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Abstract
Background: Structural variations in the form of DNA insertions and deletions are an important
aspect of human genetics and especially relevant to medical disorders. Investigations have shown
that such events can be detected via tell-tale discrepancies in the aligned lengths of paired-end DNA
sequencing reads. Quantitative aspects underlying this method remain poorly understood, despite
its importance and conceptual simplicity. We report the statistical theory characterizing the length-
discrepancy scheme for Gaussian libraries, including coverage-related effects that preceding models
are unable to account for.

Results: Deletion and insertion statistics both depend heavily on physical coverage, but otherwise
differ dramatically, refuting a commonly held doctrine of symmetry. Specifically, coverage
restrictions render insertions much more difficult to capture. Increased read length has the
counterintuitive effect of worsening insertion detection characteristics of short inserts. Variance in
library insert length is also a critical factor here and should be minimized to the greatest degree
possible. Conversely, no significant improvement would be realized in lowering fosmid variances
beyond current levels. Detection power is examined under a straightforward alternative hypothesis
and found to be generally acceptable. We also consider the proposition of characterizing variation
over the entire spectrum of variant sizes under constant risk of false-positive errors. At 1% risk,
many designs will leave a significant gap in the 100 to 200 bp neighborhood, requiring unacceptably
high redundancies to compensate. We show that a few modifications largely close this gap and we
give a few examples of feasible spectrum-covering designs.

Conclusion: The theory resolves several outstanding issues and furnishes a general methodology
for designing future projects from the standpoint of a spectrum-wide constant risk.

Background
The relevance of genomic structural variation (SV) to
human medical disorders is well-known [1,2] and efforts
are starting to focus more systematically on characterizing
SV and its implications [3]. Recent advances in technology
[4], combined with the availability of the human genome
sequence [5], are now opening dramatic new avenues of

SV research [6-12]. These developments collectively point
to the pending feasibility of investigating SV over its entire
size spectrum. The most comprehensive projects will
locate and identify variants, sequence them, and finally
establish their statistical characteristics within a popula-
tion [9].
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Broadly speaking, SV encompasses translocations, inver-
sions, and copy number variations and other types of
inserted and deleted sequences (indels). Here, we focus
on the last category, which is believed to occur the most
frequently [6]. Historically, cytogenetic techniques were
used to examine instances of SV that were sufficiently
coarse so as to be visible under a microscope [13]. Array
technologies were later used heavily, but these platforms
were still not able to reliably capture alterations well
below 40 kb [14]. More recently, Volik et al. [15] proposed
a procedure based on paired-end sequences that can
detect much smaller variants, depending upon the type of
sequence insert one employs. The scheme is remarkably
straightforward in concept, relying on the fact that if the
subject genome contains an insertion or deletion struc-
tural variant (ISV or DSV, respectively), the length statis-
tics of any paired-ends aligned to a reference genome will
differ from those of the progenitor library. Specifically,
inserts would appear to be longer and shorter on average,
respectively, for DSV and ISV (Fig. 1). The method basi-
cally furnishes a metaphorical caliper for observing the
tell-tale length discrepancies that characterize SV.

Although investigators are actively pursuing this tech-
nique [6-12], it is still somewhat new and its conceptual
simplicity actually belies a number of latent complica-
tions. Alignment tasks are not trivial [16,17], nor are accu-
rate descriptions of a host of statistical issues. For instance,
breakpoint localization has only been examined under
the idealization of constant insert lengths [18]. Gaussian
length distributions provide a much better empirical fit.
Indeed, projects routinely invoke precisely this assump-
tion, subsequently exploiting elementary Gaussian

thresholds to define their SV detection framework. For
example, a common rule has been to declare SV if the
aligned average length differs from the library average by
at least 3 standard deviations [6,10,11,15]. This threshold
implies a confidence interval of slightly better than 99%,
or equivalently, the chance of committing a false positive
classification error of  < 1%. Other procedures call for
considering inserts more than 2 deviations from the aver-
age [17].

