wide eQTL analysis in a highly

utilized maize mapping population. We successfully
identify both cis-acting and trans-acting genetic ele-
ments that cooperate to regulate gene expression in
maize crown roots, and describe the pitfalls of detecting
false cis- or trans-acting eQTL in the absence of perfect
genomic sequences from both parents. In addition to
this genome-wide analysis of regulating factors, we have
positionally cloned a trans-acting factor.

Results
Global analysis of cis-acting and trans-acting eQTL in
maize root
The expression profile of the maize IBM2 Syn10 double
haploid population [19] was determined by microarray
hybridization to 60-mer probes. The mapping popula-
tion was a subset of a population created through ten
generations of intermating between the B73 and Mo17
maize lines followed by the generation of double haploid
lines, which creates highly recombinant but fixed alleles.
The more than 103,000 probes were designed to mea-
sure expression of the full complement of approximately
50,000 maize genes [20]. These expression level values
were used as phenotypes for initial mapping analysis.
While the array theoretically measures all genes, several
factors must be considered: 1) the genomic origin
remains unknown for a moderate number of genes; 2)
probes may not be unique to individual genes but rather
simultaneously measure several family members; 3)
probes may not measure known genes, but rather
expression originating from “non-genic” regions such as
regulatory RNAs. Therefore, to ensure that appropriate
mode of action can be assigned to eQTL, only those
unique (as determined by BLAST analysis) genomic
and/or genic probes were considered for eQTL analysis.
Only the most significant eQTL was assigned for each
probe, as described in Methods. A genetic distance win-
dow of 10 cM was used to define the mechanism of
action for the eQTL. When the distance was less than

10 cM between the target gene and eQTL, the mechan-
ism of action was considered cis-acting. Any eQTL
greater than 10 cM from the target was deemed trans-
acting. The filtering of eQTL by p-value significance,
reproducibility between replicates, and confidence in
unique probe hybridization eliminated nearly 90% of the
probes from further analysis, resulting in 10,941 high
quality eQTL. Of the most significant eQTL for each
probe, the majority of eQTL analyzed functioned
through a cis mechanism (9,795 of 10,941) and of those,
54% (5,311 of 10,941) functioned with a Kolmogorov-
Smirnov (KS) p-value of ≤ 1E-15. Trans-acting eQTL
were the minority of the eQTL identified (1,146 of
10,941), and of those 44% (500 of 1,146) functioned
with a KS p-value of ≤ 1E-15. Altogether, these data sug-
gest that cis-acting eQTL in general regulate gene
expression with more significance than trans-acting
eQTL (Table 1, Figure 1).

High reproducibility of biological replicates
The experimental design, utilizing a supported hydro-
ponics system in growth chamber conditions, was
intended to minimize false eQTL that resulted from
environmental effects. While biological replicates were
grown and harvested several months apart, the time
and duration of harvest were comparable between
replicates to minimize diurnal effects on transcription.
Reproducibility between replicates was determined by
the eQTL map position identified, as well as the confi-
dence in the eQTL (p-value). Initially, eQTL were
identified in the first replicate with a p-value cut-off of
1E-6 (Additional File 1) but were validated in replicate
2 with a less stringent cut-off of 1E-5 [21]. Based on
high quality eQTL identified in replicate 1 alone, (n =
12,630), 86.6% (n = 10,941) were validated in replicate
2 and used for all subsequent global analysis. Those
eQTL that failed to validate between replicates fell into
two categories: 1) non-significant p-value in replicate 2
(12.5%, n = 1578) or 2) inconsistent map position
(0.8%, n = 111) such that the position of the strongest
eQTL failed to reproduce between replicates (Figure
2A). Further investigation of the 111 inconsistent
eQTL suggests that the reasons for the inconsistency
are complex and detailed analysis is required for
appropriate determination of reproducibility. If several
trans-eQTL in combination with a cis-eQTL

Table 1 Quantity and mode of action of significant (≤10-
6) eQTL peaks mapping in biological replicate 1

cis-acting trans-acting

KS p-value 10-6 - 10-15 4,484 646

KS p-value 10-15 - 10-30 5,311 500

Significant eQTL (KS p-value ≤ 10-6 ) classified based on strength and trans- or
cis-acting function for the 10,941 confirmed eQTL identified
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contribute to expression control, it is possible that the
eQTL deemed strongest in one replicate may be sec-
ond strongest in another replicate, and vice versa.
Additionally, if the eQTL peak broadly extends across
a greater than the 10 cM interval, then significance
variations between replicates may falsely suggest a fail-
ure of reproducibility for that eQTL. Therefore, the
actual reproducibility might be slightly higher than the
number indicated. For the eQTL that mapped reprodu-
cibly it is also important to note that the significance
of each eQTL was consistent as well (Figure 2B). Alto-
gether, this suggests that the hydroponics system and
analyses enriched for the identification of genetic com-
ponents of gene expression regulation.

