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Abstract

appropriate technology for their needs.
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sequencing technologies continue to evolve.

Background: Tiling arrays have been the tool of choice for probing an organism's transcriptome without prior
assumptions about the transcribed regions, but RNA-Seq is becoming a viable alternative as the costs of sequencing
continue to decrease. Understanding the relative merits of these technologies will help researchers select the

Results: Here, we compare these two platforms using a matched sample of poly(A)-enriched RNA isolated from the
second larval stage of C. elegans. We find that the raw signals from these two technologies are reasonably well
correlated but that RNA-Seq outperforms tiling arrays in several respects, notably in exon boundary detection and
dynamic range of expression. By exploring the accuracy of sequencing as a function of depth of coverage, we found
that about 4 million reads are required to match the sensitivity of two tiling array replicates. The effects of cross-
hybridization were analyzed using a "nearest neighbor" classifier applied to array probes; we describe a method for
determining potential "black list" regions whose signals are unreliable. Finally, we propose a strategy for using RNA-Seq
data as a gold standard set to calibrate tiling array data. All tiling array and RNA-Seq data sets have been submitted to

Conclusions: Tiling arrays effectively detect transcript expression levels at a low cost for many species while RNA-Seq
provides greater accuracy in several regards. Researchers will need to carefully select the technology appropriate to the
biological investigations they are undertaking. It will also be important to reconsider a comparison such as ours as

Background

Unbiased, high-throughput analytical methods are essen-
tial tools for identifying novel RNAs, discerning alterna-
tive splicing isoforms, and determining gene expression
levels. Tiling arrays have been the investigative tool of
choice and continue to lead to novel discoveries. They
effectively identify novel transcribed regions [1-4] and
quantify expression levels [5]. They were recently
employed in the discovery of ubiquitous bidirectional
promoters in yeast [6], and microarrays tiling certain
regions of the human genome were used to find new sets
of conserved lincRNAs [7].
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On the other hand, it is becoming increasingly apparent
that massively parallel transcriptome sequencing has dis-
tinct advantages over arrays. RNA-Seq inherently pro-
vides single nucleotide resolution and in some contexts
requires only minimal apriori knowledge of the genome,
while tiling arrays exhibit cross-hybridization and have a
limited dynamic range of detection [8,9]. There has been
a recent explosion in the use of RNA-Seq to globally sur-
vey transcriptomes, including S. cerevisiae [9], S. pombe
[10], B. anthracis [11], B. cenocepacia [12], C. elegans
[13], A. thaliana [14], M. musculus, H. sapiens [8], and
others. It has excelled at determining exon boundaries
and as a corollary, at detecting and quantifying alterna-
tive splicing [9,13,15-17]. Previous studies have used
RNA-Seq exclusively [9] or in conjunction with tiling
arrays [10] to map the 5" and 3' exon boundaries of S. cer-
evisiae and S. pombe, respectively. Strikingly, 86% of the 5'
UTR boundaries of S. cerevisiae genes have been identi-

©2010 Agarwal et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons

() BioMed Central Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=20565764

Agarwal et al. BMC Genomics 2010, 11:383
http://www.biomedcentral.com/1471-2164/11/383

fied without use of a prior annotation [18]. It has even
been effective at the single cell level and detects signifi-
cantly more transcripts than single cell tiling array meth-
ods [19].

However, tiling arrays remain more cost effective for
many species despite a dramatic reduction in the cost of
sequencing in recent years. Our consequent belief that
both tiling arrays and RNA-Seq will continue to be used
in transcriptomics motivated us to objectively compare
their performance, to understand how cross-platform
results can be interpreted, and to develop a method for
calibrating tiling array analysis based on RNA-Seq data.
Previous studies have compared DNA microarrays with
massively parallel signature sequencing (MPSS) [20], til-
ing arrays with MPSS [21], and gene expression arrays
with Solexa/Illumina sequencing [22,23], but our work is
the first to compare tiling arrays with deep sequencing
technology on a matched sample. This is especially rele-
vant because tiling arrays, unlike expression arrays, can
detect novel transcripts and so are a more realistic alter-
native to sequencing.

In this work, we quantitatively assess tiling array and
RNA-Seq performance using a matched sample of
poly(A)-enriched C. elegans RNA from the L2 larval
stage. We also used two total RNA samples from the L2
and young adult stages for differential expression analy-
sis. Our comparisons are of two types: correspondence
between the two platforms, and their relative perfor-
mance compared to a gold standard set. We find the raw
signals to be generally well correlated, and the transcrip-
tionally active regions (TARs) predicted by the two plat-
forms are broadly similar. However, RNA-Seq's greater
dynamic range of expression allows more differentially
expressed genes to be identified. Furthermore, compari-
son to known exons shows that RNA-Seq predicts exon
boundaries more accurately, and a receiver operating
characteristic (ROC) analysis against a gold standard set
shows that RNA-Seq provides better sensitivity at lower
false positive rates (FPR). These results are qualitatively
as expected and we are able to quantitate the differences.

Since reads are costly, we also investigated the depth of
sequencing required for the two platforms' performance
to be comparable. We found that 4 million reads are
required for RNA-Seq to achieve the same sensitivity, at a
given FPR, as 2 replicate tiling arrays. This corresponds
to a previous finding that 4 million reads are required to
detect 80% of expressed genes in S. cerevisiae [9]. How-
ever, the experimental goals can affect this number signif-
icantly. In other work on murine embryonic stem cells,
eighty million reads were required before the detection of
unique start sites plateaus [24].

Next, we investigated cross-hybridization effects in til-
ing arrays by comparing expression levels for transcrip-
tional regions with those from paralogous pseudogenes
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and "nearest neighbor" regions. If a region's expression
level is affected by cross-hybridization we expect these
values to be correlated, and indeed find this to be the case
for many annotated regions. The same analysis with
RNA-Seq data does not show such a correlation, although
mapping ambiguities are an analogous problem in RNA-
Seq data [13]. Finally, we considered the problem of cali-
brating tiling array analysis using RNA-Seq as a gold stan-
dard set. We describe a method to optimize the
parameters of the maxgap/minrun segmentation algo-
rithm and then assign an adjusted confidence score to
each TAR by using the RNA-Seq data.