In actuality, the statistical aspects of this problem are
rather more complicated than what the above practices
would suggest. One of the outstanding issues is coverage,
which current theory ignores entirely [6,10]. Traditional
fixed-length processing models [19-22] are not particu-
larly useful here because the local covering dynamics will
depend upon the variation of insert lengths in the library.
While the role of variability has actually been recognized
for some time [20,23], it has not been formally investi-
gated much beyond the elementary uniform distribution
model [24,25]. Consequently, there is little understand-
ing of how the main statistical classifiers,  and  (Table
1), are affected by Gaussian variance through the mecha-
nism of coverage. A subtext to this point is that the statis-
tics of ISV versus DSV are not symmetric, as is commonly
assumed [6,10,11,15]. Finally, it appears that there have
been no comprehensive studies related to the statistical
power of the method or to how the spectrum of SV sizes
can be effectively managed in a project.

All of these issues have important implications for the
broader enterprise of SV research, from project planning
and optimization to defining detection rules within SV
algorithms. Here, we report the mathematical analyses
that lead to a general a priori statistical characterization of
ISV and DSV when using the length-discrepancy tech-
nique in conjunction with Gaussian libraries. We describe
several novel aspects of SV detection revealed by this the-
ory and comment on their implications for pending SV
projects.

Results
Alignments to the reference genome for which one or
more inserts seem either abnormally long or short may
represent instances of SV (Fig. 1). In the theoretically ideal
case of identical insert sizes, the task of SV identification
is elementary. A single spanning insert is sufficient for an
un-ambiguous assignment, i.e.  = 0, and the detection
power is simply the local coverage probability, 1 - e-,
where  is the redundancy [19]. The actual problem is ren-
dered more difficult by the natural length variability
present in all libraries; It tends to obscure the ability to dif-
ferentiate true SV-related length differences from those
arising merely from the population sampling effect [26].
Although methodology-related artifacts can also arise, e.g.

Diagram of an insertion SV (ISV)Figure 1
Diagram of an insertion SV (ISV). Sequence inserts 
derived from the subject genome have a known average 
length, but appear to be shorter than average when their 
end-read pairs are aligned to a reference genome. This 

implies that segment , having length  = |x2 - x1|, is 

inserted in the subject genome. Deletion SV (DSV) is the 
complement of this phenomenon and can be visualized by 
swapping the "subject" and "reference" labels in the diagram.
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anomalous mappings of chimeric or extremely small
reads, we do not explicitly investigate these second-order
effects.

Consider a library in which the insert length  is Gaussian
(normally) distributed [26,27] as

where  and  are the average and standard deviation of
length, respectively, and exp is the exponential function.
End-pair alignment of randomly selected inserts yields a
sample whose members span a candidate SV region hav-
ing a magnitude at least  = |x2 - x1| (Fig. 1). The associated
length statistics that we wish to describe are functions of
several variables (Table 1) and are governed by what we
call the sampling and covering problems. Their solutions
can subsequently be combined in a number of ways to
represent the various possibilities of considering SV.

The Sampling Problem

Let random variables  and  represent the number of
randomly selected inserts that span a candidate SV site
and the mean length of these inserts, respectively. The
sampling problem requires the determination of confidence
intervals on  with respect to the size of SV being examined.

That is, if the probability of  being within  ±  by virtue
of random sampling effects is very high, then any actual
average falling outside these limits would be significant.
Such an observation would strongly imply an instance of

SV of size at least .

Theorem 1 (Sampling Probability)

Define the null hypothesis, h0, as the absence of SV of size

. Given k inserts spanning , the two-tailed test for h0

is
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Table 1: Notation for Structural Variation (SV) statistics

Variable Meaning

Probabilistic Descriptors of SV Detection

 probability of false-positive errors
 probability of false-negative errors

Genomic and Project Parameters

 average insert length in a Gaussian library
 standard deviation in a Gaussian library
 length of an instance of structural variation
r (constant) sequencing read length
 difference threshold specified for power analysis
N number of inserts processed
G haploid subject genome length
m minimum admissible insert size (Eq. 5)
 haploid physical coverage ( N /G)

Labels Defining Types of SV

ISV insertion SV
DSV deletion SV
Ht heterozygous SV
Hm homozygous SV

Functions and Random Variables

erf Gaussian error function (see e.g. Ref. [28])
exp exponential function

random number of inserts spanning an SV site
random length of an individual insert
random mean length of inserts spanning SV site


L
M
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where erf is the Gaussian error function [28]. Eq. 2 gives
the sampling probability that a perceived event of ISV 
DSV will actually fall within the established confidence
interval due to random sampling effects. Conversely, the
sampling probability of either type of SV event considered
alone, i.e. as a one-tailed test is

where these represent ISV and DSV, respectively.

