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Abstract
Background: Network Component Analysis (NCA) has shown its effectiveness in discovering
regulators and inferring transcription factor activities (TFAs) when both microarray data and ChIP-
on-chip data are available. However, a NCA scheme is not applicable to many biological studies due
to limited topology information available, such as lack of ChIP-on-chip data. We propose a new
approach, motif-directed NCA (mNCA), to integrate motif information and gene expression data
to infer regulatory networks.

Results: We develop motif-directed NCA (mNCA) to incorporate motif information into NCA
for regulatory network inference. While motif information is readily available from knowledge
databases, it is a "noisy" source of network topology information consisting of many false positives.
To overcome this problem, we develop a stability analysis procedure embedded in mNCA to
resolve the inconsistency between motif information and gene expression data, and to enable the
identification of stable TFAs. The mNCA approach has been applied to a time course microarray
data set of muscle regeneration. The experimental results show that the inferred TFAs are not only
numerically stable but also biologically relevant to muscle differentiation process. In particular,
several inferred TFAs like those of MyoD, myogenin and YY1 are well supported by biological
experiments.

Conclusion: A novel computational approach, mNCA, has been developed to integrate motif
information and gene expression data for regulatory network reconstruction. Specifically, motif
analysis is used to obtain initial network topology, and stability analysis is developed and applied
with mNCA to extract stable TFAs. Experimental results on muscle regeneration microarray data
have demonstrated that mNCA is a practical and reliable computational method for regulatory
network inference and pathway discovery.
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Background
High-throughput biological data provide a powerful
opportunity to study genome systems from a global per-
spective that may lead to a better understanding of their
underlying biological processes [1]. In recent years, many
computational methods have been proposed to identify
gene modules, interactions and pathways in biological
systems [2-5]. Most methods assume that the expression
activity of an entire gene population results from a much
smaller number of latent factors such as transcription fac-
tors. This assumption not only coincides with the modu-
lar view of biological systems, but it also makes the
computational task much easier [2]. For gene regulatory
network modeling, there are two major trends in the liter-
ature: the first trend is to use clustering methods to
explore the similarity in expression patterns [2], whereas
the second trend uses decomposition methods to infer
latent (hidden) factor activities [3-5].

The results of pure computational approaches are often
difficult to interpret due to the lack of biological knowl-
edge support. Biological regulatory systems are complex
in nature, and key activities may occur simultaneously in
the genome, transcriptome and proteome. Hence, any
computational model based only on mRNA measure-
ments may be too simple to describe the entire system.
Recently, many researchers have tried to integrate multi-
ple data sources to infer and reconstruct biological net-
works. For example, network component analysis (NCA)
is a topological knowledge based algorithm that utilizes
both protein binding data and gene expression data to
reveal underlying transcription factor activities [6]. NCA
has been shown to be effective in finding cell cycle regula-
tors in yeast [7]. Despite its success in yeast data, some
issues prevent NCA to infer regulatory networks other
than in yeast. First, complete biological connection data,
such as high-throughput ChIP-on-chip data, are often not
available for common species including rodent and
human. Second, when different heterogeneous data
sources are integrated for computational inference, the
consistency of different data sources is often not guaran-
teed. Third, since topological knowledge (network con-
nections) also comes from biological experiments, this
knowledge likely also contains many false-positives/nega-
tives that can lead to incorrect network inference.

In this paper, we propose a motif-direct NCA (mNCA)
approach for regulatory network inference. First, for spe-
cies with no high-throughput ChIP-on-chip data, possible
network connections can be constructed by finding tran-
scription factors and their potential binding sites in genes'
promoter regions. Our rationale is that TF-gene regulation
occurs only after TFs bind to specific regulatory elements
(DNA sequence motifs) in a gene's promoter region. Sec-
ond, with the awareness of false-positives/negatives con-

tained in motif information, a stability analysis procedure
will be developed for mNCA, not only to test the consist-
ency between motif information and microarray data, but
also to evaluate the reliability of the estimated transcrip-
tion factor activities (TFAs). The new scheme has been
applied to a muscle regeneration microarray data set for
regulatory network inference. With the stability analysis of
mNCA, several reliable TFs have been identified as key
regulators of muscle differentiation.