Results

Data sets

The tiling array analysis was carried out using the
Affymetrix C. elegans Tiling 1.0R Array containing 25-
mer perfect match (PM) and mismatch (MM) probes
tiled over the C. elegans genome. The vast majority of
adjacent probes either slightly overlap or have a gap
between them of a few base pairs. RNA-Seq was carried
out using an Illumina cluster station and 1G analyzer, and
we aligned reads to the WS170 build of the C. elegans
genome and splice junction databases using MAQ [25]
and cross_match (P. Green, http://www.phrap.org/phred-
phrap/phrap.html; [26]), respectively. Extensive details
about the RNA-Seq data and methods are provided by
Hillier et al. [13].

RNA samples were prepared and shipped frozen on dry
ice between the two labs conducting the array and
sequencing work. The main sample studied was poly(A)-
enriched RNA from the L2 larval stage of C. elegans; we
notate this L2-poly(A). We sequenced poly(A)-enriched
RNA because the reads would otherwise be overwhelmed
by rRNA and tRNA, which together comprise >95% of
total RNA [27]. Recent methods overcome this require-
ment by depleting ribosomal RNA [28]. Although arrays
work well with total RNA, we hybridized the same
poly(A)-selected RNA to permit direct comparison
between the platforms. Two biological replicates were
hybridized on the tiling array and about 32 million
aligned reads (from a yield of 116 M from 12 lanes) were
obtained by RNA-Seq.

In addition, for a differential expression analysis of
genes, we also prepared a young adult (YA) sample, which
we compared to the L2 stage. In this case, total RNA was
used for both stages in the array (notated L2-tot and YA-
tot) and poly(A)-enriched RNA was used for both
sequenced samples. For these samples, the array data is
comprised of 3 replicates, and RNA-Seq generated about
28 million aligned reads. Our ROC analyses required a
set of annotated transcribed (positive) and non-tran-
scribed (negative) regions, for which we utilized a high
confidence subset of the WormBase annotation as
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extracted by Hillier et al. [13]. This annotation covers
only 45% of base pairs because it does not simply con-
sider unannotated regions as negatives. Rather, each base
pair is marked as either exonic, intronic, or intergenic
only when this can be claimed with high confidence
(Additional file 1). We refer to this as our "gold standard"
annotation set.

This does not however demarcate genes and exons. For
those analyses requiring a set of exons grouped into
genes, we began with the WormBase annotation and then
created "composite gene models" to avoid double count-
ing isoforms. This was done by taking the union of exonic
base pairs for each group of transcripts arising from the
same gene. For example, if one isoform has exons 1, 2,
and 3, and another has exons 3 and 4, the composite gene
will contain exons 1, 2, 3, and 4. Also, overlapping exons
get merged and we term the resulting contiguous regions
"composite exons" (Additional file 1). Importantly, these
annotations serve as an independent verification of our
data since neither tiling array nor sequencing based evi-
dence is included in them.

Many of our analyses required us to segment the RNA-
Seq and tiling array signals into TARs. We employed the
maxgap/minrun algorithm [29,30], and, as discussed in a
later section, chose parameters affecting this algorithm
by optimizing against the gold standard set.

Correlating RNA-Seq and Tiling Array Signals
The first analysis we undertook was a direct comparison
of the signal from the two platforms. A tiling array's sig-
nal is defined as an intensity value for each probe. The
PM minus MM values are computed for all replicates,
and the replicates' signals are combined using pseudome-
dian smoothing over a window of 110 bp [30]. The signal
of RNA-Seq data is defined as a count of the number of
reads overlapping at each base pair. Neither replicates nor
smoothing were deemed necessary since it has high sig-
nal-to-noise ratio. We conclude this by observing very
high correlations (> 0.98) between "pseudo-replicates”
that we constructed by downsampling, selecting random
subsets of all reads available (Additional file 1: Table S1).
From the L2-poly(A) signal for both platforms, we com-
puted an expression level for annotated genes by taking
the mean of exonic probe values in the case of the array
and the reads per kilobase million (RPKM) in the case of
RNA-Seq. RPKM is a better quantitation of RNA-Seq
expression because it accounts for molar concentration
and transcript length [8] (Methods). Figure 1 shows that
expression levels correlate well for the two platforms
(Spearman’s correlation = 0.90), significantly higher than
the Pearson correlations ranging from 0.40 - 0.52
reported previously between MPSS and expression arrays
[20]. The logarithmic nature of the curve likely arises due
to saturation of the microarray's scanner signal [31]. Fur-
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Figure 1 Correlation of RNA expression levels between RNA-Seq
and tiling array platforms. Each point represents a gene from the
composite model. RNA-Seq expression levels per gene were measured
using RPKM, and tiling array levels were measured using the mean in-
tensity of probes falling within composite exons. The Spearman's coef-
ficient is 0.90, indicating that the platforms correlate well on identical
samples. The disproportionate number of genes in the upper left likely
represents cross-hybridization.

thermore, in the top left, we note an abundance of genes
with high average microarray intensities but low read
coverage by sequencing. This is likely due to cross-
hybridization and is discussed in a later section.

Differential Expression

Next, we examined the ability of both technologies to
identify differentially expressed genes between the L2 and
young adult (YA) life stages. The Wilcoxon rank sum test
was utilized followed by multiple hypothesis correction
[32-34], and we required the corrected g-value to be less
than 0.01 for a gene to be called differentially expressed.

The Wilcoxon test requires the two samples being com-
pared to have an equal number of data points, which is
not the case between array and sequencing signals; there
are fewer probes in a gene than base pairs. We resolve
this by converting the RNA-Seq signal to values on a
"pseudoarray”. A pseudoarray provides intensity levels for
each tiling array probe, except the intensity is computed
from reads falling within the probe's coordinates. In this
way, the RNA-Seq data mirrors the tiling array. We found
that this has only a minute effect on signal quality for
analyses not dependent on base pair resolution (Addi-
tional file 1: Figure S1).

Figure 2a plots the log2 ratio of expression between YA
and L2 for both platforms. Although the ratio was rea-
sonably correlated (Spearman's coefficient = 0.71), we
note that the dynamic range of differential expression as
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genes were not called differentially expressed by either technology.