Cooperative regulation of gene expression
Previously published work [10,22] suggests that the
vast majority of eQTL detected will function through a
trans-acting mechanism (either individually or in com-
bination), while the strongest (but fewer) eQTL will
function through a cis-acting mechanism. However, a
breakdown of strengths and quantities of each mode of
action identified using the IBM2 Syn10 population
showed nearly 9 fold more cis-acting than trans-acting
eQTL, yet the cis- did function with greater signifi-
cance (Table 1, Figure 3). There are several possible

explanation for the discrepancy: 1) a conservative p-
value cut-off of 1E-6 is used to minimize the number
of false positive eQTL identified, however, it is
expected that many trans-acting eQTL would weakly
regulate gene expression, perhaps with significance less
than the cut-off value, and may be lost in the analysis;
2) Only the most significant eQTL was selected for
each probe, which is more likely to be cis-acting (i.e.
only a single, most significant eQTL is reported for
each probe); 3) the microarray probes were strongly
B73-biased (mostly designed from the B73 reference
genome) and any imperfect hybridization of the Mo17
derived alleles to the probe set will map as cis-acting
eQTL regardless of the genome-mediated functional
expression regulation in situ; 4) The maize genome
sequence is not completed. Many of the genomic ori-
gins of array probes remain unidentified or are not
unique within the genome, therefore the transcripts
being measured by the microarray cannot be accurately
assigned to the current public genome assemblies,
therefore the modes of action cannot be distinguished,
potentially ignoring significant trans-eQTL; 5) A rela-
tively large window (10 cM) was used to assign cis-
eQTL potentially incorrectly characterizing eQTL.
A more comprehensive regulatory analysis can be per-

formed in cases where multiple eQTL were identified
for any particular target (Table 2). The general global
gene regulation analysis identifies the most significant
eQTL regulating any particular gene. Therefore, any sec-
ondary regulation of that gene is masked by the initial
analysis. This second-level analysis enables the identifi-
cation of regulatory elements that function with less sig-
nificance than the primary eQTL that was initially
identified. Of the eQTL analyzed, the vast majority
(10,439 of 10,941) functioned independently to regulate
target gene expression with the current statistic cut-off.
Mapped genes that were regulated by 2 or more eQTL
were further investigated. In total, 1,014 eQTL were
detected for 502 target genes (Table 2). The majority of
the initial primary (strongest) eQTL (79%, 395 of 502)
mapped as cis. An additional 395 weaker secondary and
8 tertiary trans-acting peaks were found to regulate
those same target genes. A minority (21%, 107 of 502)
of initial primary eQTL mapped as trans-. An additional
74 secondary and 2 tertiary trans-acting eQTL were
detected regulating those same target genes. Interest-
ingly, 33 cis-acting eQTL were identified that function
more weakly than the primary trans-acting eQTL. Using
the stringent KS p-value cutoff of 10-6, the maximum
number of cooperative eQTL identified for any particu-
lar gene was 3. This analysis demonstrates that although
the strongest eQTL identified will likely function in cis,
more trans-acting eQTL regulate gene expression,
although with less significance.

Figure 1 Map position of eQTL. Genetic position of the significant
eQTL associations found in biological replicate 1. Genetic position of
SNP marker (cM by chromosome) most significantly associated with
the differential transcript abundance, x-axis. Genetic position of
gene being measured by unique microarray probe, y-axis. The most
significant associations (blue, KS p-value ≤ 1E-15) generally function
in cis (diagonal line) where the eQTL and the transcript being
measured map to the same genetic position. The weaker
associations (pink, KS p-value ≥ 10-15) generally function in trans
(periphery) where the eQTL maps to a position other than the
transcript being measured.
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Figure 2 Reproducibility of eQTL mapping between biological replicates. A. Position of SNP marker most significantly associated for each
validated eQTL determined for replicate 1 (x-axis) versus replicate 2 (y-axis). More than 99% of eQTL map to the same position across replicates.
B. KS p-value determined for eQTL for replicate 1 (x-axis) versus replicate 2 (y-axis). The significance of each eQTL is reproducible across
replicates. replicate 2 (y-axis).
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Lack of perfect genome sequences from both parental
lines caused the identification of false cis- and trans-
acting eQTL
While the B73 genome draft sequences are available, the
Mo17 genome sequence is currently in a primitive state.
Failure of Mo17 sequences to hybridize to their analo-
gous probe due to sequence polymorphisms would map
as cis-acting eQTL regardless of the actual expression
levels or modes of action in situ. Of all the cis-eQTL,
only 32.4% have higher expression levels for the Mo17
allele, which deviates significantly from the expected
50%. This implies that about 35% of the cis-eQTL are
false positives. Of the most significant cis-eQTL (KS p-