Methods
Network component analysis (NCA)
Network Component Analysis (NCA) is a computational
method to infer latent factors and the connection relation-
ship of a network, given the initial topology (connection)
information and the measurement of gene expression. In
Fig. 1, we illustrate the NCA approach with an example
from muscle regeneration studies [8]. The mathematical
model of NCA can be formulated as

where E is the observation, A connection matrix, T latent
factors, and Z0 the initial topology of the network. L is the
number of latent (hidden) factors, M the number of
experiment conditions, and N the number of genes. As
illustrated in Fig. 1, the latent factors are the transcription
factors such as YY1 and MyoD; the network topology is
formed by the connection matrices of the TFs to their tar-
get genes. The main objective of the NCA approach is to
estimate the transcription factors' activities (TFAs) and
their target genes. The NCA optimisation criterion can be
simply denoted as [6]:

The NCA algorithm was originally developed for gene reg-
ulatory network reconstruction. The model (1) can be
interpreted in this way: the N genes' expression pattern
under M different conditions can be seen as a combina-
tion effect of L transcription factors (TFs). Note that it is
well accepted that a linear model only holds after log-ratio
transform [6]:

log(ErN×M) = AN×Llog(TrL×M), (3)

where Erij = Eij(t)/Eij(0) (i = 1,...,M; j = 1,...,N) and Trkl =
Tkl(t)/Tkl(0) (k = 1,...,L; l = 1,...,M) are ratios of gene
expression values and transcription factor activities
(TFAs), respectively. In the original NCA scheme, the
topology information Z0 is provided by the ChIP-on-chip
data [9]. With the ChIP-on-chip data available in yeast,
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NCA has been successfully applied to yeast stress response
and cell cycle experiments. Among the estimated TFAs
with an oscillation pattern, 75% correspond to known
cell-cycle regulators [7]. However, this NCA scheme is not
readily applicable to many other biological studies due to
the lack of topology information. In the next section, we
will use motif information as a practical means to obtain
the initial topology information for NCA.

Motif analysis for initial topology information
A transcription factor (TF) is a protein that regulates its
target gene's transcription by binding to a specific regula-
tory motif in the DNA of the promoter region(s). Thus, we
can utilize regulatory motif information to establish the
putative topologic relationship between a TF and a down-
stream target gene. Below we propose a motif analysis
procedure to obtain the initial topology information for
network reconstruction.

First, the upstream regions of the genes can be extracted
from the database PromoSer [10]. Second, Match™ [11]

(or its improved version, P-Match [12]) can be used to
search the transcription factor binding sites (TFBSs) in
each upstream region; this approach generates the scores
of both "core similarity" and "matrix similarity" for each
matched motif. Third, Match™ searches the TFBS for its
position-weighted matrices (PWMs) that can be extracted
from the TRANSFAC 11.1 Professional Database [13].
Fourth, according to the PWMs, a motif score can be cal-
culated for each TF-gene pair where the score is the maxi-
mum of the average scores of core similarity and matrix
similarity. These motif scores provide the initial topology
information for further mNCA analysis as is detailed in
the next section.

Note that each motif is a relative short sequence pattern,
thus the topology from motif information is merely a
rough estimation and will usually include many false pos-
itives/negatives. While the topology information is often
unreliable for any specific TF-gene pair, we can still infer
some key transcription factor activities from gene expres-

An illustrative example for the NCA approach as in muscle regeneration studiesFigure 1
An illustrative example for the NCA approach as in muscle regeneration studies. The network topology is formed by the con-
nection matrices of the transcription factors (TFs) such as YY1 and MyoD to their target genes as shown in (a). The main 
objective of the NCA approach is to estimate the transcription factors' activities (TFAs) and their target genes via the esti-
mated connection matrices as shown in (b).