Figure 2 Differential expression of genes between the L2 and YA stages. (a) Correlation of log2(YA/L2) ratios between RNA-Seq and tiling arrays.
Differential expression was determined using the nonparametric Wilcoxon rank sum test. Black: not significantly differentially expressed between sam-
ples. Blue: significantly differentially expressed (g < 0.01). The ratio of expression levels is well-correlated, but RNA-Seq has a larger dynamic range. (b)
Venn diagram of genes called differentially expressed by each platform. There is significant overlap (8,976) between the two platforms, but more

genes were called differentially expressed by RNA-Seq (14,201) than by tiling arrays (10,283), likely reflecting its greater dynamic range. A total of 4,326
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measured by tiling arrays was much less than that of
RNA-Seq. Specifically, RNA-Seq is able to detect larger
fold differences, probably owing to the scanner signal's
saturation for arrays.

We found 14,201 differentially expressed genes by
RNA-Seq, and 10,283 by the tiling array data. The Venn
diagram in Figure 2b shows that 86% of those called dif-
ferentially expressed by the array were also detected by
RNA-Seq. However, 38% of those called by RNA-Seq
were not detected as differentially expressed by the array.

Four regions in the Venn diagram describe those genes
differentially expressed: by RNA-Seq but not arrays, by
arrays but not RNA-Seq, by both platforms, and by nei-
ther platform. Figure 3 depicts histograms of gene expres-
sion levels based on array data for each of these
categories. We collected the values for young adult and
L2 samples into one pool. It is apparent that genes found
to be differentially expressed by only one platform have
lower expression than those detected by both. Both RNA-
Seq and tiling arrays selectively detect differential expres-
sion in genes expressed at lower levels, and as expected
low-expression genes are often not detected as differen-
tially expressed by either platform. The results are similar
if the analysis is based on expression levels computed
from the RNA-Seq data (Additional file 1: Figure S5).

GC Content Bias
From the array signal, we found that the expression level
of a gene is significantly correlated with its GC content

(Spearman's coefficient = 0.30, Kolmogorov-Smirnov
test: p < 10-15, D = 0.1522; Additional file 1: Figure S2a).
This bias is not wholly unexpected. Microarrays depend
on hybridization, and guanosine-cytosine pairs have a
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Figure 3 Histograms of gene expression levels. Four disjoint sets of
genes are considered, those differentially expressed: by arrays but not
RNA-Seq (black), by RNA-Seq but not arrays (red), by both platforms
(blue), and by neither platform (green). Genes detected by just one
platform (black, red) have lower expression than those detected by

both (blue).
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free energy of binding that is roughly 2 kcal/mol stronger
than that of adenine-thymine [35]. Thus, probes that tile
a gene with higher GC content will likely bind to its com-
plementary cDNA more tightly, potentially skewing the
results.

Interestingly, we also found a smaller, but still signifi-
cant, GC bias in the RNA-Seq data as well (Spearman's
coefficient = 0.16, Kolmogorov-Smirnov test: p < 1015, D
= 0.0991; Additional file 1: Figure S2b). This could reflect
some bias in the amplification procedure, an intrinsic
bias in expressed genes having higher GC content, or
some combination of the two.

Exon boundary detection

The Affymetrix tiling array used in this study has probes
that are 25 bp in length. As a result, we cannot expect fea-
ture boundaries to be detected with an accuracy much
higher than this. RNA-Seq data however potentially
detects features with single base pair resolution. We
investigated the relative ability of the two platforms to
detect feature boundaries by quantifying the overlap
between every exon in the gold standard set and the cor-
responding TARs. The offset is defined as positive or neg-
ative if the TAR boundary extends beyond or falls short,
respectively, of the exon boundary. We excluded TARs
that overlap with more than one annotated exon.

Figure 4 shows the resulting distribution of offsets for
both technologies. It is evident that RNA-Seq provides
much higher accuracy, with a median offset of 0 base
pairs, whereas the tiling array exons have a median offset
of 7 base pairs. Interestingly, the median absolute devia-
tion of RNA-Seq is 2 base pairs, and the corresponding
deviation of tiling arrays is 25 base pairs, corresponding
closely to the expected resolution from each platform.

We also investigated the possibility of a 3' mapping bias
in RNA-Seq [8] by plotting the number of TARs that
overlap at each point along exons from their 5' to 3' end
(Additional file 1: Figure S3).

Unsurprisingly, we did not find any bias because ran-
dom hexamers were used to prime cDNA synthesis in
conjunction with a fragmentation step (Additional file 1).
However, there is a sharp decline in reads mapping near
the ends of the exons, indicating that reads do not overlap
into introns leading to an accurate demarcation of exon
boundaries. In contrast, the same analysis for tiling arrays
produces more rounded curves with only a gradual drop
at exon boundaries, signifying a poor exon boundary
detection.

Assessing Performance Relative to Annotation

In addition to exon boundaries, we assessed how accurate
the two technologies are in predicting known transcribed
and non-transcribed regions using ROC curves. The pos-
itives and negatives are taken from the gold standard set
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described previously. First, sets of TARs were generated
for both the array and RNA-Seq data using the maxgap/
minrun algorithm. Figure 5 depicts a ROC curve parame-
terized by signal threshold; this parameter affects speci-
ficity and sensitivity to a much greater extent than the
maxgap and minrun. RNA-Seq performs substantially
better; the area under the curve (AUC) is clearly larger
than that of the array. For example, at a false positive rate
(FPR) of 0.05, the tiling array yields a sensitivity of 0.68
while RNA-Seq attains a sensitivity of 0.85. This is consis-
tent with previous results showing that expression levels
between QPCR and RNA-Seq data are better correlated
than with traditional microarrays or tiling arrays [9]. We
found that the majority of TARs, 92%, overlap an exon
while the remaining are in intergenic or intronic regions.
Combined with the above result that tiling arrays have an
average offset of 7 base pairs, we can conclude that much
of the higher FPR of tiling arrays is due to its poorer
detection of exon boundaries.

The red curve includes all 32 million mappable reads
available for the L2-poly(A) sample. In addition, we asked
how many reads are needed to achieve the same sensitiv-
ity as a microarray. We randomly selected subsets of the
total reads to simulate the effect of limiting the depth of
sequencing, and computed ROC curves as above for each
of these. At an FPR of 0.05 for the array, we find that 4
million reads are required to achieve the same sensitivity
as the two tiling array replicates. However, although the
sensitivities are matched, the FPR of RNA-Seq is over five
times better than that of the tiling array at this point.

