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Abstract

and isolated from Msi1™9"

Conclusions: SP fraction, isolated from Msi1M9"

Background: Purifying stem cells is an inevitable process for further investigation and cell-therapy. Sorting side
population (SP) cells is generally regarded as an effective method to enrich for progenitor cells. This study was to
explore whether sorting SP could enrich for the Musashi1 (Msi1) positive cells from Msi1 high expression cells
(Msi1"9" cells) derived from mouse embryonic stem cells (ESCs) in vitro.

Results: In this study, Msi1"9" cell population derived from ESCs were stained by Hoechst 33342, and then the SP
and non-SP (NSP) fractions were analyzed and sorted by fluorescence activated cell sorter. Subsequently, the
expressions of Msi1 and other markers for neural and intestinal stem cells in SP and NSP were respectively
detected. SP and NSP cells were hypodermically engrafted into the backs of NOD/SCID mice to form grafts. The
developments of neural and intestinal epithelial cells in these grafts were investigated. SP fraction was identified
cell population. The expression of Msil in SP fraction was significantly higher than that
in NSP fraction and unsorted Msi1™9" cells (P< 0.05). Furthermore, the markers for neural cells and intestinal
epithelial cells were more highly expressed in the grafts from SP fraction than those from NSP fraction (P< 0.05).

cells, contains almost all the Msil-positive cells and has the
potential to differentiate into neural and intestinal epithelial cells in vivo. Sorting SP fraction could be a convenient
and practical method to enrich for MsiT-positive cells from the differentiated cell population derived from ESCs.

Background

Embryonic stem cells (ESCs) are pluripotent cells
derived from the inner cell mass of the mammalian
blastocyst with self-renewal capacity and multi-develop-
mental plasticity, which makes ESCs a powerful tool for
cell-based therapy [1,2]. Several lines of evidence con-
firmed that under appropriate conditions, ESCs could be
induced to differentiate into pancreatic beta-cells, liver
cells, myocardial cells, hematopoietic cells, and neural
stem cells [3-9]. However, these strategies generally pro-
duced the desired cells only within heterogeneous cell
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populations, including pluripotent stem cells and unde-
sired ESC derivatives. The transplantation of the cell
population into tissues is inevitably associated with for-
mation of teratomas, impeding the application of ESC-
based therapies in clinic [10-12]. Recent studies revealed
that the formation of teratomas was not observed after
transplanting purified progenitor cells derived from
ESCs [13-17]. These findings indicated that differentiat-
ing and purifying ESC-derived cells in vitro could be a
strategy that renders ESCs safe and effective in clinic.

It has been reported that mouse ESCs had the poten-
tial to differentiate into a gut-like structure and neural
cells in vitro [18,19]. Musashil (Msil), expressed in the
cytoplasm and nucleus of cells, is an important marker
for intestinal epithelial stem cells (IESCs) and neural
stem cells (NSCs) [20-22]. In our recent study, we had
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found that Msil and hairy and enhancer of split 1
(Hes1) high-expression cells (Msil™&"Hes1"8" cells)
derived from mouse ESCs could develop into small
intestinal epithelial cells, which enhanced the repair of
small intestinal injury in vivo [23]. Furthermore, to pur-
ify the Msil-positive cell, we constructed a GFP reporter
plasmid vector driven by Msil-specific promoter
(pMsil-GFP vector) [24]. Although the pMsil-GFP vec-
tor can be used to mark Msil-positive cells from a cell
population, the isolation process is quite complicated
and depends on a cell transfection technique, which
restricts its application. Therefore, a more convenient
and practical separation strategy should be established
for the further investigation of Msil-positive cells.

Side population (SP) analysis, a widely used flow cyto-
metry assay, based on the ability of cells to efflux fluor-
escent DNA-binding dye Hoechst 33342, can identify
stem cells in tissues, and is a method which opens up
the potential to further enrich stem cells within hetero-
geneous populations [25]. SP was first identified and
sorted from bone marrow by fluorescence activated cell
sorter (FACS) as a distinct cell population highly
enriched for hematopoietic stem cells and endowed with
long-term repopulating capacity [26]. Since this discov-
ery, an increasing number of studies have shown that an
analogous SP fraction has been identified in a variety of
tissues with high levels of stem-like gene expression and
multipotent differentiation potential [27-35]. The use of
SP analysis was also described to isolate a putative stem
cell population from mouse small intestine, and Msil
was highly expressed in the SP fraction [36]. This sug-
gested that SP sorting could be an effective method to
enrich for progenitor cells, especially in the absence of
definitive cell-surface marker.

In this study, our objective was to establish a practical
process to enrich for the Msil positive cells from Msil
high-expression cell (Msil"" cell) population derived
from mouse ESCs in vitro.

Methods

Maintenance of mouse ESCs and embryonic bodies (EBs)
formation

The mouse ESC line, ES-E14TG2a (40, XY) was main-
tained without feeder cells in Dulbecco’s Modified Eagle
Medium (DMEM; high glucose; GIBCO BRL, USA) sup-
plemented with 10% fetal calf serum (FCS; Hyclone,
USA), 10 mM HEPES (GIBCO BRL, USA), 0.12%
sodium bicarbonate, 0.1 mM nonessential amino acids
(Hyclone, USA), 0.1 mM 2-mercaptoethanol (2ME;
GIBCO BRL, USA), 100 U/mL penicillin G, 100 pg/mL
streptomycin, and 1000 U/mL leukemia inhibitory factor
(LIF; Chemicon, USA). Subsequently, ESCs were cul-
tured by the hanging-drop method (32 pl per drop) to
form EBs at a concentration of 1 x 10° cells/ml in EB
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medium that consisted of high glucose DMEM supple-
mented with 10% FCS, 10 mM HEPES, 0.12% sodium
bicarbonate, 0.1 mM nonessential amino acids, 0.1 mM
2ME, 100 U/mL penicillin G, and 100 pg/mL streptomy-
cin. ESC and EB cultures were maintained in a humidi-
fied chamber in a 5% CO,-air mixture at 37°C.

Differentiation of Msi1"9" cells
Five-day EB cells were dissociated with trypsin (0.25%)/
EDTA and seeded on 6-well culture plates (Nunc, USA)
with a concentration of 1 x 10> cells/well. Subsequently,
the cultured EB cells were induced by a serum-free
medium (EGF medium) that consisted of high glucose
DMEM supplemented with 10% Knockout™ serum
replacement (KSR; Invitrogen Corporation, USA), 40
ng/mL EGF (CHEMICON International, USA), 10 mM
HEPES, 0.12% sodium bicarbonate, 0.1 mM nonessential
amino acids, 0.1 mM 2ME, 100 U/mL penicillin G, and
100 pg/mL streptomycin. The dissociated EB cells syn-
chronously cultured in serum-free control medium
without EGF (SF medium) and DMEM medium with
10% FCS (FCS medium) were treated as control groups.