value ≤ 10-25), similar analysis indicates that 46% of
them are false positives due to sequence polymorphism,
To identify cases of such false positive eQTL, twenty of
the strongest eQTL with unique genic/genomic probe
positions in B73 were analyzed for sequence similarity
in the Mo17 genome. BLAST of those probes to the
publicly available paired-end read sequences of Mo17
generated by the Joint Genome Institute (JGI, US
Department of Energy) found only two probes (10%)
that match perfectly between B73 and Mo17 (data not
shown). For the remaining eighteen B73 probes for
which no identical Mo17 sequences were detected, it is
not clear how many are caused by the incomplete Mo17

Figure 3 Quantity and mode of action of eQTL. eQTL were categorized as cis- or trans-acting based on map positions of the eQTL as
compared to the genomic origin of the gene being measured by the microarray. A total of 10,941 eQTL were identified that were analyzable
for mode of action based on strict transcript genomic origin criteria. Ninety per cent of all eQTL (9,795 of 10,941) functioned through a cis
regulatory mechanism. Normalizing the number of eQTL identified as cis- or trans-shows that the stronger eQTL tend to function through cis-
regulation (red, n = 9,795) while weaker eQTL tend to function through trans-regulation (blue, n = 1,146).
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genome sequence and how many by sequence poly-
morphism. Using the B73 reference genome, primers
were designed to amplify the intervals surrounding the
probe hybridization sites for four of the potentially
false-positive cis-eQTL. Two of the four intervals failed
to amplify from Mo17 derived genomic and cDNA tem-
plates whereas they successfully amplified from B73
templates (data not shown). Without the Mo17 refer-
ence sequence, it remains unclear if polymorphisms pre-
vented adequate primer annealing in Mo17 for PCR
amplification. Two intervals amplified successfully from
Mo17 template allowing for sequence analysis of the
probe hybridization loci. Comparison of the amplified
sequences from Mo17 to the B73 probe sequences
showed that polymorphisms likely caused differential
hybridization to the microarray probes (Figure 4). While
trans- or cis-acting factors may function in the expres-
sion regulation of these genes in situ, the probe homol-
ogy issues inappropriately suggest strong cis-eQTL.
Therefore these strong cis-eQTL are most likely false
positives.
Despite the availability of the draft B73 genome

sequences, incompleteness and inaccuracy in genome/
BAC sequencing or gene annotations remain proble-
matic for eQTL analysis. Additionally, the ancestral gen-
ome duplication in maize complicates mapping analysis
when markers, genes, and genomic regions are indistin-
guishable. We identified a strong eQTL (KS p-value of
1E-18) that functioned apparently in trans- to regulate
two iron superoxide dismutase (FeSOD) genes. Initially
the eQTL was regarded as a master regulator consider-
ing its ability to regulate the expression of multiple bio-
chemically related genes. Importantly, BLAST analysis
of the microarray probes suggested that they measured
their respective FeSOD transcripts uniquely. However
further analysis of the eQTL interval and sequencing of
the single BAC that spanned the interval revealed a

sequencing gap in the available B73 genomic sequences.
Within that gap resided a third FeSOD gene which the
probes would recognize during microarray hybridization
(Figure 5). Rather than identifying a strong trans-acting
master regulator, most likely we have inadvertently
revealed an unknown gene that was differentially
expressed between B73 and Mo17 due to cis-acting fac-
tors, yet had high sequence similarity to other known
FeSODs.
It is obvious that some of the cis- and trans-acting

eQTL identified are false due to the unavailability of
complete genome sequences for both parental lines. It is
not clear how extensive the problem is, although it
seems the strongest eQTL are more prone to be false
positive than the weaker ones.

Differential gene expression confirms presence/absence
variations
In addition to nucleotide polymorphisms or minor
insertion/deletion differences between the B73 and
Mo17 parent genomes, several studies have identified
large deletions in the Mo17 genome as compared to
B73 [23,24]. Of particular interest is a deletion spanning
many BACs on the short arm of chromosome 6 which
contains at least 23 genes and pseudogenes [23]. eQTL
mapping using the IBM2 Syn10 population found 28
strong (KS p-value range = 10-21 - 10-10) cis-acting
eQTL, measuring 28 probes (from 26 annotated genes)
located on the BACs in question. For the genes in the
region, B73 in general shows robust expression while
Mo17 expression is essentially off (data not shown). The
eQTL results are consistent with the presence/absence
variations (PAV) detected through array genome
hybridization.