(a)                  (b)
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sion and DNA sequence information using the stability
analysis procedure developed in the next section.

Stability analysis for motif-directed NCA
Stability analysis was originally proposed to perform
model selection for unsupervised learning, where the
number of clusters can be correctly estimated [14]. Previ-
ously, we have developed a stability analysis procedure to
estimate the dimension for linear decomposition prob-
lems [15]. The basic idea of stability analysis is that if a
small perturbation is introduced equally in different
model order, the best consistency will only occur when
the model fits correctly the underlying structure of the
data.

Here we develop a stability analysis procedure to assess
the estimation results of mNCA. Since true functional data
on TFAs are usually unavailable, we must establish
whether an estimated TFA is a reliable estimate or if this
prediction has arisen by error or by chance. When the
topology information, either from motif analysis or ChIP-
on-chip data, contains many false positives/negatives, we
must also determine which TFAs are the reliable estimates
of underlying transcription factor activities, or whether
these are simply random outcomes.

If we intentionally perturb the network topology, each of
the estimated TFAs will change. A falsely or poorly esti-
mated TFA tends to be altered easily by small perturba-
tions and will appear to be unstable. On the contrary, a
good TFA estimation, reflecting the consistency between
microarray expression data and topology knowledge, will
tend to keep its activity pattern throughout multiple per-
turbations. Therefore, random perturbations should be
performed multiple times to test the stability of each pre-
dicted TFA.

We propose two stability analysis strategies for our motif-
directed NCA scheme. Both strategies estimate whether
the predicted TFAs are stable or not when we intentionally
alter the motif connection information. The perturbation
methods are described as follows:

1. A TF-gene connection is deleted if the motif score is
below a predetermined cut-off threshold. By setting differ-
ent cut-off thresholds, we can change the number of con-
nections and so perturb the network topology. The higher
the motif score cut-off is set, the fewer the number of pre-
dicted connections.

2. Regardless of the motif score, for each transcription fac-
tor its TF-gene connections are randomly altered by either
deleting the existing connections or by inserting new con-
nections with some small percentage (e.g., 10%).

For K independent connection perturbations and
repeated runs, we will obtain K different estimates of the
same TFA. Pair-wise absolute correlation is calculated
between different runs, and the stability measurement is
defined as follows:

stability measurements of ith TFA =
{|CorrCoef(TFAi(j), TFAi(k))|j≠k}, (4)

where j and k correspond to different perturbations,
respectively. CorrCoef() is the Pearson correlation coeffi-
cient function. When stability measurements of a specific
TFA are obtained, we can use several statistics including
mean and variance estimates to describe a predicted TFA's
robustness with respect to perturbation. In this paper, we
use boxplot to visualize the stability measurement, simul-
taneously depicting its minimum, 25% percentile,
median, 75% percentile, and maximum.

Results and discussion
The proposed mNCA approach has been applied to ana-
lysing a time course microarray data set from an expres-
sion profiling study of muscle regeneration at Children's
National Medical Center (CNMC) [16]. Muscle differenti-
ation model has been widely used as a model system to
study embryonic development and post-natal regenera-
tion of muscle tissues. Although both in vitro and in vivo
biological experiments of muscle differentiation were
conducted and reported, to our knowledge, no computa-
tional approaches have yet been proposed to model mus-
cle regeneration process. Below we report the
experimental results from our data analysis and show that
the mNCA approach can reveal important regulatory
mechanisms in muscle regeneration.