The Covering Problem

The covering problem addresses the question of how many

inserts span  and is complicated by several factors.

First, there are non-trivial difficulties in the alignment
process [16], necessitating several simplifying, but reason-
able assumptions. Given fixed sequencing read lengths of
r (Fig. 1), we do not consider cases in which a read, rather
than its progenitor insert, intersects the boundaries of

. Such instances would lead to read-splitting in DSV

and read-truncation in ISV. This scenario is actually the
basis of an altogether different kind of detection tech-
nique [29], which we do not discuss here. So-called "sin-
gleton reads" can arise if the missing mate originated
entirely within an ISV, and we briefly discuss this possibil-
ity further below.

The second complication is that the statistics of ISV and
DSV are not actually symmetric, as is commonly pre-
sumed [6,10,11,15]. For example, in the strictest case, we
do not admit singleton reads in ISV, meaning the place-
ment constraints are much more restrictive than for DSV.
Lastly, the Gaussian model itself introduces certain math-
ematical difficulties.

Lemma 2 (Bernoulli Covering Probability)
Consider the event S in which a single insert of length l
(Eq. 1) spans a site of SV. Let Hm and Ht represent the sta-
tus of the SV as homozygous and heterozygous, respec-
tively. If the genomic source has a haploid length G, the
Bernoulli probabilities of S are

Where

is the minimum admissible insert size and l  m (Eq. 11).

If singleton reads are allowed for ISV, then m would actu-
ally be smaller than the expression given in Eq. 5, how-
ever, there is no reliable basis for measuring insert length
in such cases, even for perfect, un-ambiguous alignments
[16]. Consequently, there is an irreconcilable mismatch
between the numbers of covering and sampling inserts. In
the interest of being able to make direct comparisons to
the established symmetric models using a two-tailed test
[6,10,11,15], one could simply, though somewhat errone-
ously, take m = 2r for these cases.

Theorem 3 (Coverage Distribution)

 is Poisson distributed [26,27] with a rate

where

is the general rate expression and N is the number of
inserts that have been processed.

Statistical Models of SV
The classification problem for SV is characterized by the
probabilities of incorrectly calling out an instance of SV (a
false positive) or overlooking a true instance of SV (a false
negative). Such scenarios are described by the traditional
inference probabilities  and , respectively [26], which
can be constructed from the above components. We dis-
cuss some of the various combinations here, again taking
the null hypothesis, h0, as the absence of SV of size at least
.

Theorem 4 (General Characterization of False-Positives)
Let C be the event that the sample average length falls
within some specified confidence interval, then

is the probability that differences between the sample and
library average lengths are attributable to the sampling
effect [26]. Instances falling outside the interval imply
rejecting h0 and these are significant at a level of  = 1 -
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P(C). This statement immediately implies the following
corollaries.

Corollary 5 (Standard Model)
The standard model recognizes the inherent asymmetry
between ISV and DSV, employing separate one-tailed tests
for each. Specifically C represents intervals  -    and  
 +  for ISV and DSV, respectively, where the variable m
embedded in these equations assumes appropriate values,
as given by Eq. 5. Homozygous and heterozygous config-
urations are differentiated according to Eq. 6.

Corollary 6 (Symmetric Model)
The symmetric model disregards the asymmetry between
ISV and DSV and implements classification according to
the two-tailed test, where C is the interval  -      + 
and where m = 2r for both ISV and DSV. Homozygous and
heterozygous configurations are again differentiated
according to Eq. 6. This model can be regarded as a direct
extension of previous work [6,10,11,15], though it har-
bors the singleton anomaly discussed above.

Theorem 7 (Elementary Characterization of False-Negatives)
Let D be the event that an instance of SV is provisionally
detected (i.e. not overlooked), as defined under the fol-
lowing conditions: It is spanned by at least one insert and
the length of at least one of those spanners is different
from the library mean by a specified threshold amount .
We have

where t = /( ). Consequently, the detection power

P(D), sometimes written more traditionally as 1 - , is
given by Eq. 8, where C is replaced by D.