Cross-Hybridization

Thus far we have quantified the difference between the
tiling microarray and RNA-Seq technologies. As
expected, RNA-Seq consistently performs better by most
measures. A major reason for this is likely due to the
cross-hybridization that is a known issue in tiling arrays.
Attempts to create predictive models of cross-hybridiza-
tion [36] as well as empirically determined sequence
based effects [37] have not led to general purpose meth-
ods for adjusting signal values to compensate for this
issue. Thus, the best we can do is to understand the
extent of cross-hybridization for the particular tiling
array used in this study, which we did using pseudogenes
and nearest neighbor probes. We also describe a method
for determining the genomic regions that a particular
array design does not interrogate reliably because of high
sequence similarity.

Assessing Cross-Hybridization with Pseudogenes
Pseudogenes are known to arise in two ways. Processed
pseudogenes result from the reverse transcription of
mRNA back into the genomic DNA during retrotranspo-
sition. Since the pseudogene is derived from mRNA, it
lacks a promoter region and is therefore usually not tran-
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Figure 4 Exon boundary detection for tiling array and RNA-Seq. For every TAR, we computed its offset from its overlapping exon (excluding those
that did not overlap with exactly one exon). (a) RNA-Seq has a median offset of 0 bp and a median absolute deviation of 2 bp, whereas (b) the tiling
array has a median offset of 7 bp and a median absolute deviation of 25 bp. (c) Pictorial representation of how offsets were calculated. A negative
offset means the TAR (orange) falls short of the exon (green) boundary and a positive offset means the TAR extends beyond the exon.

scribed. Duplicated pseudogenes arise when a genomic
region containing a gene is copied and a copy is subse-
quently disabled. In this case, the intron-exon structure is
intact and the inactivity of the gene is due to sequence
mutations [38,39]. We compiled a database of pseudo-
genes by running the Pseudopipe software [40], which
provides a high confidence list of duplicated and pro-
cessed pseudogenes and their respective parent genes.
Importantly, a pseudogene and its parent have high
sequence similarity but only the parent gene is likely to be
expressed. Thus, high correlation between pseudogenes'
expression levels and their respective parent genes'
expression levels is suggestive of cross-hybridization,

although there is evidence that a small fraction of
pseudogenes are expressed [41].

Table ala summarizes the results for duplicated
pseudogenes for both technologies. For the tiling array,
we find that 139 of the 258 duplicated pseudogene-parent
gene pairs are not expressed. For duplicated pseudo-
genes, the hypothesis that a gene may be active but its
pseudogene should not be is supported in 56 cases. How-
ever, in 40 cases the pseudogene is expressed at levels
similar to its parent, and in 23 cases its expression is actu-
ally higher. Thus, in 63 cases, or about 25% of the total,
we find evidence consistent with the cross-hybridization.
In contrast, for sequencing only 8% (2 + 18 out of 258) of
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Figure 5 ROC curve analysis. Black: tiling array. Red: RNA-Seq with all
32 million reads. It is evident that the RNA-Seq substantially outper-
forms the tiling array with consistently higher sensitivity at lower FPR.
Remaining curves are for RNA-Seq with only a subset of reads utilized.
Atan FPR = 0.05, just 4 million reads (blue) are required to attain the
same sensitivity as two tiling array replicates.

the pseudogenes exhibit expression levels similar to or
higher than their parent genes. The results are similar for
processed pseudogenes (Table b1b).

Measuring Cross-Hybridization with Nearest Neighbor
Classifiers

It has previously been demonstrated that cross-hybrid-
ization effects can be used to estimate transcription lev-
els, even for TARs that are not specifically probed on a
tiling array [42]. Motivated by this work, we considered
the problem of predicting expression levels using probes
that are similar in sequence to a given TAR but not within
that TAR. A strong correlation between this predicted
value and the actual intensity would suggest cross-
hybridization is occurring.

We generated "virtual tiles" spanning TARs from our
L2-poly(A) tiling array dataset. Briefly, virtual tiles are
overlapping 25 bp subsequences of a TAR, each offset by
1 bp. Then, for each virtual tile, we found the probe with
the highest similarity that didn't fall within its TAR--we
call such a probe the nearest neighbor of the tile. To pre-
dict the intensity of a TAR, we simply averaged the inten-
sities of the nearest neighbors. Figure 6a shows how the
predicted and actual expression levels computed using
tiling array data correlate for every TAR. It is evident that
TARs with a high sequence similarity to their nearest
neighbors correlate well (Spearman's correlation = 0.873),
whereas the overall correlation is much lower (Spear-
man's correlation = 0.185). As further evidence, we used
the pseudoarray to compute the correlation of the RNA-
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Seq intensity between the original pseudoprobes and
their nearest neighbor pseudoprobes on the same set of
TARs identified by tiling arrays. Here, TARs that are
highly similar to their nearest neighbors have a lower cor-
relation (Spearman’s correlation = 0.500) than that of til-
ing arrays (Figure 6b). Moreover, according to RNA-Seq
data, the expression of these high similarity TARs is sig-
nificantly lower than the overall distribution (Wilcoxon
rank sum, p < 2.2-16), which further supports the conclu-
sion that they were incorrectly called expressed because
of cross-hybridization.

We then created density plots of the expression levels
measured by RNA-Seq and tiling arrays (Figure 7). It is
apparent that high similarity regions do not fall into the
overall distribution in RNA-Seq. Strikingly, these regions
are expressed at low levels when measured by RNA-Seq,
but highly expressed when measured with tiling arrays.
This is exactly the pattern we would expect from cross-
hybridization. We collected this set of high similarity
TARs into a master list of "black list" regions whose prob-
ing by the tiling array is potentially unreliable (Additional
file 2). The list includes 2,327 regions covering a little
over half a percent of the genome.

Utilizing RNA-Seq to Calibrate Tiling Array Data

Some of the analyses we have described earlier required
us to segment the tiling array signals into TARs. Here, we
describe our method for doing this, which consists of
searching amongst possible combinations of the algo-
rithm's parameters to pick optimal ones. Then, we will
describe a method for assigning each TAR a rank score by
comparing them to null regions of the annotation, and
also assign each TAR a "marginal FPR." These first steps
are applicable to all arrays, not just those with matched
RNA-Seq data. Then, for arrays with matched RNA-Seq
data, we describe a technique for adjusting the marginal
EPR by using the RNA-Seq data as the gold standard set
instead of the annotation. This is expected to improve the
results because the RNA samples are matched, whereas
the WormBase annotation is not specific to the sample
under consideration.