Real-time quantitative RT-PCR

Total RNA was extracted using TRIzol” Reagent (Invi-
trogen Corporation, USA). The concentration of isolated
total RNA was calculated from the absorbance at 260
nm obtained using a UV-2450 spectrophotometer (Shi-
madzu, Japan). To generate cDNA, 1 pg of total RNA
was reverse-transcribed using a ReverTra Ace-a-* kit
(Toyobo Bio-Technology, Japan). Real-time PCR was
performed using a Real-time™ PCR Master Mix kit
(Toyobo Bio-Technology, Japan) on a Rotor-Gene 6000
detector (Corbett Research, Mortlake, Australia) accord-
ing to the manufacturer’s instructions. The primers
were designed (forward and reverse): mouse Msil, 5'-
TAG TTC GAG GGA CAG GCT CT-3 and 5- GTT
GAG GGA CAG GCA GTA GC-3’; mouse Hesl, 5'-
GGA GAG GCT GCC AAG GTT TT-3 and 5'- GCA
AAT TGG CCG TCA GGA-3’; mouse leucine rich
repeat containing G protein coupled receptor 5 (Lgr5),
5- CAC CAG CTT ACC CCA TGA CT-3' and 5- CTC
CTG CTC TAA GGC ACC AC-3’; mouse achaete-scute
complex homolog 2 (Ascl2), 5- GGT GAC TCC TGG
TGG ACC TA-3" and 5’- TCC GGA AGA TGG AAG
ATG TC-3’; mouse Bmil, 5- TGT CCA GGT TCA
CAA AAC CA-3 and 5’- TGC AAC TTC TCC TCG
GTC TT-3’; mouse Nestin, 5'- CCA GAG CTG GAC
TGG AAC TC-3" and 5'- ACC TGC CTC TTT TGG
TTC CT-3’; mouse SRY-box containing gene 2 (Sox2),
5- AAG GGT TCT TGC TGG GTT TT-3" and 5’-
AGA CCA CGA AAA CGG TCT TG -3’; mouse 18S
ribosomal RNA, 5- GCT AGG AAT AAT GGA ATA
GG-3" and 5’- ACT TTC GTT CTT GAG GAA TG-3.



Yu et al. BMC Cell Biology 2011, 12:47
http://www.biomedcentral.com/1471-2121/12/47

Data were analyzed using the AACt method with 18S
ribosomal RNA as the constitutive marker [37].

Immunocytochemistry for Msi1

The immunostaining for Msil was performed using an
UltraSensitive™ S-P kit (Maxin, Fuzhou, China). The
fixed cells were treated with normal goat serum for 15
min at 37°C and then were incubated with rabbit anti-
mouse Msil polyclonal antibody (CHEMICON Interna-
tional, USA) at a 1:200 dilution. Cells were incubated
with biotin-conjugated secondary antibody for 20 min at
37°C, and streptavidin-alkaline phosphatase complex was
applied for 15 min at 37°C after a wash with PBS. After a
15 min PBS wash, the sections were subsequently incu-
bated in 3,3’-diaminobenzidine tetrahydrochloride (DAB;
Boster, Wuhan, China) with 0.05% H,O, for 5 minutes,
and counterstained with hematoxylin for 12 seconds.

Analysis and sorting of SP fraction in Msi1™9" cells

SP analysis of the differentiated cells cultured in SE-EGF
medium, FCS medium and SF medium was performed
using the Hoechst 33342 staining method by FACS out-
lined by Goodell et al and Park et al [38,39]. The
detected cells were resuspended in 0.1 M PBS contain-
ing 2% FCS at a density of 1 x 10° cells/mL and incu-
bated with 5 ug/mL Hoechst 33342 (Sigma-Aldrich,
USA) for 90 minutes at 37°C. To determine the verapa-
mil-sensitive SP cells, partial cells were preincubated
with verapamil (50 uM) for 5 minutes before the addi-
tion of Hoechst 33342 dye. Immediately after staining,
the cells were centrifuged at 1000 rpm for 5 minutes at
4°C and resuspended in ice-cold 0.1 M PBS containing
2% FCS to a concentration of 1 x 10° cells/100 pL.
After resuspending, propidium iodide (PI; Sigma-
Aldrich, USA) was added at 2 pg/mL to gate out dead
cells, and the cells were kept at 4°C until analysis and
sorting. A 350 nm argon laser was used to excite
Hoechst 33342 and PI. The cells were analyzed on a
Beckman Coulter EPICS ALTRA cytosorter (Beckman
Coulter, USA) at 405/30 nm (Hoechst blue) and 670/30
nm (Hoechst Red) according to the method described
previously by Goodell et al [38]. Cells were then dis-
played in a Hoechst Blue versus Hoechst Red dot plot
to visualize the SP cells. The SP fraction was identified
and selected by gating on the characteristic emission
fluorescence profile of SP cells. Data were recorded
using EXPO32 MultiCOMP v1.1C and analyzed using
EXPO32 analysis v1.2B. Sorted SP and non-side popula-
tion (NSP) fractions were recovered in 0.1 M PBS with
10% FCS for subsequent investigation.

RT-PCR analysis
Total RNA was extracted from tissues or cells using
TRIzol® Reagent according to the manufacturer’s
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protocol. Total RNA (2 pg) was reverse-transcribed into
first-strand cDNA with Oligo d(T)18 primers (TaKaRa
Bio Inc., Tokyo, Japan) using a PrimeScript™ 1st Strand
c¢DNA Synthesis kit (TaKaRa Bio Inc., Tokyo, Japan).
PCR was performed with TaKaRa Ex Taq HS (TaKaRa
Bio Inc., Tokyo, Japan) in PCR buffer and 0.5 pM
dNTPs. The PCR cycling conditions were as follows: 1
cycle of 94°C for 1 minute; 35 cycles of 94°C for 30 sec-
onds, 59°C for 30 seconds, 72°C for 1 minute; and 1
cycle of 72°C for 10 minutes. B-actin was used as the
invariant control.

The sequences of primers used in this study are as fol-
lows (forward and reverse): mouse B-actin, 5-GTC CAC
CTT CCA GCA GAT GT-3" and 5’-CCT GGG CCA
TTC AGA AAT TA-3’; mouse ATP-binding cassette
transporter G2 (ABCG2), 5-TCG CAG AAG GAG
ATG TGT TG-3" and 5-TTG GAT CTT TCC TTG
CTG CT-3’; mouse Nestin, 5- GAG AAG ACA GTG
AGG CAG ATG AGT TA -3 and 5- GCC TCT GTT
CTC CAG CTT GCT -3’; mouse Tubulin § III, 5- CTT
CGG GCA GAT CTT CAG AC -3’ and 5- AGT CAA
CCA GCT CTG CAC CT -3’; mouse sucrase-isomaltase
(SI), 5-GGG TCC AGC TTT TAT GGT GA-3’ and 5'-
TAT GTG TTC TGT GCC GGT TC-3’; mouse fatty
acid binding protein 2 (Fabp2), 5'- CAC AGC TGA
GAT CAT GGC ATT C -3’ and 5’- CCA TCC TGT
GTG ATT GTC AGT TTC -3’; mouse trefoil factor 3
(Tff3), 5-CTC TGT CAC ATC GGA GCA GTG T-3
and 5-TTG GCC ACC ATC AGC AGC AG-3’; mouse
lysozyme 1 (Lyzl), 5-GCA GTG CTC TGC TGC AGG
AT-3" and 5-GTC AGA CTC CGC AGT TCC GA-3’;
mouse Chromogranin A (ChgA), 5-CTG ACC GCT
CCA TGA AGC TCT-3’ and 5-CCT ACT CGA GCA
GCA GTC T-3. The integrated intensity for the bands
was determined by scanning densitometry and analyzed
by Glyko BandScan 5.0. The data were analyzed using
relative intensity with f-actin as the constitutive marker.