Discussion
Here, we examine some of the consequent properties of
the so-called length-discrepancy method that will have
implications for future projects. This discussion is framed
in terms of several insert types that are in either experi-
mental or common use (Table 2). We concentrate largely
on the most conservative event from the standpoint of
detection: heterozygous insertion.

Overview of Trends for False-Positive Calls
Thus far, concerns have predominantly focused on the
rate of false-positive SV declarations. The general method-
ology has been one of assuming symmetric behavior of
ISV and DSV and subsequently employing elementary
Gaussian thresholds, usually ± 3 , to control false-posi-

tive errors [6,9-11,15]. For example, Tuzun et al. [6] aimed
to identify SV of size   8 kb using fosmids. Fig. 2 revisits
this aspect of the problem with respect to heterozygous SV
for the edge cases of Illumina Genome Analyzer (GA)
short inserts and large-insert fosmids (Table 2). Here, we
demonstrate that false-positive behavior is more complex
than what simple Gaussian thresholds are able to capture.

The asymmetry between ISV and DSV is quite clear. Statis-
tical significance of DSV detection is basically governed by
a single minimum size, min, for each specific case. For
example, the significance level  = 1% for fosmids is real-
ized for roughly all   8 kb at  = 8× physical coverage.
While matching the min = 8 kb calculated by Tuzun et al.
[6], this datum is purely a coincidence. Asymptotic  is
actually highly dependent upon the physical coverage, as
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Table 2: Representative insert types for discovery over the SV 
spectrum

insert type  (kb) COV (%) r (bp)

Illumina GA shorta 0.25 12 50
Illumina GA intermediateb 3 12 50
454c 3.2 25 250
Illumina GA longd 10 12 50
fosmide 39.9 7 600
BACf 136.4 21 600

a representative of < 1 kb inserts, see e.g. refs. [4,29]
b insert length representative of extended chemistry protocols for 2–
5 kb inserts, see e.g. ref. [33]
c library parameters reported in ref. [8]
d experimental, not currently in routine use
e library parameters reported in ref. [6]
f primary breast tumor library B421, see ref. [11]

Heterozygous ISV and DSV false-positive trends for 250 bp Illumina GA inserts and 40 kb fosmids (Table 2) for selected values of physical coverage ( = N /G)Figure 2
Heterozygous ISV and DSV false-positive trends for 
250 bp Illumina GA inserts and 40 kb fosmids (Table 
2) for selected values of physical coverage ( = N /G).
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shown in the figure, while min is only weakly dependent
upon .

The situation for ISV is quite different in that there is not
only a min, but also a maximum size, max. The latter arises
because placement constraints for fixed  increase with
ISV size. Physical coverage is again tightly coupled with
these limits. Increased  not only renders the better
(lower) values of  more accessible, but also widens the
range of acceptable . For example, heterozygous ISV
using fosmids does not register at the 1% significance
level even at 8× physical coverage. However, at 12×, events
are significant roughly in the range 3,700    12,700 and
at 16× in 2,800    19,200. The upper limit on 
increases somewhat faster with redundancy than does the
lower limit for ISV.

While trends are similar for Illumina GA short inserts,
there are notable differences with respect to physical cov-
erage. In particular, ISV at 1% significance does not
become feasible until roughly 24×, and even then its range
is quite small. The main parametric differences from fos-
mids are that the variance is higher here, 12% coefficient
of variation (COV) vs. 7% reported in ref. [6], and that
read length is a much greater fraction of insert length, i.e.
r/ = 20% here vs. about 1.5% for fosmids. Increased var-
iance obviously degrades the statistics, but ironically, so
do "better" read lengths. The latter phenomenon arises
because of the requirement that reads lie outside the inser-
tion, which implies fewer placement possibilities for cov-
ering (Eqs. 4 and 5). These observations indicate that
short-read data will generally have to be generated at
much deeper redundancies than large-insert clones (dis-
cussed in more detail below) and also raise the issue of
optimal read lengths. However, the latter depend on all
the methods one might use to find variation, so it cannot
be settled on the basis of the length-discrepancy approach
alone.

All ISV curves approach the asymptote  = 50% as 
increases as a consequence of vanishing covering proba-
bilities. Inferences in these regions are no better than a
coin flip. Notice that the fosmid curves also approach the
50% asymptote as   0. The underlying factor here is a
vanishing precision, not unlike that experienced when
evaluating the small difference between two increasingly
large numbers.