Optimal Segmentation Algorithm

First, the tiling array signals are segmented into TARs
using the maxgap/minrun algorithm. Briefly, a contigu-
ous sequence of probes exceeding the signal threshold T'
is joined together to form a TAR. A number of base pairs
are allowed to fall below the threshold within a single
TAR--this parameter is the maxgap G, and regions
shorter than some minimum length are excluded--known
as the minrun R. This approach can be readily applied to
segment RNA-Seq data also.

One of the main challenges in effectively employing this

algorithm is selection of the signal threshold, maxgap,
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Table 1: Assessing cross-hybridization using pseudogenes
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Tiling Array
lower equal higher non-expr total fraction
RNA-seq lower 43 24 0 4 71 0.28
equal 0 1 1 0 2 0.01
higher 1 4 1 2 18 0.07
non-expr 12 11 11 133 167 0.65
total 56 40 23 139 258 1.00
fraction 0.22 0.16 0.09 0.54 1.00
(@)
Tiling Array
lower equal higher non-expr total fraction
RNA-seq lower 28 12 1 4 45 0.21
equal 0 2 0 0 2 0.01
higher 0 3 6 0 9 0.04
non-expr 8 36 12 100 156 0.74
total 36 53 19 104 212 1.00
fraction 0.17 0.25 0.09 0.49 1.00
(b)

(a) The total row (column) gives the number of duplicated pseudogene-gene parent pairs from the tiling array (RNA-Seq) data where the
relative expression level of the duplicated pseudogene is lower, equal, or higher than its parent gene. Non-expr means neither the
pseudogene nor its parent are expressed. The equal and higher cases are indicative of cross-hybridization because the pseudogene, which
is similar in sequence to its parent gene, is found to be expressed although most pseudogenes are believed not to be. The overlap between
the two platforms is also shown for each combination of categories. For example, out of the 56 and 71 cases where the pseudogene's
expression is lower than its parent gene for tiling array and RNA-Seq, respectively, 43 of the pseudogene-gene pairs are in common. (b)

Similar results for processed pseudogenes.

and minrun. We addressed this by using a brute-force
approach to find optimal choices for these parameters.
We selected a range of physically reasonable values for
each parameter, and computed the set of TARs for each
of a large combination of values within these ranges.
Then, for each set of TARs, we computed the sensitivity
and FPR against the gold standard set of positives and
negatives (Figure 8). We defined the optimal choice of
parameters as those maximizing the sensitivity at an FPR
of 0.05, and implemented an algorithm to automatically
determine these parameters within a small tolerance.
This gives an optimal segmentation of the signal, which

we used in our analyses. The optimal threshold, maxgap,

*

and minrun are notated T,,G,, and R, for arrays and

T.,G:,and R; for sequencing.

Rank Score and Marginal FPR Calculation

Next, we assigned a score to each TAR that ranks the
TARs in order by likelihood of expression. First, we con-
structed a null distribution of probes that are contained
in regions not annotated as exonic. Then, for a given TAR
containing a certain number of probes, we generated a
large number of regions of equal length from the null set
of probes. The rank score is defined as the fraction of
these null regions whose mean intensity exceeds that of
the TAR in question (Methods). Thus, a smaller rank
score represents greater confidence that the given TAR is
expressed.

The rank score is informative, but it is also helpful to
map this into a "marginal FPR," which has a more con-
crete interpretation. The marginal FPR represents the
FPR that would be obtained if the TAR in question is the
least confident TAR retained. In other words, given a list
of TARs ordered by their rank score, one can easily
choose the subset of TARs that would give a desired FPR.
To calculate this, the TARs are ranked by rank score from
largest (least confident) to smallest (most confident). We
then iteratively consider subsets of these TARs by setting
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Figure 6 Correlations between actual TAR intensities and that predicted by nearest neighbor probes. TARs determined by tiling array data
were tiled with virtual probes and assigned intensities using their nearest neighbors (see main text). Red points have an overall similarity score in the
top fifth percentile (black list TARs; Additional file 2). Green points correspond to TARs having an overall similarity score in the bottom fifth percentile.
Gray points are the rest. (a) Correlation between TAR intensities determined by the tiling array and the TAR intensities determined by using nearest
neighbor probes. The intensities of TARs with high similarity to their nearest neighbor probes (red) are well correlated with the actual intensities
(Spearman's correlation = 0.873). (b) Correlation between TAR intensities determined by RNA-Seq and the nearest neighbor "pseudoprobes.” The cor-
relation of highly similar TARs (red) is much lower (Spearman's correlation = 0.500).
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Figure 7 Comparison of nearest neighbor analysis for tiling arrays and RNA-Seq. (a) Correlation of TARs using intensities determined by RNA-
Seq and tiling array. The colors scheme is identical to that in Figure 6a. As expected due to cross-hybridization, TARs with high similarity scores are
called expressed by tiling arrays but not by RNA-Seq. (b) Density plot showing fraction of TARs (y-axis) with a given RNA-Seq expression level (x-axis).
As above, TARs are segregated by similarity. It is clear that TARs with the highest similarity (red) fall in a different distribution and are generally not
expressed according to the RNA-Seq data. (c) Similar but x-axis is the TAR intensity from tiling arrays. In this case, highly similar TARs are more likely to
be highly expressed, suggestive of cross-hybridization. The distribution of highly similar TARs exhibits a bump, possibly due to more highly expressed
TARs being more likely to exhibit cross-hybridization.

an increasingly stringent rank score cutoff. For each such  Adjusting the Marginal FPR Based on RNA-Seq

subset, we compute an FPR by comparing it to the anno-
tation, and call this the marginal FPR of the least confi-
dent TAR still in the set (Methods).