Western blots analysis

The samples for Western blots analysis were sorted SP
and NSP cells by FACS. All cells were incubated in
RIPA lysis buffer: 50 mM Tris, 150 mM NaCl, 1% Tri-
ton X-100, 1% sodium deoxycholate, 0.1% SDS, 2 mM
EDTA, and protease inhibitors (pH 7.4). Total protein
in the supernatant of the cell lysate was measured by
BCA Protein Assay Kit (Beyotime Institute of Biotech-
nology, Haimen, China). Protein (40 pg per sample) was
separated by SDS-PAGE with a 12% polyacrylamide gel.
The protein was transferred electrophoretically onto a
PVDF membrane and incubated primary antibodies
diluted in blocking buffer (5% milk powder, 0.1% Tween
20 in TBS) as follows: rabbit anti-mouse Msil antibody
(1:500, CHEMICON International, USA) and rabbit
anti-mouse B-actin antibody (1:1000, Cell Signaling
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Technology, MA, USA). Secondary antibodies were
horseradish peroxidase-conjugated anti-rabbit antibody
(1:2000). Msil and B-actin protein were detected by
ECL chemiluminescence system. The integrated inten-
sity for the protein bands was determined by scanning
densitometry and analyzed by Glyko BandScan 5.0. The
data were analyzed using relative intensity with B-actin
as the constitutive marker.

Grafts

The suspended SP and NSP cells sorted by FACS (1.5 x
10° per administration) were hypodermically engrafted
into the backs of NOD/SCID mice (Laboratory Animal
Center of Sun Yat-Sen University, Guangzhou, China).
All experimental procedures involving mice in this study
were approved by the Animal Ethics Committee of the
second affiliated hospital of Sun Yat-Sen University.
When the hypodermic grafts were generated, the mice
were sacrificed and the grafts were investigated by histo-
logical, immunohistochemical, and RT-PCR analysis.

Immunohistochemistry

The grafts were removed from NOD/SCID mice and
fixed with 4% paraformaldehyde overnight at 4°C,
embedded in paraffin, and cut at a thickness of 6 um.
The sections were placed in 0.01 M citrate buffer (pH
6.0) and treated in the microwave oven for 10 min to
facilitate antigen retrieval. Following treatment with 3%
H,0,, sections were placed in methanol for 10 min to
quench endogenous peroxidase activity, and the immu-
nostaining was performed using an UltraSensitive™ S-P
kit (Maxin, Fuzhou, China). All sections were incubated
with normal goat serum for 10 min at room tempera-
ture, and then were incubated overnight at 4°C with
rabbit anti-mouse Tubulin § III (2.5 mg/mL in PBS; Epi-
tomics, USA) and rabbit anti-mouse Fabp2 (5 mg/mL in
PBS; Abcam, Cambridge, UK), respectively. Subse-
quently, the sections were incubated with biotin-conju-
gated secondary antibody for 12 min at room
temperature. After a PBS wash, a streptavidin-peroxidase
complex was applied for 10 min at room temperature.
After a 15 min PBS wash, the sections were subse-
quently incubated in DAB (Boster, Wuhan, China) with
0.05% H,O, for 6 minutes, and counterstained with
hematoxylin for 30 seconds.

Statistical analysis

All analyses were performed with a statistical software
package (SAS 8 for Windows; SAS Institute; Cary, NC,
USA). All data in this experiment were presented as the
mean + standard error (SE). Data were evaluated by
one-way ANOVA in which multiple comparisons were
performed by using the method of least significant
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difference. Differences were considered significant if the
probability of the difference occurring by chance was
less than 5 in 100 (P< 0.05).

Results

Differentiation of Msi1"9" cells in vitro

ESCs were cultured by the hanging-drop method in EB
medium to attain EBs in vitro. On the fifth day of EBs
formation, the dissociated EB cells were adhesively cul-
tured in EGF medium to induce the differentiation of
Msil™e" cells.

Real-time quantitative RT-PCR analysis suggested that
Msil was expressed at a low level in ESCs and in 5-day
EBs (Figure 1A). During the induction stage of Msil™&"
cells, the mRNA expression of Msil showed an increas-
ing trend. In the 5-day induction stage under EGF
administration, Msil mRNA was 66.29 + 8.38-fold
greater compared with ESCs, and was significantly
higher than that in the other two control groups (SF
and FCS groups; Figure 1A; P< 0.05).

Immunocytochemistry results revealed that a portion
of cells in 5-day induction stage were immunostained
for Msil (Figure 1B). In the EGF group, the positive
cells (Msil" cells) were mainly detected in the middle of
cell clones. The percentages of Msil" cells in EGF, SF,
and FCS groups were 21.1% + 3.11%, 5.93% + 1.75%,
and 6.3% + 2.17%, respectively (Figure 1C). The percen-
tage of Msil™ cells in the EGF group was significantly
higher than that in two control groups (Figure 1C, P <
0.05). These results indicated that 5-day administration
of EGF (40 ng/mL) could induce the differentiation of
Msi1™e" cells in vitro.

SP and NSP portions can be detected in induction stage
population

To enrich for the Msil positive cells, the Msi1Meh cells
were stained with Hoechst 33342. Subsequently, the SP
fraction was investigated by FACS. The results revealed
that a portion of the cells in the Msil™&" cell population
and control groups were stained weakly (Figure 2A).
Subsequently, prepared cells were analyzed by FACS
and the typical results of dual-wavelength FACS of
viable cells based on the Hoechst fluorescence are
shown in Figure 2B. As can be seen in Figure 2B (left
row), a distinct SP and NSP were presented in cells
from all three groups. The percentage of SP in the
induction stage cells after 5 days of culture was 19.97%
+ 3.76% for EGF (Msil"®" cells), 9.33% + 2.71% for FS,
and 5.3% + 0.5% for FCS medium (Figure 2C). Based on
statistical analysis, the SP percentage in Msil"" cells
was significantly higher than that in SF (P = 0.016 com-
pared with EGF group) and FCS control groups (P =
0.003 compared with EGF group). Although the average
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Figure 1 Specification of Msi1"9" cells in vitro derived from mouse ESCs. (A): Relative abundance of mRNA of Msil in 5-day EBs (EB, red
bar) and induction stage cells at 5-day in EGF medium (EGF, solid bar), SF medium (SF, gray bar), and FCS medium (FCS, blank bar) compared
with ESCs (ESC, blue bar). Bars show mean + SE (n = 3) measured by real-time RT-PCR. The red bar indicates that its abundance is 1.0 on these
two scales. (*P< 0.05 compared with all other samples) (B): The immunostaining for Msi1 by immunocytochemistry was detected in partial cells
at the 5-day differentiation cultured in EGF, SF, and FCS medium. (arrowheads; Bar indicates 20 pum in this panel) (C): Percentage of Msi1* cells at

compared with all other samples).

the 5-day differentiation cultured in EGF, SF, and FCS medium. (Bar shows mean + SE in this panel; n = 3 individual experiments; *P< 0.05

percentage of SP in SF group was somewhat higher than
that of FCS cell population, there was no statistically dif-
ference between them (P = 0.064).