Identification of a trans-acting regulator by map-based
cloning
A strong trans-acting eQTL was selected for fine mapping
and positional cloning to identify the gene responsible for
expression regulation. We identified a strong eQTL (KS p-
value < 1E-26) located on the long arm of chromosome 1
((approximately 864 centimorgans (cM) on IBM2 Neigh-
bors map [25])) that regulated the expression of a gene
annotated as ABA 8’-hydroxylase, located 360 cM away
from the eQTL near the centrosome of chromosome 1
(approximately 505 cM on IBM2 Neighbors Map). Within
the mapping population, a B73 derived allele at the eQTL
resulted in 6-fold greater expression (9-fold greater in par-
ental controls) of the target gene as compared to a Mo17
derived allele at the eQTL (Figure 6A). The recombinant
individuals from the IBM2 Syn10 population grown for
the global eQTL analysis were used to define the genetic
interval to within 186 base pairs in a single gene (Figure
6B, Additional File 2). The candidate gene underlying the

Table 2 Cooperative expression regulation of 175
mapped genes

cis-
acting

trans-
acting

total

primary eQTL 395 107 502

secondary cis-eQTL per primary eQTL n 33

secondary trans-eQTL per primary
eQTL

395 74

tertiary trans-eQTL per primary eQTL 8 2

Total verifiable peaks identified 428 586 1014

The strongest eQTL identified regulating the expression of any particular gene
is considered the primary identified eQTL. Up to two additional, yet weaker,
functional expression regulators were identified regulating the same gene and
are considered secondary or tertiary eQTL. Total verifiable cis-acting eQTL
identified = 428 (bold); total verifiable trans-acting eQTL identified = 586
(italics). Due to the resolution of the genetic map, only one cis-acting eQTL
can be identified per gene being measured, n = not possible.
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eQTL was determined to be a class I glutamine amido-
transferase domain containing gene (Figure 6C). Sequence
analysis of the B73 and Mo17 alleles of the full length
gene revealed multiple SNPs coding for five amino acid
residue differences between the parents plus a 4 residue
truncation in Mo17 as compared to B73 (Figure 7A). Only
the 4 residue truncation is located within the 186 base pair
eQTL interval, thus presumably the causative variation for
the differentially gene expression. Re-phenotyping the
IBM2 Syn10 population by RT-PCR specific for ABA 8’-

hydroxylase confirmed the gene expression results from
the microarray analysis.
Glutamine amidotransferase genes are well characterized
players in several biosynthesis pathways including the
purine, pyrimidine, histidine, tryptophan, and arginine
pathways [26], however, a transcript-abundance mediat-
ing function has never been published. While steady
state transcript abundance is determined by many fac-
tors including transcription factors, enhancers, mRNA
degradation regulators, and rate of translation [27], the

Figure 4 False positive cis-eQTL. Relative expression levels determined by the microarray suggests that cis-acting factors regulate the
expression of two example genes. In both cases (A,B) the B73 transcript abundance is far greater than that of Mo17 according to the microarray.
Amplification of genomic and cDNA sequence from B73 and Mo17 reveals that actual expression in situ may be more similar than the
microarray would suggest. Sequence analysis of the probe-hybridization loci reveal that the microarray probes (red highlight) would fail to
hybridize efficiently to the Mo17 alleles, thus inappropriately suggesting extreme differential expression and strong cis-eQTL. Blue boxes show
polymorphisms between the Mo17-derived sequences as compared to the reference probe and B73-derived sequences.
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role of glutamine amidotransferase in ABA 8’-hydroxy-
lase transcript abundance remains elusive. Despite the
role that glutamine amidotransferase plays on ABA 8’-
hydroxylase transcription, no other eQTL mapped to
the same genetic region in this population suggesting
that any broad transcriptional regulatory function is
unlikely.
eQTL are determined by expression phenotypes, and

not based on physiological or morphological phenotypes
as in classic QTL identification. Therefore, further ana-
lysis of ABA biosynthesis in the IBM2 Syn10 population
could prove a physiological function downstream of
transcript abundance in regards to its trans-regulation.
In anticipation of ABA biosynthesis analysis, the ABA
8’-hydroxylase gene being regulated by glutamine ami-
dotransferase was sequenced from B73 and Mo17
cDNA. Interestingly, the results showed that the anno-
tated ABA 8’-hydroxylase gene was actually a product of
genomic shuffling that occurred sometime prior to the
genetic diversification of B73 and Mo17. In both paren-
tages, the ABA 8’-hydroxylase pseudogene (ABA-8’p) is
a chimera of the functional maize ABA 8’-hydroxylase
gene fragment, non-genic genomic sequence originating
from chromosome 10, and repetitive genomic sequence
(Figure 7B). Thus it seems that a pseudogene expression
level is regulated. The ABA 8’p is not present in all
maize inbred lines. Actually, validation of glutamine
amidotransferase as the candidate gene for the eQTL
was hampered by the absence of this pseudogene in cer-
tain lines (data not shown). Whether this pseudogene or
its expression regulation has any physiological function
remains to be determined.