Remarks on Detection Power
The concept of detection power is never entirely precise
because it requires adoption of ad hoc alternatives to the
null hypothesis [30]. Ours rests on a simple, but intuitive
presumption: detection is only possible if at least one
insert spans the SV site, and if at least one of these span-
ners has a length sufficiently different from the library

average, as specified by . For instance, for ISV, at least one
covering insert must be shorter than  - , meaning its
aligned length will be less than  -  - .

Thresholds can be specified in numerous functional ways,
each of which has certain implications for finding SV of
different sizes. Fig. 3 examines the idealized scenario of 
= 0 for heterozygous ISV. Each curve is asymptotic for  <<
, but rapidly decays as SV size approaches the insert size.

Asymptotics are readily shown as a special case of the
model to be

In fact, Eq. 10 also represents the (constant) power for
DSV. Here again, we see that inserts having relatively long
reads, i.e. larger r/, are penalized, but increased redun-
dancy can compensate for the shortfall. For instance,
asymptotic power for Illumina GA data could be made
equal to that for fosmids if its redundancy were roughly
60% higher than fosmid redundancy. Note the trend for
each insert's power curve to more visibly resemble a unit
step function as redundancy is increased. In comparing 
to power, it appears the latter is quite acceptable. For
example, 16× fosmids are upper-bounded at roughly 20
kb for  = 1% significance (Fig. 2), for which the corre-
sponding power is still about 85%. This is notable because
the choice of  = 0 is not especially sensitive for large inser-
tions.

Defining rigorous detection rules is a challenging task for
algorithm developers. Again using ISV as an example, the
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Heterozygous ISV power for short Illumina GA inserts and fosmids (Table 2) at  = 0Figure 3
Heterozygous ISV power for short Illumina GA 
inserts and fosmids (Table 2) at  = 0.
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aligned length of the shortest covering insert, ls - , will be
known, although ls and  themselves generally are not.
However, one can readily quantify power versus the
aligned length of the average insert, for example using
some  = /C. This information might serve as a basis for
constructing detection rules by correlating a priori known
theoretical entities with other heuristic information.

The Nature of Library Variance
Library variance is conventionally thought of as some-
thing that should be minimized to the greatest extent pos-
sible in order to improve SV detection [9]. This view
actually comes with some caveats, as illustrated by Fig. 4
for heterozygous ISV detection using 40 kb fosmids. Fos-
mid libraries can routinely achieve COV of around 7%
because of packaging constraints inherent to the vector
[6]. Yet,  is largely constant for COV  7% over a wide
range of redundancies, implying that special efforts aimed
at further reducing fosmid library variance would be
unwarranted. While some sensitivity is actually realized
for very small ISV, i.e. less than 10% of insert size, the
limit on precision mentioned above renders these
instances irrelevant.

Another curious phenomenon associated with ISV lurks
in Eq. 7. Its exponential and error function terms have
leading coefficients  and  - m, respectively. The second
term represents the familiar "Lander-Waterman" type of
covering mechanism which should ideally provide the
bulk contribution, but its potency drops considerably for
larger  via m (Eq. 5). This reflects the simple fact that the
average insert will not cover very well under these circum-
stances. Performance can be recovered in a seemingly

counter-intuitive way by increasing the library variance,
which implies there are more longer-than-average inserts
in the library. Fig. 4 confirms this effect, although it is evi-
dently not substantial enough at reasonable redundan-
cies.

The situation is appreciably different for Illumina GA
inserts, where  rapidly becomes responsive to library var-
iance over slight changes in m/ (Fig. 5). It is mildly sen-
sitive at m/ = 0.6 (50 bp ISV), meaning that there would
be some level of improvement if library standard devia-
tion could be reduced. However, for a small decrease to m/
 = 0.5 (25 bp ISV), the situation worsens in two ways.
Not only does  become appreciably more sensitive, but
attempts to compensate with increased redundancy are
less effective. For example, at 12% COV we could reduce
 by 68% (from 11% to 3.5%) by doubling  from 12× to
24×. If Illumina GA libraries were improved to fosmid-
level 7% COV, we would instead see  reduced by 90%,
from 4.3% to 0.44%. Yet, the curves show that still more
resolution could be wrung out, all the way down to about
4% COV ( = 10 bp). This overall behavior is again a con-
sequence of the relatively long read lengths, which drive
down  for a given m/ ratio. Although these observations
suggest investing more effort into reducing  for Illumina
GA libraries, the balance against economic considerations
has not been conclusively established.