The analysis method up to this point does not require a
matched RNA-Seq data set. We now consider a method
for refining the marginal FPR based on the case that
matched sequencing data is available. The first step is to
segment the RNA-Seq data as described previously, and



Agarwal et al. BMC Genomics 2010, 11:383 Page 11 of 16
http://www.biomedcentral.com/1471-2164/11/383

Tiling Array Data RNA-Seq Data

Tiling array TARs using annotation as gold standard RMNA-Seq TARs using annotation as gold standard
24 29 T, Gs* Rs?
Ta*, Ga?, Ra*
z g’
2 =
3 -
5 ]
o | = al
Eh Eh Ti, Gi, Ri
N LTI
Optimal tiling arrays parameters Ta*, Ga¥, Ra* Optimal RNA-Seq parameters Ts*, Gs*, Rs*
Set of Tiling Aray TARs Setof RNASeq TARs
r |
TAR intensity vs. null TAR distribution o e .
Optimal tiling array TARs using RNA-Seq
data or annotation as gold standards
= /TAR intensity
S Q ]
3 =

rank score AFPR
*L 5 -| parametrized by

Null TAR intensity rank score

0.8

iterate over all TARs

2 o |
o= (=]
Rarked Setof TARs =
o
o
(=
Qo
w s
o
(=] '
= RNA-Seq annotation
« Wormbase annotation
Q|
(=]

T T T T T T
0.00 0.01 0.02 0.03 0.04 0.05

Marginal FPR
Calibrated False Positive Rates

Figure 8 Schematic describing the tiling array analysis and FPR calibration pipeline. First, we optimize the threshold, maxgap, and minrun pa-
rameters of tiling arrays and RNA-Seq segmentation, notated T, G, and R, respectively. To do this, we compare the called TARs to a manually curated
gold standard set and do a brute-force search over the parameter space to attain an FPR of 0.05 with maximum sensitivity. Then, as detailed in the
main text, we calculate a rank score for each tiling array TAR by comparing its intensity to a distribution of null TARs constructed from non-exonic
regions. We then map this value to a marginal FPR, which is calculated by sorting the TARs based on their rank score and then iteratively selecting
smaller subsets of TARs, assigning the FPR to the TAR defining the outermost boundary. This marginal FPR can then be adjusted by following a similar
procedure using the RNA-Seq data as a gold standard set, giving a calibrated marginal FPR for each TAR.
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then use these sequencing TARs as gold standard posi-
tives and the remaining regions as gold standard nega-
tives. Then for each array TAR, we compute the FPR,
now using the sequencing based set of positive and nega-
tive regions. Figure 8 shows that the ROC curve is
improved with regard to both sensitivity and FPR. Fur-
thermore, the lines between the ROC curves connect
points corresponding to the same subset of array TARs.
Thus, we can see how much the marginal FPR shifts and
call this the AFPR.

Note that the particular AFPR is different for each sub-
set of TARs, each of which corresponds to a particular
rank score. We write AFPR(r) to indicate AFPR's depen-
dence on r. This serves as a calibration of the original
marginal FPRs, which is adjusted to FPR + AFPR(r)
(Methods).

In this particular case, the ROC curves are reasonably
close to each other and the AFPRs are small. This indi-
cates that assigning FPRs based on the conservative
annotation we have been using is reasonable, but in other
cases the calibration could be used to refine the analysis.

Discussion

We demonstrated that most gene expression levels are
well correlated between RNA-Seq and tiling arrays. There
are some outliers, which are generally called highly
expressed by tiling array and poorly expressed by RNA-
Seq. In previous studies, similar outliers were also found
and when analyzed with qPCR, it was evident that their
profile was masked by cross-hybridization [23]. To fur-
ther bolster this conclusion, we note that a substantially
greater number of inactive pseudogenes are called
expressed by tiling arrays (Table 1) when compared with
their paralogous parent genes. Furthermore, TARs tiled
by probes that are highly similar to their nearest neigh-
bors also tend to be called expressed by tiling arrays and
not by RNA-Seq, strong evidence of cross-hybridization.

We have demonstrated that a simple similarity score
threshold for tiling array probes can identify potentially
unreliable regions (Figures 6a, 7). To immediately aid
researchers conducting tiling array analysis on C. elegans,
we provide our manually compiled list of such "black list"
regions (Additional file 2). It is important to note, how-
ever, that these unreliable regions are dependent on the
design of the tiling array and possibly on other factors
such as hybridization conditions; an analysis like ours
would need to be re-run in other scenarios.

Besides cross-hybridization, another drawback of tiling
arrays is the limited dynamic range of detection [9]. Pre-
vious work has presented RNA-Seq data with a dynamic
range varying over 5 orders of magnitude [8]. Consistent
with this, we note that ~40% more genes are called differ-
entially expressed by RNA-Seq between two distinct sub-
populations of C. elegans, even when using a conservative
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statistical test. It is also clear that the fold difference of
differential expression is greater for RNA-Seq (Figure 2a).
Bloom et al. deliberately used fewer reads and a high
number of array replicates in their comparison of differ-
ential expression in S. cerevisiae [43]. This defines "fair
comparison” in an alternative way, one where the cost of
experimentation is similar, and they find that arrays bet-
ter distinguish differential expression for low abundance
transcripts. This is because those transcripts' specific
probes will still exhibit hybridization while the few reads
may not be picked up in sequencing.

Yet another drawback of tiling arrays is the comparative
lack of exon boundary resolution. Not unexpectedly, the
median absolute deviation of aggregated exon boundaries
is much smaller for RNA-Seq than for tiling arrays,
reflecting the size of the oligonucleotide probes in our til-
ing arrays. This distinct difference between the two tech-
nologies is especially important when sequencing
unannotated transcriptomes and detecting alternative
splicing; these results accentuate why RNA-Seq has been
so successful at both types of analysis [15,18,44].