Discussion
While the field of genomics has afforded scientists with
access to genomic sequences of countless numbers of

model species, strains, and lines, our understanding of
the function of those sequences remains rather limited.
Forward and reverse genetics have given meaning to
sequence polymorphisms in a fair number of genes, but
in addition to gene function analysis, it is equally impor-
tant to understand how and when those genes are acti-
vated and the roles the translated proteins play within
biochemical pathways. Only through the continued
efforts in the fields of transcriptomics and proteomics
can the full power of genomics be realized. Expression
QTL studies are generating vast amounts of data from
the perspective of gene regulation, both from cis-acting
elements and trans-acting factors, that begin to fill in
gaps in the understanding of transcriptional regulation
and gene interactions. Results from our study help to
elucidate the genome-wide expression regulation in play
during the development of crown root tips in maize.
Despite stringent statistical analysis, we identified more
than 10,000 eQTL that function through both cis- and
trans-acting mechanisms. In addition to the identifica-
tion of cis- and trans-factors, we described the relative
regulatory contribution each of those factors plays by
means of a KS p-value. Despite our expectations, as well
as those set forth in previously published maize eQTL
studies [28,29], we identified vastly more cis-acting
eQTL than trans-suggesting that the most significant
eQTL will act in cis for most genes. The statistical
methodology and stringency we employed was designed
to minimize false positive eQTL from the analysis, how-
ever at the probable expense of the lesser significant
eQTL which will most likely function in trans [22].
Additionally, the definition of trans can be “arbitrarily”
set for each study. While we defined trans-acting to
mean any regulatory element greater than 10 cM from
the target, others have set the boundary at 5 cM [29].
Either limit is appropriate for maize eQTL studies but

Figure 5 Sequence gap in the physical map masks probe homology sites. A Schematic of selected maize chromosomes. A “master
regulating” trans-eQTL residing on chromosome 2, BAC AC207404 (blue diamond) regulates expression of two iron superoxide dismutase genes
on the long arms of chromosomes 1 (BAC AC221053) and 6 (BAC AC187242), as measured by unique microarray probes (red and cyan,
respectively); centromeres = black circles. B Re-sequencing analysis of the eQTL interval on chromosome 2 revealed a 2 kb gap (gray dotted line)
in the known sequence (gray bars). Probe homology sites for both regulated genes were discovered within the gap negating a trans-acting
master regulator effect, therefore suggesting a strong cis-acting eQTL in the vicinity of the newly identified third iron superoxide dismutase
gene.
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Figure 6 Fine mapping of eQTL regulating ABA 8’-hydroxylase. A Microarray expression data revealed greater expression of the target gene
ABA 8’-hydroxylase. The target gene is present in both parental backgrounds but is much more strongly expressed under control of a B73
derived allele of the trans-regulator glutamine amidotransferase. Multiple splice variants are amplified from the pseudogene cDNA. Sequence
analysis of variants shows that only the smallest band is able to hybridize to the microarray probe, asterisk. Among parental controls, the B73
inbred average expression shows a 9-fold greater expression of the pseudogene as compared the Mo17 inbred. An F1 hybrid shows mid-level
expression regulation of the relevant band, asterisk, as well as several others. B Example phenotypes/genotypes found within the IBM2 Syn10
population and controls. Phenotypes are considered “high” or “low” depending on the relative ABA 8’hydroxylase target gene expression levels.
B73 alleles of the eQTL allow for high expression of the target as compared to Mo17 alleles; B73 derived allele = green, Mo17 derived allele =
blue. Fine mapping of the IBM2 Syn10 population using molecular markers (M1-M6) identified a very small region at the 3’ end of the gene as
being the responsible element that determines the expression of the target. C BACs within eQTL interval with public markers (IDP markers; red)
and designed mapping markers M1-M6 (teal) spanning the region (not drawn to scale). IDP3798 and two mapping markers are located within
the glutamine amidotransferase gene.
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Figure 7 Unexpected expression regulation of a pseudogene results from sequence variation in the carboxy terminal of glutamine
amidotransferase. A The B73 and Mo17derived sequences for the trans-regulator glutamine amidotransferase code for nearly identical proteins.
Blue boxes highlight residues different from the B73 reference sequence. Fine mapping of the eQTL to a 186 bp interval determined that the
carboxy-terminus accounts for the trans-regulation, black bar. Class I glutamine amidotransferase proteins require the conserved C-H-E triad (red
boxes) for their expected enzymatic functions suggesting that, despite the sequence differences between the genotypes, the proteins likely
remain functional in their expected pathway in situ. B Genomic structure on chromosome 1(BAC AC177817) that encodes for the pseudogene is
derived from chimerization of 1.5 exons of the functional ABA 8’-hydroxylase genic region (blue bar, blue exons) of chromosome 4 (BAC
AC182187), a 5’ element enabling transcription originating from chromosome 10 (green bar; BAC AC194847), and genomically non-unique
sequence (yellow dashed bar, yellow exons). The microarray probe (red bar) used to measure the pseudogene is unique within the
transcriptome.
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will affect the classification and quantification of trans-
eQTL.
Among the tens of thousands of cis- and trans-acting