Data set description
Staged skeletal muscle degeneration/regeneration was
induced by injection of cardiotoxin (CTX) as previously
described [16]. Two mice were injected in gastrocnemius
muscles of both sides, and then sacrificed at each of the
following time points: 0, 12 h(ours), 1 d(ay), 2 d, 3 d, 3.5
d, 4 d, 4.5 d, 5 d, 5.5 d, 6 d, 6.5 d, 7 d, 7.5 d, 8 d, 8.5 d, 9
d, 9.5 d, 10 d, 11 d, 12 d, 13 d, 14 d, 16 d, 20 d, 30 d, and
40 d. The time course microarray data set was acquired
with Affymetrix's Murine Genome U74v2 Set from an
expression profiling study at CNMC. We used Affymetrix's
MAS 5.0 probe set interpretation algorithm to process the
original intensity data for gene expression measurements.
After the processing, we obtained the expression measure-
ments of 7570 probesets in each sample.

Motif analysis for topology information
From the TRANSFAC 11.1 Professional Database, 24
mouse muscle related transcription factors were selected
for motif analysis (Table 1). According to their position
Page 4 of 9
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weighted matrices (PWMs), possible connection topology
was calculated. As described in the previous section, each
possible connection has a motif score obtained from the
TRANSFAC database. After motif information filtering, a
total of 5198 genes were kept for further analysis using
mNCA.

Motif-directed NCA and stability analysis
From Equation (3), we know that log-ratio operation
should be performed on the data set to ensure that the lin-
ear model holds. We chose the last (27th) time point sam-
ple as the reference for calculating the ratios, because it is
at the 40th day, the late stage of the muscle regeneration,
hence being regarded as a normal muscle reference.

As described in Methods, two different perturbation pro-
cedures for mNCA were used to study the stability of esti-
mated TFAs. In both procedures, the number of
connection perturbations for mNCA was set to 20. A pro-
cedure to select a proper number of perturbations will be
given later. In the first procedure, the threshold of motif
score was set from low to high, making the connection

number vary gradually from 12,000 to 18,000; this
approach results in more than 30% of the connections
being altered. Stability measurements were calculated and
the boxplot generated (Fig. 2). It can be seen from Fig. 2
that some of estimated TFAs are stable during perturba-
tion. Among them, the TFAs of YY1, myogenin and MyoD
are quite stable as marked with different colours (Fig. 2).

In the second procedure, for each transcription factor,
10% of the connections were altered randomly, regardless
of the motif score, by either deleting existing connections
or inserting new connections to test the stability of TFAs.
The stability measurement was calculated; the resulting
boxplot is shown in Fig. 3. Again, the estimated TFAs of
YY1, myogenin, and MyoD are seen to be stable as high-
lighted with different colours in Fig. 3.

To properly select the number of perturbations, we also
investigated the stability measurements of TFAs with dif-
ferent numbers of perturbations. This should provide
some justification on selecting a proper number for per-
turbations (denoted as NP). As summarized in Table 2, we

Table 1: Mouse muscle related transcription factors obtained from the TRANSFAC 11.1 Professional database.

Index Regulatory Site TRANSFAC Matrix ID Brief Description

1 YY1 M01035, M00059, M00069, M00793 Ying Yang 1; common factor 1; delta-factor; F-ACT1; myc-
CF1; NF-E1

2 Tal-1 alpha:E47 M00066 Tal-1beta:E47 heterodimer. Random 35-mers bound by in 
vitro co-translated Tal-1alpha and E47 after 6 CASTing 
cycles

3 NF-Y M00775, M00185, M00287, M00209 Nuclear Factor Y; CCAAT-binding factor; CP1
4 Alpha-CP1 M00687 alpha-CP1; CBF; CCAAT-binding factor; CP1
5 Sp1 M00008, M00196, M00932, M00931, M00933 Stimulating Protein 1; trans-acting transcription factor 1
6 Hand1:E47 M00222 Hand1:E47 heterodimer. Hand1 is thought to bind to the 

left half (positions 1–8), E47 to the right half (position 9–
16)