The SV Spectrum Problem in Project Design
SV projects are becoming both more routine and more
focused on characterizing the entire SV size spectrum. One

Curves of  vs  for heterozygous ISV using 40 kb fosmids on "small" (m/ = 0.2) and "large" (m/ = 0.8) insertionsFigure 4
Curves of  vs  for heterozygous ISV using 40 kb fos-
mids on "small" (m/ = 0.2) and "large" (m/ = 0.8) 
insertions. Vertical reference line shows the 7% COV 
threshold, characteristic of the library in ref. [6].
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Curves of  vs  for Illumina GA small inserts at two 
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teristic of this library is shown by a vertical line. A second 
line at 7% COV is given as a reference to the fosmid library in 
ref. [6].
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of the more pressing design questions with respect to
length-discrepancy analysis is how to a priori specify the
combination of insert types and corresponding redundan-
cies that will best characterize the relevant fraction of the
spectrum [12], roughly 10    20,000 bp. (Other meth-
ods are better-suited outside these ranges, for example
some arrayCGH platforms can detect variants down to the
20–30 kb range [14].) Investigators will typically want to
capture all types of SV, implying a project's design will be
governed by the most difficult type: heterozygous inser-
tions. We examine the problem primarily on this basis,
but emphasize that the findings presented below must be
interpreted within the larger context of a sequencing
project whose considerations are not limited strictly to SV,
much less a single method of detecting it.

Fig. 6 addresses the design issue from the standpoint of
the "spectral chart", which is readily plotted from the the-
ory. In particular, the solid curves represent the loci of
points at which the desired , in this case 1%
[6,10,11,15], is realized for the conventional inserts listed
in Table 2. (We omit the pyrosequencing-454 insert,
whose relatively large COV renders it less suitable for SV
applications compared to the comparable Illumina GA
library [8].) The dashed curves denote improved perform-
ance of hypothetical Illumina GA libraries whose COVs
are one-third lower than conventional values.

Medium and large Illumina GA inserts, combined with
fosmids, readily handle SV above about 300 bp using
assorted physical coverages in the 15× – 20× range.

Although the small insert library does cover much of the
neighborhood on the lower end, there is a conspicuous
gap between 100 and 200 bp, precisely where many vari-
ants could be expected [10]. Redundancies for both the
small and medium insert libraries would have to increase
to roughly 90× to close this gap, an obviously undesirable
requirement. Yet, matters would improve considerably
with a few design adjustments.

Let us assume hypothetical Illumina GA libraries whose
COVs are reduced by one-third of their conventional val-
ues. Also, replace the 3 kb Illumina GA library with a 1.5
kb GA library. These two modifications largely erase the
gap, i.e. curves for adjacent libraries now intersect at
roughly 30×. Switching to the 1.5 kb library is primarily
responsible for this closure, although reduced COVs fur-
ther improve spectral coverage on the lower ends of the
respective libraries. This effect is especially relevant to
extending detection range for the smallest SVs.

Spectral charts are useful for designing projects according
to the requirement that no gaps remain in the SV detec-
tion spectrum for a desired . Fig. 6 shows two such
designs. The first proposes roughly  = 30× for 250 bp and
1.5 kb GA libraries and  = 12× for 10 kb GA and 40 kb
fosmid libraries, netting SV within approximately 20   
13000. The second prescribes 50× for the 250 bp GA
library and 18× for the remaining 3 libraries, widening the
range to roughly 13    21000. Although many other
designs are clearly possible, these illustrate some of the
interesting trade-offs faced by the investigator. For exam-
ple, maximally extending the range raises the possibility
of including additional insert types, e.g. a BAG library.
Costs are also vastly different over the various insert types,
with small GA being the cheapest, larger GA being more
costly because of library inefficiencies, and fosmids being
the most expensive according to direct library and
sequencing costs. However, these issues are tempered by
the fact that long inserts efficiently leverage sequence
redundancy, 2  r/. For example, 20× fosmid physical
coverage translates to only about 0.5× sequence redun-
dancy [10]. The second design in Fig. 6 is probably supe-
rior to the first from this standpoint.