eQTL identified in the current study, we have demon-
strated that some of them are false-positives due to the
lack of complete genome sequences from both parents
of the mapping population. Polymorphism in the micro-
array probe regions, which could affect hybridization
intensities for mRNA quantification, will lead to the
occurrence of false cis-acting eQTL. Likewise, sequen-
cing gaps at the trans-acting eQTL regions could result
in the detection of false trans-acting eQTL. With these
mechanisms, the stronger, large-effect eQTL (with low
p-values) are more prone to be false positives than the
weaker eQTL. We estimated that 35% of all the cis-
eQTL is false positive, but the false trans-eQTL discov-
ery rate is unknown in the absence of the complete gen-
ome sequences. It is likely that the whole-genome eQTL
analysis reported in other systems could suffer similar
false positive issues, and caution should be taken when
interpreting the results and selecting eQTL for further
analysis.
Although tens of thousands of eQTL have been

reported, very few have been cloned and characterized,
especially in higher organisms where positional cloning
could still be challenging. To test the feasibility of eQTL
cloning in maize and to understand the regulatory
mechanism of transcript abundance, a strong trans-
eQTL for a putative ABA hydroxylase was selected for
further mapping and cloning. The eQTL was fine
mapped to a very small physical interval (186 bp) and a
putative glutamine amidotransferase gene was identified
as the candidate gene for this eQTL. Unfortunately, the
target gene identified turned out to be a pseudogene. It
is not clear if this ABA hydroxylase pseudogene has any
physiological function, why the expression of a pseudo-
gene is regulated, or how the two genes interact with
each other. Nevertheless, we have clearly demonstrated
the feasibility of cloning trans-eQTL with large effect in
maize. The cloning of trans-eQTL would help to under-
stand the mechanism of transcript abundance regulation
and identify regulatory genes for biochemical pathways.
The IBM2 SYN10 population is a set of 360 doubled

haploid lines from a randomly mated population derived
from B73 and Mo17 [19]. Having undergone 10 genera-
tions of random intermating/recombination, these DH
lines exhibited a high degree of phenotypic variability
and high frequency of recombination. We were able to
fine map an eQTL into a 186 bp interval with only 135
IBM2 SYN10 DH lines. Although recombination fre-
quency varies widely across the genome and more geno-
mic loci need to be analyzed before this population can
be better assessed for recombination frequency, the
results suggest that the IBM Syn10 population is

suitable for high resolution eQTL mapping and recom-
bination studies.
As in previous reports, we have shown that most of

the strong eQTL act in cis. Moreover, for the relatively
small number of strong trans-eQTL detected, some of
them could be false positive. Therefore, it may be a
challenge to identify a large number of strong trans-
eQTL which are more amenable for positional cloning.
A recently study in human B cells which maps the regu-
latory elements that influence radiation-induced changes
in gene expression indicated that nearly all the strong
regulators act in trans to influence the expression of
their target genes [30]. Therefore, instead of mapping
the steady-state level of mRNA under one constant con-
dition, mapping eQTL which regulate the differential
responsiveness in gene expression to biotic and abiotic
factors could be a promising approach to enrich and
identify strong trans-eQTL. These trans-eQTL should
be ideal targets for cloning. They are important for
understanding plant responses to biotic and abiotic
stresses, and technically feasible to isolate.

Conclusions
We have shown the feasibility of eQTL analysis as a
means to identify, clone and analyze trans-acting regula-
tory factors through large-scale screening analysis. A
glutamine amidotransferase regulator was identified as a
trans-acting factor. Harnessing the regulatory function
of trans-acting factors could allow for better control of
important agronomical genes. We also described the pit-
fall of identifying false-positive eQTL in the absence of
complete genome sequences, which has broad implica-
tions in similar eQTL studies.