Previous reports describing SP fractions from liver,
mammary gland, and lung have revealed that the SP
phenotype is dependent on efflux of Hoechst 33342 by
multidrug resistance-like pumps, such as ABCG2/
BCRP1 [32,33,40,41]. To investigate whether or not the
SP from differentiated populations derived from ESCs
was caused by analogous efflux of Hoechst 33342, we
treated the detected cell preparations with 50 uM vera-
pamil to inhibit members of the multi-drug resistance
family. This treatment resulted in a 35.9% + 6.8% reduc-
tion of cells sorting to SP position in EGF group (Msil-
high cells), and the reduction percentage in SF and FCS
control groups were 49.8% + 5.9% and 46.5% + 2.7%,

respectively (Figure 2B, right row). The percentage of SP
reduced by verapamil administration in Msi1™e" cells
was significantly higher than that of other two control
groups (Figure 2C, P < 0.05).

Msi1 positive cells can be enriched in SP fraction from
Msi1"9" cell population

To explore the hypothesis that Msil positive cells can
be enriched in SP fraction from Msil™" cells, the SP
and NSP cells were synchronously isolated from Msil-
high cell population under a condition without verapamil
(Figure 3A).

Subsequently, as a gene marker for IESCs and NSCs,
the expression of Msil was respectively detected in SP
and NSP fractions on mRNA and protein levels. The
results of quantitative RT-PCR revealed that the relative
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Msil mRNA abundance in SP and NSP was 6.34 + 1.58-
fold and 0.05 + 0.02-fold greater compared with
unsorted Msi1™&" cells (Figure 3B). Western blot analy-
sis was used to compare band intensities of Msil with
B-actin as a constitutive marker. Msil protein was
detected in SP and NSP fractions (Figure 3C). Integrated
intensity of Msil protein in SP fraction was 0.329 +
0.091, and the Msil expression band was not detected
in NSP fraction (Figure 3D). The expression of Msil in
SP fraction was significantly higher than that in NSP
fraction and unsorted Msil™®" cells (P < 0.05). Taken
together these results indicated that sorting SP fraction
by FACS could be a valuable method to isolate Msil”
cells.

Expressions of other marker genes for IESCs and NSCs

The expressions of other marker genes for IESCs
(Lgr5, Hes1, Bmil, and Ascl2) and NSCs (Sox2 and
Nestin) in SP and NSP fractions were further investi-
gated [42-46]. The results of quantitative RT-PCR
revealed that the relative mRNA abundance compared
with unsorted Msi1™®" cells in SP and NSP fractions
were 4.42 + 1.38-fold and 0.25 + 0.06-fold greater for
Lgr5 (Figure 4A); 26.05 + 3.08 folds and 0.09 + 0.02-
fold for Hesl (Figure 4B); 1.98 + 0.68-fold and 0.52 +
0.17-fold greater for Bmil (Figure 4C); 1.34 + 0.58-fold
and 0.92 + 0.32-fold greater for Ascl2 (Figure 4D);
1.21 + 0.38-fold and 0.89 + 0.22-fold greater for Sox2
(Figure 4E); and 10.62 + 2.49-fold and 0.22 + 0.05-fold
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Figure 3 Msi1 expression cells can be enriched in SP fraction.
(A): SP-and NSP fractions were synchronically sorted from the
Msi1"9" cells by FACS. (B): Relative abundance of mRNA of Msil in
SP and NSP fractions sorted from Msi1"9" cells compared with
unsorted Msi1"9" cells. Bars show mean + SE (n = 3) measured by
real-time RT-PCR. The mRNA abundance in unsorted Msi1"" cells is
1.0 on these two scales. (*P< 0.05 compared with all other samples)
(O): Expressions of the Msi1 and B-actin proteins in SP and NSP
fractions sorted from Msi1M9" cells detected by Western blots. (D):
Protein levels of Msi1 indicated by the integrated intensities of
corresponding bands in panel C (Mean + SE values, n = 3 individual
experiments). (*P< 0.05 compared with all other samples; N.D
indicates not detected).

greater for Nestin (Figure 4F). The expressions of Lgr5,
Hesl, Bmil, and Nestin in SP fraction were signifi-
cantly higher than those in NSP fraction and unsorted
Msil"8" cells (P< 0.05).

ABCG2 expression in SP and NSP fractions from Msi1"9"
cells

Subsequently, total RNA was extracted from SP, NSP,
and unsorted Msil™&" cells, and analyzed by RT-PCR for
ABCG2 (Figure 5A). The relative abundance of ABCG2
mRNA expression was 0.3093 + 0.0579 in Msil™&" cells,
0.2844 + 0.0726 in SP group, and 0.3397 + 0.0938 in NSP
group (Figure 5B). There was no statistical difference
among these three groups in ABCG2 expression. These
results indicated that a similar expression of ABCG2, a
multidrug resistance-like pump, was detected in SP and
NSP fractions sorted from Msi1"€" cells.

SP from Msi1"9" cells can develop into intestinal
epithelial and neural tissues in vivo

The SP and NSP cells sorted from Msil"8" cells cul-
tured in a DMEM medium supplemented with 15%
FCS. The proliferation of SP and NSP cells in vitro were
observed and assessed by proliferative curve (Figure 6A).
The results showed that SP and NSP cells were
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adhesively cultured and presented with similar prolifera-
tive profiles in vitro. To further determine that the sort-
ing SP fraction by FACS was an available method to
enrich for Msil positive cells in vitro, SP and NSP cells
sorted from Msil™8" cells were hypodermically
engrafted into the backs of NOD/SCID mice. Two
weeks after injection, grafts were developed with a dia-
meter of 1 to 1.5 cm.

The grafts developed from SP and NSP both con-
tained a mixture of well-differentiated tissues and many
immature cells without specific structure. Abundant
adenoid (AD), neural tube-like (NT), and sack-like
structures were observed in the grafts from SP cells
(Figure 6B). Fibrous tissues, macroscopic cartilages,
nest-like structures, and pigment epithelium were
observed in NSP grafts (Figure 6B).

Because Msil is regarded as a marker for IESCs and
NSCs, the development of intestinal epithelial and neural
cells in SP grafts were investigated [21,47,48]. The
mRNA expressions of neural tissue markers (Nestin and
Tubulin B III) and intestinal epithelial cells markers (SI
and Fabp2 for absorptive cells; Tff3 for goblet cells; Lyz1
for Paneth cells; ChgA for endocrine cells) were detected
in grafts from SP and NSP cells by RT-PCR (Figure 6C).
The results revealed that the mRNA relative abundance
was 0.681 + 0.108 for Nestin, 0.703 + 0.112 for Tubulin 3
111, 0.357 + 0.061 for SI, 0.634 + 0.091 for Fabp2, 0.077 +
0.017 for Tff3, 0.218 + 0.034 for Lyz1, and 0.068 + 0.016
for ChgA in SP grafts (Figure 6D, E). The mRNA abun-
dance in NSP grafts was 0.101 + 0.027 for Lyz1 and 0.072
+ 0.017 for ChgA (Figure 6E). The expressions of Nestin,
Tubulin B 111, SI, Fabp2, and Tff3 were not detected in
NSP grafts. The statistical analysis revealed that the
mRNA expressions of Nestin, Tubulin § III, SI, Fabp2,
Tft3, and Lyz1 in SP grafts were significantly higher than
that in NSP grafts (P< 0.05). These data indicated that
more neural tissues and small intestinal epithelial cells
were developed in the grafts from SP cells.