Conclusion
Our theory describes SV statistics in more general terms
than currently available, though it still depends upon a
number of idealizations for the sake of tractability. Specif-
ically, the covering process is taken to be independently
and identically distributed. We also presume genome size
is known a priori, which may not be the case for tumors.
Finally, we do not account for mapping or sequencing
errors, library complexity, the ability of algorithms to dis-
tinguish between the reads covering both alleles of a het-
erozygous SV site [17], instances of singleton, split, and

Spectral curves for heterozygous ISV at a threshold of  = 1% for both conventional insert types (Table 2) and hypothetical Illumina GA inserts having one-third lower (improved) COV valuesFigure 6
Spectral curves for heterozygous ISV at a threshold 
of  = 1% for both conventional insert types (Table 2) 
and hypothetical Illumina GA inserts having one-third 
lower (improved) COV values. Bold lines represent two 
feasible designs that leave no spectral gaps at  = 1% using 
the improved GA libraries.
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truncated reads, etc. The strength of any predictions
should be taken with these limitations in mind.

Design optimization is clearly important and we have
only considered it from the rudimentary perspective of
eliminating gaps in the SV size spectrum. Indeed, there are
numerous possible designs for any spectral chart, as well
as numerous charts that could be plotted by varying the
types and numbers of libraries, values for , etc. It would
be quite useful to optimize on the basis of total project
cost, but variation in library production and sequencing
costs among different insert types, lab environments, pro-
duction methods, bio-economical feasibility of minimiz-
ing COV for inserts, etc. places this goal beyond the
present scope. Results shown here suggest an intermediate
number of libraries, i.e. three to five, will typically give the
best results. Too few will incur extremely large per-library
redundancies because of spectral gaps and the asymptotic
nature of spectral coverage (Fig. 6), while too many will
result in unacceptably high production costs. Very roughly
speaking, each insert type should probably be responsible
for up to an order of magnitude of SV size.

Aside from the project design aspects, our theory should
also be useful for SV algorithms. Many algorithms still fol-
low the symmetric assumption where DSV and ISV are
considered to be simple opposites [17], though they
clearly are not. Bayesian classifiers might invoke Thm. 3 in
calculating prior probabilities. The theory might also be
useful in helping to pick optimal threshold values, for
example with respect to detection power, as mentioned
above. Finally, the overall design space is enormous and
certainly worth further exploration, especially in conjunc-
tion with better bio-economical information on the feasi-
bility of reducing COV for Illumina GA libraries. Future
projects could carry out such investigations for neighbor-
hoods of interest in a fairly mechanical fashion.

Methods
This section furnishes proofs of the above theorems and
describes the analytical and numerical methods used.
These mathematical esoterica can be skipped by the unin-
terested reader.

Proof of Theorem 1

If insert lengths are Gaussian distributed with standard

deviation  (Eq. 1), then the mean length  of random
samples of size k (the aligned inserts) will be Gaussian

with standard deviation S = / [26]. The probability

of the confidence interval is defined as [27]

where (a', b') = ( - ,  + ) for Eq. 2, but change to a' 
-  or b'  , as appropriate, in Eq. 3. By making a change

of variables, x = (l' - )/( S), the theorem of Integra-

tion by Substitution [31] can be invoked to obtain

where erf is the Gaussian error function [28] and where
limits have been transformed appropriately. For example,

 -  is changed to -/( S) and  +  to /( S). All

intervals follow directly by substituting S = /  and

applying the identities erf (-x) = -erf (x) and erf () = 1
[28], the latter where necessary.

Proof of Lemma 2

Lemma 2 is proved by straightforward enumeration. First,
there are roughly 2G possible placements of any insert,
since the haploid genome and its constituent chromo-
somes are very large. For homozygous SV, the apparent
number of placements is then only G. For DSV, we dis-
qualify cases where either read of an insert intersects an SV
site, whereby the spanning event is realized only if the

interior region between the paired reads contains ,

which is a point in this case. There are l - 2r placements
satisfying this condition, implying spanning probabilities
of (l - 2r)/G and (l -2r)/(2G) for Hm and Ht, respectively.