Methods
Hydroponic system
Plants were germinated and grown in Turface ®MVP®

contained in Deepot™ plastic conical pot and tray sys-
tems (Stuewe and Sons, Tangent, OR (D25L [pots],
D50T [trays])). The hydroponic system consisted of
stainless steel tanks (24"w × 24"d × 15"h) with a bot-
tom-filling pumping and drainage system and overflow
drain at the level of the top of the tubes/Turfa-
ce®MVP®. Seeds were planted approximately 2 cm
below the top of the tube/Turface®MVP® and germi-
nated for one week in diH2O submerged so that the
seeds were just above the water line. After germination,
the water was drained and a media pumping system was
initiated. A humidity cover was in place from the initial
germination until plants were approximately 6 inches
tall. Modified Hoagland’s Solution (1 mM KH2PO4, 2.5
mM KNO3, 1.25 mM Ca(NO3)2, 1 mM MgSO4, 0.75
mM CaCl2, SPRINT330 such that 0.006 mM with
respect to Iron, 0.03 mM FeSO4, 1 μM H3Bo3, 1 μM
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MnCl2, 1 μM ZnSo4, 1 μM CuSO4, 1 μM NaMoO4) was
pumped into the tanks until the tubes were submerged
but the vegetative growth remained dry. The nutrient
solution remained in the tank for approximately 3 min-
utes before draining. The submersion/drainage system
repeated every 3 hours for the 3 weeks following germi-
nation. Growth chamber conditions were maintained at
50% humidity with a 16 h day (26°C) and an 8 h night
(22°C). Light levels ranged from approximately 350 μM/
m2/s at the base of the plant to 500 μM/m2/s at the top
of the leaves at the time of harvest.

Plant materials and tissue preparation
For each of two biological replicates, tissue was collected
from B73 and Mo17 parental controls and the IBM2
Syn10 doubled haploid mapping population [19] at 4
weeks after germination (V5 stage). The IBM Syn10
population consisted of 360 doubled haploid lines
resulting from 10 generations of intermating, followed
by a double haploid process creating highly recombi-
nant, yet fixed alleles. One hundred thirty-five IBM2
Syn10 lines were used in this study. The tissue sampled
was the 1.5 cm tip of all crown roots that had developed
at the time of harvest, representing the most metaboli-
cally active region based on whole-tissue visualization of
triphenyl tetrazolium chloride staining [31]. Tissues
were flash frozen in liquid nitrogen and stored at -80°C.
They were manually ground into a fine powder using a
mortar and pestle on dry ice.

Microarray hybridization
Total RNA was isolated from frozen ground tissue (SQ
Tissue Kit, Omega Biotek) and treated with DNase-I fol-
lowed by polyA RNA isolation (Illustra mRNA Purifica-
tion Kit, GE Biosciences) for all samples. The total RNA
and polyA RNA samples were visualized and quantified
on Agilent’s Bioanalyzer to check for degradation and to
determine the concentration. Each mRNA sample was
made into double stranded DNA, amplified by an in-
vitro transcription reaction and labeled with Cy3 or Cy5
fluorescent dyes using Agilent’s Low RNA Linear Amp
Kit. The cRNA product was purified with Agencourt’s
RNAClean Kit that utilizes SPRI (Solid Phase Reversible
Immobilization) paramagnetic bead-based technology.
Overnight hybridizations were performed with equal
amounts of labeled cRNA to custom 2 × 105K [20]
Maize Oligo Microarrays from Agilent Technologies
(Palo Alto, CA) according to Agilent’s Two-Color
Microarray-Based Gene Expression Analysis protocol.
After hybridization, the microarray slides were washed
and immediately scanned with Agilent’s G2505B DNA
Microarray Scanner at two laser power settings (100%
and 10%). The images were visually inspected for image
artifacts and feature intensities were extracted, filtered,

and normalized with Agilent’s Feature Extraction Soft-
ware (v 9.5.1). Further quality control analysis was per-
formed using data analysis tools in Rosetta’s Resolver
Database. The Agilent microarray expression data (raw
and processed) are available from GEO (Series Acces-
sion GSE29964).