To further characterize the developed potential of SP
cells from Msil™e" cells, grafts were immunohisto-
chemically stained with Tubulin § III and Fabp2 to
detect the differentiation of neural and small intestinal
epithelial tissues in vivo. The results showed that the
Tubulin B III positive cells were located in some of non-
specific structures and nest-like structures (Figure 6F).
More Tubulin B III-positive cells were detected in the
grafts from SP cells than in grafts from NSP cells (Fig-
ure 6F). Fabp2 is a marker protein for intestinal absorp-
tive cells. The results revealed that more Fabp2 positive
cells were detected in the grafts from SP cells (Figure
6F). Partial Fabp2 positive cells formed sack-like struc-
tures. These special structures, mostly constructed of
monolayer cells, were similar to the intestinal crypt
structure of fetal mice (Figure 6F). These results
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indicated that SP cells sorted from Msi1™&" cells had
similar differentiated potentials with Msil positive cells,
which could develop into neural and intestinal epithelial
tissues in vivo [24].

Discussion

The therapeutic potential of ESC-derived stem cells has
been hindered by the formation of teratomas. Purifying
ESC-derived stem cells is a potential approach to over-
come this barrier. SP cells are identified and isolated in
many different tissues, tumors, and cell lines, and are
generally accepted as a unique character for stem cells
[49]. The percentages of SP cells derived from ESCs
range from 1% to 16% of total viable cells, depending on
the stage of ESC development [50]. In the current study,
SP cells were identified and sorted in the induction
stage cells from mouse ESCs cultured in EGF, SF, and
FCS medium, and the SP percentage in EGF group was
significantly higher than that in control groups. Con-
sisted with our previous findings showing that EGF can
induce the differentiation of ESCs into Msil™&" cells
and increase the percentage of Msil positive cells, 5-day
EGF administration enhanced the percentage of SP cells

(Figure 2C), suggesting that the SP fraction probably
contains a large proportion of stem or progenitor cells
derived from ESCs, including the Msil positive cells
[23].

Until recently, it was impossible to isolate IESCs and
NSCs based on identifying any single marker expressed
on the cell surface. As a protein in the cytoplasm and
nucleus required for asymmetric cell division, Msil is
expressed in NSCs as well as in IESCs [51]. In our pre-
vious study, the Msil-positive cells sorted from ESC-
derived cells after a pMsil-GFP vector transfection had
the potential to differentiate into neural and intestinal
epithelial cells in vivo [24]. However, the isolation pro-
cess is complicated and completely depends on cell
transfection, which restricts its application. It was
reported by Dekaney et al that the SP fraction sorted
from mouse jejunum had the stem-like characters and
highly expressed Msil [36]. SP cells sorted from colon
also expressed Msil, B-integrin, and CD133. Consist
with these previous studies, our results demonstrated
that SP fraction contained almost all Msil-positive cells
(Figure 3B, D), indicating that sorting SP fraction by
FACS, which is regarded as an effective and convenient
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method to enrich for stem or progenitor cells, could be
a reliable method to enrich for Msil-positive cells from
the differentiated cell population derived from ESCs.
Zhou et al found that ABCG2, a subtype member of
the ATP binding cassette (ABC) transporter, is a mole-
cular determinant of the SP phenotype in mouse bone
marrow [52,53]. Furthermore, ABCG2 expression was
also identified in SP cells sorted from other tissues,
such as skeletal muscle, liver, mammary gland, lung,
and skin [27,30,32,33,41]. These studies demonstrated
that ABCG2 plays an important role in the SP pheno-
type. However, it had become clear that the expression
of ABCG2 was not detected in the all SP cells. The
NSP cells sorted from mouse ESCs expressed Bcrpl at
a level equivalent to that from the SP fraction [53]. It
was reported by Alt et al that ABCG2 expression was
not detected in the SP cells from human umbilical cord
blood [54]. This discrepancy was also reported in mam-
mary gland cells and haemopoietic cells [55,56]. In our
study, the SP phenotype is partially caused by ABCG2
activity, as evidenced by the marked reduction in SP
cells with the administration of verapamil, an inhibitor
of the ABCG2, which can block the formation of the SP
fraction. The results showed that a similar expression of
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ABCG2 between SP and NSP fraction sorted from
Msil"&" cells was detected, indicating that ABCG2
expression is not sufficient to confer the SP phenotype
(Figure 5A, B). Because there is a significant overlap in
the substrate specificity of ABC transporters, with each
of the commonly studied family members ABCG2,
MDR1, and MRP1 being capable of effluxing Hoechst
33342 dye, the mechanism contributing to SP pheno-
type sorted from Msil"€" cells should be further investi-
gated [55,56].

Msil, a marker for NSC and IESC, plays key roles in
the maintenance of the stem cell state and its differen-
tiation, which had been shown by several scholars and
us [20-22,57]. The Msil protein can also be found in
tissues from patients with endometriosis and endome-
trial carcinoma, photoreceptor cells, retinal stem cells,
and the hair follicle stem cell nich [58,59]. To confirm
that the SP cells sorted from Msil"" cells had the phe-
notype of NSC and IESC, the expressions of other mar-
kers for IESCs (Lgr5, Hesl, Bmil, and Ascl2) and NSCs
(Sox2 and Nestin) in SP and NSP fractions were
detected, respectively (Figure 4) [42-46]. The results
revealed that sorting SP fraction could enrich for Lgr5,
Hes1, Bmil, and Nestin high expression cells, further
indicating that SP cells could have the developed poten-
tials of IESCs and NSCs. Recent studies showed that
IESCs could be grouped into two different phenotypes
[22]. One group presented with Msil and Hesl expres-
sion resides in intestinal crypts near the transit-amplify-
ing cells. Another marked with Lgr5 and Ascl2 resides
between Paneth cells at the small intestinal crypt base.
However, Ascl2 expression in SP fraction was similar
with NSP fraction and not consistent with the expres-
sion of Lgr5 (Figure 4A, D). The reason for the inconsis-
tent expression between Lgr5 and Ascl2 is not clear and
should be further investigated.

As mentioned above, the strong expression of Msil
and other markers for IESCs and NSCs were detected in
SP fraction. SP cells sorted from Msil™®" cells were
engrafted into the NOD/SCID mice to illuminate their
developed profiles compared with NSP cells in vivo. The
results showed that the SP grafts tended to differentiate
into AD-like, NT-like, and sack-like structures (Figure
6A). This pathological profile suggested that SP graft
contained more tissues and structures developed from
NSCs and IESCs. Consistent with this observation, the
expression of neural tissue markers (Nestin and Tubulin
B III) and intestinal epithelial cells markers (Tubulin f3
111, SI, Fabp2, Tff3, and Lyzl) were significantly higher
in SP grafts compared with NSP grafts (Figure 6B-6D).
In addition, immunochemistry showed that more Tubu-
lin B III positive cells partially constructed with a nest-
like profile and more Fabp2-positive cells were observed
in the SP grafts (Figure 6E). These results provided
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strong evidence that SP cells sorted from Msil"&" cells
had the similar potential of Msil positive cells, which
could develop into mature neural and intestinal epithe-
lial tissues in vivo. Because forming grafts in NOD/
SCID mice is a method for investigating the developed
potential of the Msil-positive cells in vivo, we have not
yet performed the experiments necessary to prove that
the cells isolated from Msi1™&" cells will not form tera-
tomas in the mice with normal immune function.