Given the superiority of RNA-Seq using these metrics,
our strategy of using RNA-Seq as a gold standard set for
guiding tiling array analysis may be useful for calibrating
experiments where large numbers of tiling array runs are
required. It is conceivable that one or two "pilot" RNA-
Seq experiments could guide a series of microarrays.
Indeed, a variant of this strategy was used successfully
when validating the de novo assembly of the Glanville frit-
illary butterfly's transcriptome [45]. It may also prove
useful for probing the transcriptomes of organisms with
poor transcriptome annotation. This general strategy has
the potential to be expanded from the maxgap/minrun
algorithm to other methods, such as hidden Markov seg-
mentation. We find that the false positive rate deter-
mined for tiling array TARs decreases by an average of
~10% when using the RNA-Seq data as a gold standard
set instead of the high-confidence WormBase annotation.
Even though using the annotation as a gold standard set is
not optimal, because not all annotated transcripts are
necessarily expressed, it is satisfying to observe that the
effect is relatively small. Given the wealth of expression
data coming from both RNA-Seq and tiling array analy-
ses, it is often difficult to understand how to interpret
cross-platform results. As a first step, we examined the
relationship between transcriptome coverage and quality
of called TARs. Furthermore, we determined the approxi-
mate number of reads required to yield a sensitivity com-
parable to that of tiling arrays at a given FPR. This is of
practical importance to researchers employing RNA-Seq,
since the cost of sequencing is generally proportional to
the number of reads obtained. It is important to note,
however, that the transcriptome is dynamic--expression
can vary widely between different life stages and growth
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environments. For the L2-poly(A) C. elegans transcrip-
tome, we find that 4 million reads are necessary to
achieve a similar sensitivity to tiling arrays. Importantly,
because of its single nucleotide resolution, the FPR of
RNA-Seq at this sequencing depth is >5x greater than
that of tiling arrays.

In order to extend this conclusion to other organisms,
we outline a simple method of approximating transcrip-
tome coverage. In principle, the coverage of the transcrip-
tome could be calculated if we knew the exact number of
base pairs of RNA present at a given point in time. Since
this is difficult to measure, we can approximate this num-
ber for organisms whose transcripts are well annotated,
by assuming that the total number of base pairs of RNA
in the cell is proportional to the total number of base
pairs of annotated transcripts by some constant c. This
approximation makes the assumption that varying tran-
script expression levels averages out across the transcrip-
tome. Thus,

NXR

coverage =

where L is the number of annotated exon base pairs,
including isoforms to account for complexity of tran-
scription, N is the total number of reads within annotated
exons, and R is the average read length. It is reasonable to
assume that ¢ should be relatively constant across organ-
isms, and so this coverage value may be meaningful for
organisms other than C. elegans.

Although almost all of our analyses have indicated oth-
erwise, there are some drawbacks for RNA-Seq. "Cross-
mapping" is an analogous problem to cross-hybridization,
and has been addressed in complex organisms [8] partic-
ularly because it poses a problem for genomes with many
repetitive regions. We included only high quality mapped
reads, but allowing greater mismatches, which could be
beneficial for detecting additional transcription, would
lead to decreased confidence in the transcriptional activ-
ity of regions with high sequence similarity. Our analysis
was less affected by this issue since the C. elegans genome
does not contain many repetitive regions (~87% is non-
repetitive; [46]), and also because we included a rigorous
pre-processing step that left less than 3% of reads map-
ping to multiple locations in the C. elegans genome [13].
In principle, however, it is important for users of RNA-
Seq to consider the repetitiveness of the genome they are
analyzing, to determine how many reads map to multiple
locations, and understand how they are dealt with.
Importantly, different software packages deal with ambig-
uous reads differently; for example, MAQ assigns these
reads randomly, whereas cross_match gives information
about the alternative mapping sites. Ironically, it is evi-
dent that tiling arrays are not immune to the problem of
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ambiguous mapping; indeed ~6% of tiling array probes
used in this study map to multiple locations in the C. ele-
gans genome (Additional file 1: Table S2).

As read lengths continue to get longer, however, the
problem of ambiguous read mapping will certainly
become less of an obstacle. Indeed, the tantalizing possi-
bility of obtaining kilobase long reads may completely
eliminate this altogether. However, it has recently been
demonstrated that transcript length affects differential
expression analysis [47]. Furthermore, the problem of
rRNA and tRNA overloading the reads often forces RNA-
Seq users to purify RNA over a poly-dT column, poten-
tially losing RNA species of interest. This problem is cur-
rently being bypassed with the increased availability of
kits for specific removal of rRNA from total RNA samples
(Ambion, Invitrogen).

A less tangible disadvantage of RNA-Seq is the require-
ment for "big data,” which can cause problems in storage,
portability, and processing time [48]. For example, just
the sequences from the L2-poly(A) RNA-Seq dataset take
up ~13 gigabytes. For genomes larger than C. elegans,
which require more reads, this number can rapidly
increase. Larger data is simultaneously more costly to
archive and easier to corrupt. Furthermore, these large
datasets can often strain computational resources with
respect to both processing time and memory usage.
Although great strides have been made, as RNA-Seq
grows in popularity, it is imperative that highly efficient
RNA-Seq software pipelines and data formats be devel-
oped.

Conclusions

We compared the relative merits of tiling arrays and
RNA-Seq by investigating the transcriptome of a matched
C. elegans sample. Both platforms effectively detected
transcript expression levels and their raw signals were
highly correlated. RNA-Seq however finds a greater num-
ber of differentially expressed genes and excels at accu-
rately detecting exon boundaries. As technical obstacles
are overcome and highly efficient software pipelines are
constructed for RNA-Seq, its increased specificity and
sensitivity will undoubtably be a major boon for tran-
scriptomics. Its resolution of exon boundaries and ability
to detect alternative splice variants is unparalleled. In
addition RNA-Seq data contains actual sequence infor-
mation that can be used for applications like SNP detec-
tion that cannot be identified from tiling array data. On
the other hand, tiling arrays remain cost effective for
many species and perform reasonably well with respect to
expression levels, with the caveat of cross-hybridization
effects. It will be important to continue investigating the
relative merits of these technologies and to carefully
select the appropriate platform based on the biological
questions being addressed.
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Methods

Correlations

For each base pair in the WS170 build of the C. elegans
genome, the reads mapping to the plus and minus strand
of that base pair were added together to give an overall
score. Then, for each gene in the composite model, the
RPKM was calculated as in [8] for the L2-poly(A) RNA-
Seq data. To calculate the intensity per composite gene
from the tiling array analysis, a probe was considered to
be within a composite exon if it was wholly enclosed by
that exon. Then, the average probe intensity from the
smoothed L2-poly(A) data was assigned to that gene.

Differential Expression

In order to make a fair comparison between tiling arrays
and RNA-Seq, "pseudoarrays" were constructed by calcu-
lating an RPKM using either the L2-poly(A) or YA-
poly(A) RNA-Seq data for each perfect match probe on
the tiling arrays. When used in conjunction with the
WormBase composite gene model, the pseudoarray pre-
dicts gene expression levels almost identically with the
raw sequencing data (Spearman's correlation = 0.99,
Additional file 1: Figure S1). This pseudoarray was then
treated identically as its tiling array counterpart for the
rest of the analysis.