Statistical analysis and eQTL mapping
Microarray intensity data were determined from each of
the two channels using the Rosetta Resolver Split-Ration
method [32,33], were exported from the Rosetta Resol-
ver Database and analyzed using software developed in-
house. The following is a brief summary of the concepts
that underlie our data analysis methods. A multidimen-
sional, weighted least-squares method was used to
obtain normalization parameters for the data based on
affine transformations, an effective normalization
approach according to measurement theory [34] and
fluorescence instrumentation considerations [35]. A
further implication is that various stochastic effects,
both instrumental and biological, give rise to an overall
intensity dependent noise [36-38]. Data was analyzed
using the intensity representation to preserve the noise
characteristics and estimate statistical significance, facili-
tating the use of linear least-square methods for data
analysis. The intensity distribution shows that about 20
percent of the data from a microarray typically corre-
sponds to background. Therefore an additive correction
was applied to adjust the average background signal for
a microarray to zero, prior to normalization. As
described above, gene expression was measured using a
single color experiment design for two biological repli-
cates of the SX19 Syn10 population. The population was
also genotyped at 1731 SNP markers using the Illumina
assay. Initially, 50 eQTL were individually mapped using
the Knott-Haley regression method for interval mapping
(Windows QTL Cartographer, Statistical Genetics and
Bioinformatics, North Carolina State University, USA)
to confirm subsequent analyses where the Kolmogorov-
Smirnov (KS) test was used to test each marker for
association with normalized intensity from each gene
signature. The map positions of eQTL were assigned
based on the most significant KS p-value calculated for
each probe by genome wide association scanning, there-
fore assigning only one eQTL per probe. Various meth-
ods have been proposed for controlling the false positive
rate on the basis of uniform distributions of p-values
[39,40]. However, the problem of adjusting for bias aris-
ing from correlation in hypotheses remains a challenge
[41,42]. Thus, we adopt a heuristic approach based on
the analysis of the distribution of KS p-values for all
eQTL, which gives a threshold of 10-5 for controlling
the false discovery rate. Furthermore, association testing
methodology including those used here rely on

Holloway et al. BMC Genomics 2011, 12:336
http://www.biomedcentral.com/1471-2164/12/336

Page 12 of 14



assumptions that may not hold, particularly with regard
to noise. Therefore, a slightly more conservative thresh-
old of 10-6 was used for identifying eQTL, and to obtain
a lower false positive rate for the purposes of this study.
To test overall reproducibility, data for each biological
replicate were analyzed separately for eQTL including
eQTL map position, KS p-value, and relative microarray
intensity.

Map-based cloning of a trans-acting regulator
A strong trans-acting eQTL was selected for fine map-
ping and cloning. Genomic DNA from the IMB2 Syn10
population and parental controls were purified from leaf
tissue using Gentra® Puregene® (Qiagen, Valencia, CA)
[43] modified in scale of preparation. Fine mapping of
the interval was initiated at the genetic position deter-
mined by eQTL mapping analysis of the microarray
expression data. Total RNA for gene expression valida-
tion was purified as above and reverse transcribed into
cDNA using QuantiTect® Reverse Transcription Kit
(Qiagen, Valencia, CA). The B73 and Mo17 alleles of
the candidate gene, glutamine amidotransferase, were
amplified from cDNA using the primers 5’-CCTAAGA-
CATCCCAATTTCCTC and 5’-GTCGCCTCCATCTC-
CATTC, cloned into the pCR®2.1.TOPO® TA vector
(Invitrogen, Carlsbad, CA), and were confirmed by
sequencing. The eQTL was re-mapped using the IBM2
Syn10 population based on a quantitative RT-PCR phe-
notype for the target previously measured by the micro-
array (a pseudogene of ABA-8’Hydroxylase) using the
primers 5’-GCGTTGAACACTTGGACCAC-3’ and 5’-
TGGAAGGTGTTGCCCCTGTT-3’.

Additional material

Additional file 1: Controlling the false discovery rate. The cumulative
count of gene expression probes is plotted against KS p-value for the
most significant eQTL for each probe on a logarithmic scale. The heavy
tail to the left is associated with the eQTL that are most significant
overall. The right side of the cumulative curve is associated with the least
significant eQTL; i.e. the noise. The nonlinear regression curve shows that
the noise is characterized by a power-law with exponent of 0.24; a
uniform distribution would have exponent 1.0. The p-value data deviates
from the fitted curve at 10-5 which serves as a threshold for overall
significance for eQTL. The distributions of p-values from eQTL scans for
individual probes also show deviation from uniformity. The non-
uniformity arises because the statistical tests for markers are not
independent due to genetic linkage.

Additional file 2: Molecular markers designed for fine mapping the
eQTL regulating the ABA 8’-hydroxylase pseudogene. Primers
designed to define the interval containing the eQTL. All primers are
written 5’ to 3’. Restriction enzyme digestion is required for 4 of the
markers to visualize the polymorphisms.
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