Conclusions
In conclusion, SP was identified and isolated from Msil-
high cell population derived from ESCs in vitro in this

study. Furthermore, the sorted SP fraction contains
almost all the Msil positive cells and has the potential
to differentiate into neural and intestinal epithelial cells
in vivo. Therefore, sorting SP fraction could be a conve-
nient and effective method to enrich for Msil-positive
cells from the differentiated cell population derived
from mouse ESCs.

Abbreviation

(ESC): embryonic stem cell; (Msil): Musashil; (IESC):
intestinal epithelial stem cell; (NSCs): neural stem cells;
(Hes1): hairy and enhancer of split 1; (SP): side popula-
tion; (FACS): fluorescence activated cell sorter; (EB):
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embryonic body; (DMEM): Dulbecco’s Modified Eagle
Medium; (FCS): fetal calf serum; (LIF): leukemia inhibi-
tory factor; (KSR): Knockout™ serum replacement;
(Lgr5): leucine rich repeat containing G protein coupled
receptor 5; (Ascl2): achaete-scute complex homolog 2;
(Sox2): SRY-box containing gene 2; (PI): propidium
iodide; (NSP): non-side population; (ABCG2): ATP-
binding cassette transporter G2; (SI): sucrase-isomaltase;
(Fabp2): fatty acid binding protein 2; (Tff3): trefoil fac-
tor 3; (Lyzl): lysozymel; (ChgA): Chromogranin A;
(DAB): 3,3’-diaminobenzidine tetrahydrochloride; (SE):
standard error; (AD): adenoid; (NT): neural tube-like;
(ABC): ATP binding cassette.

Acknowledgements and Funding

This study was supported by National Natural Science Foundation of China
(N0.30670950 and No.81000152) and Youthful Teacher Foster Plan of Sun
Yat-Sen University (No.09ykpy10).

Author details

'Department of Gastroenterology, the Second Affiliated Hospital, Sun Yat-
Sen University, 107 Yan Jiang Xi Road, Guangzhou, Guangdong, People’s
Republic of China. “Department of Gastroenterology, the First Affiliated
Hospital of Guangzhou University of Chinese Medicine, 16 Ji Chang Road,
Guangzhou, Guangdong, People’s Republic of China. *Department of
Pathology, the Second Affiliated Hospital, Sun Yat-Sen University, 107 Yan
Jiang Xi Road, Guangzhou, Guangdong, People’s Republic of China.
“Department of Internal Medicine, Hubei Xinhua Hospital, 5 Xin Tian Men
Dun Road, Wuhan, Hubei, People’s Republic of China. SDepartment of
Gastroenterology, the First People’s Hospital, 69 Tai Gong Road, Ganzhou,
Jiangxi, People’s Republic of China.

Authors’ contributions

TY and LNZ carried out the molecular genetic studies, participated in the
sequence alignment and drafted the manuscript. SYL carried out the
immunoassays. MJF participated in the pathological analysis. YG and LS
participated in the sequence alignment. YHY and KHH participated in the
design of the study and performed the statistical analysis. QKC conceived of
the study, and participated in its design and coordination and helped to
draft the manuscript. All authors read and approved the final manuscript.

Received: 19 June 2011 Accepted: 26 October 2011
Published: 26 October 2011

References

1. Yu J, Thomson JA: Pluripotent stem cell lines. Genes Dev 2008,
22:1987-1997.

2. Keller G: Embryonic stem cell differentiation: emergence of a new era in
biology and medicine. Genes Dev 2005, 19:1129-1155.

3. Li G, Luo R, Zhang J, Yeo KS, Xie F, Way Tan EK, Caille D, Que J, Kon OL,
Salto-Tellez M, Meda P, Lim SK: Derivation of functional insulin-producing
cell lines from primary mouse embryo culture. Stem Cell Res 2009,
2:29-40.

4. Touboul T, Hannan NR, Corbineau S, Martinez A, Martinet C, Branchereau S,
Mainot S, Strick-Marchand H, Pedersen R, Di Santo J, Weber A, Vallier L:
Generation of functional hepatocytes from human embryonic stem cells
under chemically defined conditions that recapitulate liver
development. Hepatology 2010, 51:1754-1765.

5. Cao N, Liao J, Liu Z, Zhu W, Wang J, Liu L, Yu L, Xu P, Cui C, Xiao L,

Yang HT: In vitro differentiation of rat embryonic stem cells into
functional cardiomyocytes. Cell Res 2011, 21:1316-1331.

6. Zhang WJ, Park C, Arentson E, Choi K Modulation of hematopoietic and
endothelial cell differentiation from mouse embryonic stem cells by
different culture conditions. Blood 2005, 105:111-114.

7. Karki S, Pruszak J, Isacson O, Sonntag KC: ES cell-derived neuroepithelial
cell cultures. J Vis Exp 2006, 30:118.

10.

20.

22.

23.

24.

25.

26.

27.

28.

Page 11 of 12

Chinzei R, Tanaka Y, Shimizu-Saito K, Hara Y, Kakinuma S, Watanabe M,
Teramoto K, Arii S, Takase K, Sato C, Terada N, Teraoka H: Embryoid-body
cells derived from a mouse embryonic stem cell line show
differentiation into functional hepatocytes. Hepatology 2002, 36:22-29.

Ko JY, Lee HS, Park CH, Koh HC, Lee YS, Lee SH: Conditions for tumor-free
and dopamine neuron-enriched grafts after transplanting human ES
cell-derived neural precursor cells. Mol Ther 2009, 17:1761-1770.
Takahashi K, Mitsui K, Yamanaka S: Role of ERas in promoting tumour-like
properties in mouse embryonic stem cells. Nature 2003, 423:541-545.
Fujikawa T, Oh SH, Pi L, Hatch HM, Shupe T, Petersen BE: Teratoma
formation leads to failure of treatment for type | diabetes using
embryonic stem cell-derived insulin-producing cells. Am J Pathol 2005,
166:1781-1791.

Hentze H, Graichen R, Colman A: Cell therapy and the safety of
embryonic stem cell-derived grafts. Trends Biotechnol 2007, 25:24-32.

Lin Q, Fu Q, Zhang Y, Wang H, Liu Z, Zhou J, Duan C, Wang Y, Wu K,
Wang C: Tumourigenesis in the infarcted rat heart is eliminated through
differentiation and enrichment of the transplanted embryonic stem
cells. Eur J Heart Fail 2010, 12:1179-1185.

Caspi O, Huber |, Kehat I, Habib M, Arbel G, Gepstein A, Yankelson L,
Aronson D, Beyar R, Gepstein L: Transplantation of human embryonic
stem cell-derived cardiomyocytes improves myocardial performance in
infarcted rat hearts. J/ Am Coll Cardiol 2007, 50:1884-1893.

Heo J, Factor VM, Uren T, Takahama Y, Lee JS, Major M, Feinstone SM,
Thorgeirsson SS: Hepatic precursors derived from murine embryonic
stem cells contribute to regeneration of injured liver. Hepatology 2006,
44:1478-1486.