For the tiling array, we used L2-tot and YA-tot RNA
samples. We did not employ the L2-poly(A) array data for
this analysis to avoid skewing the calculation against YA-
tot, which was the only young adult data available for the
array. This should not affect the results substantially since
we found that both L2-tot and L2-poly(A) correlate rea-
sonably well with the RNA-Seq L2-poly(A) data (Figure 1;
Additional file 1: Figure S4).

To determine differential expression for both technolo-
gies, their respective YA and L2 data were quantile nor-
malized as in [49]. As before, a probe or pseudoprobe was
assigned to a composite gene if it fell wholly within a
composite exon. We then used the Wilcoxon rank sum
test to compute a p-value for each composite gene's set of
probes between the YA and L2 datasets. The p-values
were then transformed to g-values using the method of
[34]. If a gene's g-value fell below 0.01, it was considered
differentially expressed.

Exon Boundary Detection

To assess the accuracy of exon boundary detection we
selected a set of TARs from both the tiling arrays and
RNA-Seq (Additional file 1). Next, for every exon in the
gold standard set, we determined the overlap between its
boundaries and the corresponding boundary of an over-
lapping TAR, if any. The offset is defined as positive or
negative if the TAR boundary extends beyond or falls
short, respectively, of the exon boundary. TARs that over-
lapped with more than one annotated exon were
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excluded. Lastly, the offsets from both the 5' and 3' exon
boundaries were collected and the offset distribution was
plotted. We used the gold standard set from [13].

Pseudogene Analysis

Worm pseudogenes were obtained from pseudopipe [40],
which is itself based on the WS170 build of the C. elegans
genome. A total of 530 duplicated pseudogenes and 257
processed pseudogenes were found. The genomic coordi-
nates of the associated parent genes were obtained using
Ensembl. After setting a further requirement that there
must be at least six array probes in the pseudogene and
its parent gene, we obtained 258 duplicated pseudogenes
and 212 processed pseudogenes.

Using the matched L2-poly(A) samples, a pseudogene
was called expressed if it passed a minimum array inten-
sity threshold of 100 or minimum read count of 1. We
added noise from a normal distribution centered about
zero with a standard deviation of 0.1 to pseudogene and
parent gene values to prevent ties. If both the pseudogene
and parent gene were called expressed, the Wilcoxon
rank sum test was utilized to determine if the expression
level of the pseudogene is "higher," "lower," or "equal” to
its parent gene, using a p-value cutoff of 0.01. If the
pseudogene or parent gene were both not expressed, they
were considered equal. If one was expressed and the
other wasn't, they were considered differentially
expressed.

Nearest Neighbor Analysis

Once we determined the TARs from the tiling arrays, we
constructed a set of "virtual tiles" for each TAR. We tiled
the TARs with 25 bp probes with an offset of 1 bp. This
resulted in about 21 M tiles covering all the TARs. For
each virtual tile, we then searched for its nearest neighbor
probe, i.e. the tiling array probe with the most similar
sequence. We searched in the database composed by
about 6 M probes, since we considered perfect-match
and mismatch probes independently. To do this, we
employed blat [50] with parameters tileSize and minScore
set to 8 and 12, respectively, in order to adjust for the
short reads. Each virtual tile may have one or more
probes with different levels of similarity. We chose the
most similar, i.e. the one with more nucleotides in com-
mon, but we excluded probes that are located within the
same TAR to ensure we obtain an accurate estimation of
the cross-hybridization signal. We then assigned to each
virtual tile the intensity of its nearest probe. We finally
estimated the expression level of the nearest neighbor
TAR by computing the average intensities of the virtual
tiles and compared this value with the expression level
measured from the actual probes within the TAR (deter-
mined by averaging their PM-MM values). For each TAR,
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we determined the similarity score by taking the mean of
the similarity of all its nearest neighbor probes.

Finally, each TAR is characterized by its intensity value
measured by the tiling probes and the RNA-Seq, the
intensity values and average similarity estimated from its
nearest neighbor probes. To create our master list of
cross-hybridization TARs, we selected those in the top
5% similarity score (highly similar TARs). This threshold
was selected to yield a reasonable separation of intensities
between the highly similar TARs and the overall TARs.

Tiling Array Rank Score Calculation

For each TAR called by tiling arrays, we computed a rank
score for every TAR to give an estimate of how likely it is
that the TAR is truly transcribed. As a first step, we cre-
ated a null distribution of probes that are likely not tran-
scribed. We considered any probe that did not fall into an
exon marked as "confirmed" by WormBase to be in the
null distribution. This liberal choice of a null distribution
allowed us to create the rank scores with higher resolu-
tion.

For each TAR, we determined the number of probes L
falling within its boundaries, and created a set of 500,000
null TARs, each also having L probes, by selecting null
probes at random. Then, the rank score is simply A/
500000, where A = the number of intergenic TARs whose
mean intensity is above that of the TAR in question. It is
important to note that the lower the rank score, the more
confident we are that the TAR is expressed. Furthermore,
this value is not monotonic with intensity, since it is
dependent on the TAR length.

Marginal FPR Calculation and Adjustment

Let [TAR,,TAR,, .., TAR,] represent the list of N TARs in
descending order by rank, so that the first TAR is the least
confident one. Then, we compute the FPR against the
annotation for this entire list, and call this the marginal
FPR of TAR,. Next, we remove TAR;, compute the FPR
for the list [TAR,, .., TAR,], and assign this as the mar-
ginal FPR of TAR,. Then, TAR, is removed and the pro-
cess is continued for each subset of TARs.

The FPRs above are computed using the annotation.
This procedure is then repeated, except using the
matched RNA-Seq TARs as the gold standard set, leading
to an alternative marginal FPR for each TAR. The differ-
ence between the two marginal FPRs is notated AFPR and
can be used as an adjustment for TARs with the corre-
sponding rank score.

Additional material

Additional file 1 Supplementary materialDetailed descriptions of
experimental and analysis methods, and additional results.
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Additional file 2 Black list regions. List of regions deemed unreliable, for
the tiling array used in this work, based on nearest neighbor analysis.
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