For ISV, the breakpoints are separated, and the variant

exists as segment  (Fig. 1). The number of successful

covering placements is l - 2r -  + 1, which is well-approx-

imated as l - 2r - , given that l ¯ 1. Spanning probabilities
for Hm and Ht follow by appropriate division. The fact that

2r and 2r +  are the minimum admissible insert lengths
for DSV and ISV, respectively, is a direct consequence of
both the mathematical fact that probability values cannot
be negative and the physical observation that these are the
minimum values at which an insert could span the respec-
tive types of SV.

Proof of Theorem 3

Based on a Bernoulli probability P(S) for each insert
(Lemma 2), the covering process for a site of possible SV
is clearly binomial, i.e. an individual insert either covers,
or does not cover the site. For SV projects, the number of
inserts processed, N, and P(S) are necessarily large and
small relative to unity, respectively. The Poisson distribu-
tion for P (  = k) then follows directly from the standard
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binomial limiting argument [27], where  = N·P(S) is the
Poisson rate. We will demonstrate only the homozygous
configuration, since the heterozygous case follows along
exactly the same arguments.

The prior Bernoulli probability of event S, whereby an
insert covers a possible site of SV, is conditioned upon its
length. Consequently, it can be expressed according to the
Law of Total Probability [27] as

where the summation appears by virtue of the events
being mutually exclusive. Note that P (L = l) and P(S|L =
l  Hm) have already been established by Eq. 1 and
Lemma 2, respectively. The latter also establishes m as the
lower bound, while the upper bound is a consequence of
the observation that inserts will not exceed the subject
haploid DNA length. Biological constraints actually
restrict inserts to much smaller sizes. However, it will be
clear momentarily that the actual value of the upper
bound is not particularly important because the associ-
ated functions rapidly converge to their respective limits.

The form of P(S) is further developed by first transforming
to an integral representation. Substituting P (L = l) and
P(S|L = l  Hm) and moving constants outside the inte-
gral, we find

where the error of transformation can be shown by the
Euler-MacLaurin Theorem [28] to be

Because  p 1, even for inserts considered to be fairly 

short, and likewise  p 1, the magnitude of e will be 
acceptably small for cases of practical interest. Making a 
change of variables similar to that shown in the proof of 
Theorem 1 the integral evaluates to

Given that G is extremely large (order 109 for the human
genome), the second exponential term vanishes, while the
first error function term is asymptotically equivalent to
unity. (Since the nature of both kinds of terms is to con-
verge rather rapidly, these limits would still be realized for
substantially lower values.) Applying the identity erf (-x)
= -erf (x) [28] to the second error function term gives the
final form of P(S), from which  = N·P(S) in Eqs. 6 and 7
immediately follow.

Proof of Theorem 4
The event C whereby the average length of the sampled
inserts falls within a certain confidence interval is condi-
tioned upon how many inserts actually comprise the sam-
ple, whereby from the Law of Total Probability [27] we
find

from which Eq. 8 follows directly.

Proof of Theorem 7
Using the same integral methods shown in the proof for
Thm. 1, the probability of selecting any single insert i
whose length Li is within some range of  is

where t = /( ). Because inserts are presumed inde-
pendent of one another, the probability that k inserts
picked from the library are all within the specified range is

P1  P2  ∫  Pk = , whereby the probability that at

least one is not in range is the complement of this expres-
sion. The overall probability of detection under the above
model is conditioned upon k inserts spanning the SV site,
whereby application of the concept of Total Probability
(similar to what is shown in proof of Thm. 4) yields P(D).

Numerical Methods

The statistical properties of SV depend upon numerical
evaluation of P (  = k), whose floating-point numerator
and denominator will both tend to overflow as k grows
large. In these cases, we evaluate P (  = k) in logarithmic
form. Using Stirling's Series for the factorial term [28]
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we find that the expression can be written

for large k. Given the definition of redundancy in Table 1,
it is numerically more expedient to replace N/G with /
in Eq. 7. Also, it will often be impractical to sum all N + 1
terms, e.g. in Eq. 8, so we use a simple convergence rule
that halts the computation when the percentage change
due to the current term falls below a small number, typi-
cally 10-8.

Accurate numerical methods exist for evaluating the Gaus-
sian error function [32], and such are available in the
functional compendium of most of the common pro-
gramming languages, including C/C++, Fortran, Mathe-
matica, and Perl.
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