Chaudhry GR, Fecek C, Lai MM, Wu WC, Chang M, Vasquez A, Pasierb M,
Trese MT: Fate of embryonic stem cell derivatives implanted into the
vitreous of a slow retinal degenerative mouse model. Stem Cells Dev
2009, 18:247-258.

Schriebl K, Lim S, Choo A, Tscheliessnig A, Jungbauer A: Stem cell
separation: A bottleneck in stem cell therapy. Biotechnol J 2010, 5:50-61.
Konuma N, Wakabayashi K, Matsumoto T, Kusumi Y, Masuko T, Iribe Y,
Mitsumata M, Okano H, Kusafuka T, Mugishima H: Mouse embryonic stem
cells give rise to gut-like morphogenesis, including intestinal stem cells,
in the embryoid body model. Stem Cells Dev 2009, 18:113-126.

Torihashi S, Kuwahara M, Ogaeri T, Zhu P, Kurahashi M, Fujimoto T: Gut-like
structures from mouse embryonic stem cells as an in vitro model for
gut organogenesis preserving developmental potential after
transplantation. Stem Cells 2006, 24:2618-2626.

Kaneko Y, Sakakibara S, Imai T, Suzuki A, Nakamura Y, Sawamoto K,

Ogawa Y, Toyama Y, Miyata T, Okano H: Musashi1: an evolutionally
conserved marker for CNS progenitor cells including neural stem cells.
Dev Neurosci 2000, 22:139-153.

Potten CS, Booth C, Tudor GL, Booth D, Brady G, Hurley P, Ashton G, Clarke R,
Sakakibara S, Okano H: Identification of a putative intestinal stem cell and
early lineage marker, musashi-1. Differentiation 2003, 71:28-41.

Montgomery RK, Breault DT: Small intestinal stem cell markers. J Anat
2008, 213:52-58.

Yu T, Lan SY, Wu B, Pan QH, Shi L, Huang KH, Lin Y, Chen QK: Musashi1
and hairy and enhancer of split 1 high expression cells derived from
embryonic stem cells enhance the repair of small intestinal injury in the
mouse. Dig Dis Sci 2011, 56:1354-1368.

Lan SY, Yu T, Xia ZS, Yuan YH, Shi L, Lin Y, Huang KH, Chen QK: Musashi 1-
positive cells derived from mouse embryonic stem cells can differentiate
into neural and intestinal epithelial-like cells in vivo. Cell Biol Int 2010,
34:1171-1180.

Wu C, Alman BA: Side population cells in human cancers. Cancer Letters
2008, 268:1-9.

Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC: Isolation and
functional properties of murine hematopoietic stem cells that are
replicating in vivo. J Exp Med 1996, 183:1797-1806.

Yano S, Ito Y, Fujimoto M, Hamazaki TS, Tamaki K, Okochi H:
Characterization and localization of side population cells in mouse skin.
Stem Cells 2005, 23:834-841.

Larderet G, Fortunel NO, Vaigot P, Cegalerba M, Maltére P, Zobiri O,

Gidrol X, Waksman G, Martin MT: Human side population keratinocytes
exhibit long-term proliferative potential and a specific gene expression
profile and can form a pluristratified epidermis. Stem Cells 2006,
24:965-974.


http://www.ncbi.nlm.nih.gov/pubmed/18676805?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15905405?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15905405?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19383407?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19383407?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20301097?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20301097?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20301097?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21423272?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21423272?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15231577?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15231577?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15231577?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12085345?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12085345?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12085345?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19603007?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19603007?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19603007?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12774123?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12774123?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15920163?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15920163?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15920163?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17084475?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17084475?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20817694?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20817694?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20817694?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17980256?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17980256?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17980256?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17133486?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17133486?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18442304?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18442304?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19946874?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19946874?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18680392?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18680392?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18680392?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16888283?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16888283?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16888283?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16888283?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10657706?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10657706?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12558601?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12558601?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18638070?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21221806?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21221806?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21221806?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21221806?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20670215?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20670215?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20670215?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18487012?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8666936?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8666936?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8666936?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15917479?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16282445?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16282445?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16282445?dopt=Abstract

Yu et al. BMC Cell Biology 2011, 12:47
http://www.biomedcentral.com/1471-2121/12/47

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

45.

46.

47.

48.

49.

Majka SM, Beutz MA, Hagen M, Izzo AA, Voelkel N, Helm KM: Identification
of novel resident pulmonary stem cells: form and function of the lung
side population. Stem Cells 2005, 23:1073-1081.

Martin CM, Meeson AP, Robertson SM, Hawke TJ, Richardson JA, Bates S,
Goetsch SC, Gallardo TD, Garry DJ: Persistent expression of the ATP-
binding cassette transporter, Abcg2, identifies cardiac SP cells in the
developing and adult heart. Dev Biol 2004, 265:262-275.

Kim M, Morshead CM: Distinct populations of forebrain neural stem and
progenitor cells can be isolated using side-population analysis. J Neurosci
2003, 23:10703-1079.

Shimano K, Satake M, Okaya A, Kitanaka J, Kitanaka N, Takemura M,
Sakagami M, Terada N, Tsujimura T: Hepatic oval cells have the side
population phenotype defined by expression of ATPbinding cassette
transporter ABCG2/BCRP1. Am J Pathol 2003, 163:3-9.

Alvi AJ, Clayton H, Joshi C, Enver T, Ashworth A, Vivanco MM, Dale TC,
Smalley MJ: Functional and molecular characterisation of mammary side
population cells. Breast Cancer Res 2003, 5:R1-R8.

Behbod F, Xian W, Shaw CA, Hilsenbeck SG, Tsimelzon A, Rosen JM:
Transcriptional profiling of mammary gland side population cells. Stem
Cells 2006, 24:1065-1074.

Meeson AP, Hawke TJ, Graham S, Jiang N, Elterman J, Hutcheson K,
Dimaio JM, Gallardo TD, Garry DJ: Cellular and molecular regulation of
skeletal muscle side population cells. Stem Cells 2004, 22:1305-1320.
Dekaney CM, Rodriguez JM, Graul MC, Henning SJ: Isolation and
characterization of a putative intestinal stem cell fraction from mouse
jejunum. Gastroenterology 2005, 129:1567-1580.

Schmittgen TD, Zakrajsek BA, Mills AG, Gorn V, Singer MJ, Reed MW:
Quantitative reverse transcription-polymerase chain reaction to study
mRNA decay: comparison of endpoint and real-time methods. Anal
Biochem 2000, 285:194-204.

Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC: Isolation and
fuctional properties of murine hematopoietic stem cells that are
replicating in vivo. J Exp Med 1996, 183:1797-1806.

Park KS, Lim CH, Min BM, Lee JL, Chung HY, Joo CK, Park CW, Son Y: The
side population cells in the rabbit limbus sensitively increased in
response to the central cornea wounding. Invest Ophthalmol Vis Sci 2006,
47:892-900.

Giangreco A, Shen H, Reynolds SD, Stripp BR: Molecular phenotype of
airway side population cells. Am J Physiol Lung Cell Mol Physiol 2004, 286:
1624-1630.

Summer R, Kotton DN, Sun X, Ma B, Fitzsimmons K, Fine A: Side
population cells and Bcrp1 expression in lung. Am J Physiol Lung Cell Mol
Physiol 2003, 285:L.97-L104.

Snippert HJ, van der Flier LG, Sato T, van Es JH, van den Born M, Kroon-
Veenboer C, Barker N, Klein AM, van Rheenen J, Simons BD, Clevers H:
Intestinal crypt homeostasis results from neutral competition between
symmetrically dividing Lgr5 stem cells. Cell 2010, 143:134-144.

Reinisch C, Kandutsch S, Uthman A, Pammer J: BMI-1: a protein expressed
in stem cells, specialized cells and tumors of the gastrointestinal tract.
Histol Histopathol 2006, 21:1143-1149.

Jubb AM, Chalasani S, Frantz GD, Smits R, Grabsch Hl, Kavi V, Maughan NJ,
Hillan KJ, Quirke P, Koeppen H: Achaete-scute like 2 (ascl2) is a target of
Whnt signalling and is upregulated in intestinal neoplasia. Oncogene 2006,
25:3445-3457.

Takemoto T, Uchikawa M, Yoshida M, Bell DM, Lovell-Badge R,
Papaioannou VE, Kondoh H: Tbx6-dependent Sox2 regulation determines
neural or mesodermal fate in axial stem cells. Nature 2011, 470:394-398.
Park D, Xiang AP, Mao FF, Zhang L, Di CG, Liu XM, Shao Y, Ma BF, Lee JH,
Ha KS, Walton N, Lahn BT: Nestin is required for the proper self-renewal
of neural stem cells. Stem Cells 2010, 28:2162-2171.

Asai R, Okano H, Yasugi S: Correlation between Musashi-1 and c-hairy-1
expression and cell proliferation activity in the developing intestine and
stomach of both chiken and mouse. Develop Growth Differ 2005,
47:501-510.

Kayahara T, Sawada M, Takaishi S, Fukui H, Seno H, Fukuzawa H, Suzuki K,
Hiai H, Kageyama R, Okano H, Chiba T: Candidate markers for stem and
early progenitor cells, Musashi-1 and Hes-1, are expressed in crypt base
columnar cells of mouse small intestine. FEBS Lett 2003, 535:131-135.
Challen GA, Little MH: A side order of stem cells: the SP phenotype. Stem
Cells 2006, 24:3-12.

Page 12 of 12

50.  Nadin BM, Goodell MA, Hirschi KK: Phenotype and hematopoietic
potential of side population cells throughout embryonic development.
Blood 2003, 102:2436-2443.

51. Samuel S, Walsh R, Webb J, Robins A, Potten C, Mahida YR:
Characterization of putative stem cells in isolated human colonic crypt
epithelial cells and their interactions with myofibroblasts. Am J Physiol
Cell Physiol 2009, 296:C296-C305.

52. Zhou S, Schuetz JD, Bunting KD, Colapietro AM, Sampath J, Morris JJ,
Lagutina I, Grosveld GC, Osawa M, Nakauchi H, Sorrentino BP: The ABC
transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells
and is a molecular determinant of the side-population phenotype. Nat
Med 2001, 7:1028-1034.

53. Zhou S, Morris JJ, Barnes Y, Lan L, Schuetz JD, Sorrentino BP: Bcrp1 gene
expression is required for normal numbers of side population stem cells
in mice, and confers relative protection to mitoxantrone in
hematopoietic cells in vivo. Proc Natl Acad Sci USA 2002, 99:12339-12344.

54. Alt R, Wilhelm F, Pelz-Ackermann O, Egger D, Niederwieser D, Cross M:
ABCG2 expression is correlated neither to side population nor to
hematopoietic progenitor function in human umbilical cord blood. Exp
Hematol 2009, 37:294-301.

55.  Jonker JW, Freeman J, Bolscher E, Musters S, Alvi AJ, Titley |, Schinkel AH,
Dale TC: Contribution of the ABC Transporters Bcrp1 and Mdr1a/1b to

the Side Population Phenotype in Mammary Gland and Bone Marrow of

Mice. Stem Cells 2005, 23:1059-1065.

56.  Naylor CS, Jaworska E, Branson K, Embleton MJ, Chopra R: Side population/
ABCG2 -positive cells represent a heterogeneous group of haemopoietic

cells: implications for the use of adult stem cells in transplantation and
plasticity protocols. Bone Marrow Transplant 2005, 35:353-360.

57. YuT, Chen QK Gong Y, Xia ZS, Royal CR, Huang KH: Higher expression
patterns of the intestinal stem cell markers Musashi-1 and hairy and
enhancer of split 1 and their correspondence with proliferation patterns
in the mouse jejunum. Med Sci Monit 2010, 16:BR68-BR74.

58.  Kaneko J, Chiba C: Immunohistochemical analysis of Musashi-1
expression during retinal regeneration of adult newt. Neurosci Lett 2009,
450:252-257.

59. Gotte M, Wolf M, Staebler A, Buchweitz O, Kelsch R, Schiiring AN, Kiesel L:
Increased expression of the adult stem cell marker Musashi-1 in
endometriosis and endometrial carcinoma. J Pathol 2008, 215:317-329.

doi:10.1186/1471-2121-12-47

Cite this article as: Yu et al. Musashi1 expression cells derived from
mouse embryonic stem cells can be enriched in side population
isolated by fluorescence activated cell sorter. BMC Cell Biology 2011
12:47.

Submit your next manuscript to BioMed Central
and take full advantage of:

e Convenient online submission

e Thorough peer review

¢ No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

¢ Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

( BioMed Central



http://www.ncbi.nlm.nih.gov/pubmed/15987674?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15987674?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15987674?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14697368?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14697368?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14697368?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14627655?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14627655?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12819005?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12819005?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12819005?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12559051?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12559051?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16282442?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15579648?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15579648?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16285956?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16285956?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16285956?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11017702?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11017702?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8666936?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8666936?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8666936?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16505021?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16505021?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16505021?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12909587?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12909587?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12626330?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12626330?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20887898?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20887898?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16874656?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16874656?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16568095?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16568095?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21331042?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21331042?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20963821?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20963821?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12560091?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12560091?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12560091?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16449630?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12805065?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12805065?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19073897?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19073897?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11533706?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11533706?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11533706?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12218177?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12218177?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12218177?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12218177?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19101070?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19101070?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16002779?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16002779?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16002779?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15608658?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15608658?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15608658?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15608658?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20110912?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20110912?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20110912?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20110912?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19028551?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19028551?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18473332?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18473332?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Maintenance of mouse ESCs and embryonic bodies (EBs) formation
	Differentiation of Msi1high cells
	Real-time quantitative RT-PCR
	Immunocytochemistry for Msi1
	Analysis and sorting of SP fraction in Msi1high cells
	RT-PCR analysis
	Western blots analysis
	Grafts
	Immunohistochemistry
	Statistical analysis

	Results
	Differentiation of Msi1high cells in vitro
	SP and NSP portions can be detected in induction stage population
	Msi1 positive cells can be enriched in SP fraction from Msi1high cell population
	Expressions of other marker genes for IESCs and NSCs
	ABCG2 expression in SP and NSP fractions from Msi1high cells
	SP from Msi1high cells can develop into intestinal epithelial and neural tissues in vivo

	Discussion
	Conclusions
	Abbreviation
	Acknowledgements and Funding
	Author details
	Authors' contributions
	References