7 MEF-2 M00405 M00006, M00232, M00406, M00941, M00233, 
M00231

Myogenic enhancer factor 2

8 USF M00796, M00187, M00217, M00121, M00122 Upstream stimulating factor
9 USF2 M00726 Upstream stimulatory factor 2; Fos-interacting protein
10 Tal-1beta:E47 M00065 Tal-1alpha:E47 heterodimer. Random 35-mers bound by in 

vitro co-translated Tal-1beta and E47 after 6 CASTing 
cycles

11 Ebox M01034 Ebox binding protein
12 Myogenin M00712 Myf-4 (human); MyoG; myogenin
13 E2A M00804, M00973 E2-alpha; immunoglobulin enhancer binding factors E12/E47
14 NKX25 M01043 Csx; NK2 transcription factor related, locus 5 (Drosophila)
15 Nkx2-5 M00240, M00241 Homeo domain factor Nkx-2.5/Csx, tinman homolog
16 TATA M00252, M00216 TATA-binding protein; TATA-box-binding protein; TBP; 

TFIID; TFIIDtau
17 TBX5 M01019, M01020, M01044 T-box protein 5
18 MyoD M00001, M00184, M00929 Myoblast determining factor
19 SRF M00152, M00810, M01007, M00186, M00215, M00922 Serum Responsive Factor
20 TBP M00471, M00980 TATA-binding protein
21 GATA-4 M00632 GATA-binding factor 4
22 GATA M00789 GATA-binding factor
23 E47 M00071, M00002 E2A; immunoglobulin enhancer-binding factor E12/E47
24 E12 M00693 E2A; immunoglobulin enhancer-binding factor E12/E47
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report the experimental results on YY1, mygenin and
MyoD with 25% quantile, median and 75% quantile for
NP = 10, 15, 20, 30 and 50. As we can see, the YY1, myo-
genin and MyoD are very stable and consistent through-
out the perturbations (see additional file 1: Stability
analysis using mNCA with different number of perturba-
tions). Therefore, we can justify that the selection of NP =
20 is a reasonable choice for this study.

Discussion
Because motif information is too general to fit to specific
muscle regeneration data, stability analysis was used to
find those transcription factors with stable estimated
activities throughout perturbation. Although there are

more than ten stable TFAs from the analysis, we focus here
on three: MyoD, myogenin, and YY1. From the literature,
these three TFs are key regulators of muscle differentiation
[16-18]. In Fig. 4, we show the expression profiles and cor-
responding TFAs of these three TFs. It can be seen from
Fig. 4 that these predicted TFAs are biologically relevant to
muscle regeneration because the TFAs exhibit sudden
increases in their log expression ratios after muscle injury
and these values gradually decrease in the later stages of
muscle regeneration when the tissue has almost com-
pleted regeneration.

Table 2: A summary of the stability analysis using mNCA with different number of perturbations for YY1, myogenin and MyoD.

Stability Measurement of transcription 
factor's activity/No. of perturbations

10 15 20 30 50

YY1 75% quantile 0.9981 0.9978 0.9977 0.9979 0.9977
median 0.9963 0.9960 0.9948 0.9959 0.9947
25% quantile 0.9928 0.9913 0.9886 0.9905 0.9870

myogenin 75% quantile 0.9776 0.9623 0.9745 0.9633 0.9662
median 0.9359 0.9092 0.9223 0.9107 0.9022
25% quantile 0.8680 0.8110 0.8250 0.8078 0.7959

MyoD 75% quantile 0.9908 0.9898 0.9894 0.9904 0.9894
median 0.9793 0.9816 0.9808 0.9816 0.9780
25% quantile 0.9632 0.9634 0.9621 0.9620 0.9542

Stability measurements using the first perturbation proce-dureFigure 2
Stability measurements using the first perturbation proce-
dure. The boxes with red, green purple colour are the stabil-
ity measurements of YY1, myogenin and MyoD, respectively.
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Stability measurements using the second perturbation proce-dureFigure 3
Stability measurements using the second perturbation proce-
dure. The boxes with red, green, purple colour are the sta-
bility measurements of YY1, myogenin and MyoD, 
respectively.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

0.2

0.4

0.6

0.8

1

S
ta

bi
lit

y 
M

ea
su

re
m

en
t

Transcription factor Index

m
yo

ge
ni

n

T
al

-1
al

ph
a:

E
47

N
F

-Y
al

ph
a-

C
P

1

E
2A

N
K

X
25

N
kx

2-
5

T
A

T
A

T
B

X
5

M
yo

D
S

R
F

T
B

P

G
A

T
A

-4
G

A
T

A

E
47 E
12

Y
Y

1

M
E

F
-2

U
S

F
U

S
F

2
T

al
-1

be
ta

:E
47

E
bo

x

S
p1

H
an

d1
:E

47
Page 6 of 9
(page number not for citation purposes)



BMC Bioinformatics 2008, 9(Suppl 1):S21 http://www.biomedcentral.com/1471-2105/9/S1/S21

Page 7 of 9
(page number not for citation purposes)

Gene expression patterns of (a) YY1, (c) myogenin, and (e) MyoD, respectively; estimated TFAs of (b) YY1, (d) myogenin, and (f) MyoD, respectivelyFigure 4
Gene expression patterns of (a) YY1, (c) myogenin, and (e) MyoD, respectively; estimated TFAs of (b) YY1, (d) myogenin, and 
(f) MyoD, respectively. Note: x-axis – time points; y-axis – log expression ratio (a, c and e) or log TFA ratio (b, d, e).
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For YY1, a large difference between its measured gene
expression level and inferred TFA is evident in Fig. 4(a)
and Fig. 4(b). The YY1 gene expression log-ratio is relative
low when compared with other TFs, and its trend has no
obvious relationship with muscle regeneration. However,
the inferred TFA shows a close relationship with the regen-
eration process. This is supported by a biological study
[18] that reported an inconsistency between YY1 protein
and mRNA expression levels and showed an important
role for YY1 in mouse muscle differentiation. Specifically,
YY1 acts as a transcription repressor, down-regulating
muscle gene expression in undifferentiated muscle cells
[19]. During muscle differentiation, YY1's activity is
decreased, which leads to the induction of muscle gene
expression. The reduction in YY1 activity occurs at the pro-
tein rather than mRNA level. YY1 protein is degraded by a
protease, calpain II (m-calpain), in differentiating muscle
cells [16]. Thus, our inferred YY1 TFA from the muscle
regeneration data set is well supported by the biological
observation of an induction of calpain II and relatively
less change of YY1 mRNA expression in muscle regenera-
tion. It can also be observed that calpain II's mRNA
expression levels (Fig. 5) have a very similar pattern with
our estimated YY1 TFA (Fig. 4(b)), with a correlation coef-
ficient of r > 0.9.

Intuitively, a regulator's TFA should have better prediction
capability to describe its target genes' pattern than using
its own mRNA expression level. From ChIP-on-chip
experiments of myogenin [17], more than one hundred
genes were identified as its regulation target candidates.
Testing their relationship by a simple Pearson correlation
calculation, there are 14 probeset IDs with an absolute

correlation coefficient (ACC) > 0.8 with myogenin's TFAs;
only 6 probeset IDs correlated (ACC > 0.8) with the myo-
genin's measured expression level. We note that myo-
genin's mRNA expression level and its TFA estimate have
a similar pattern; the correlation results show that the esti-
mated TFA is better able to predict downstream targets
than its measured gene expression level. These observa-
tions indicate that our mNCA approach has significant
potential to find better regulation targets for pathway dis-
covery.

Conclusion
In this paper, we propose a new approach, namely motif-
direct NCA (mNCA), to infer underlying regulatory activ-
ities by integrating motif information and gene expression
data. Motif information is used to derive initial network
topology information for mNCA. Since many false posi-
tives/negatives could exist in motif information, we have
further developed a stability analysis procedure for mNCA
to extract stable TFAs. The scheme was applied to a time-
course microarray data set from a muscle regeneration
profiling study. The experimental results show that our
new approach can reveal both key regulators and their tar-
get genes, and also discover novel regulatory mechanisms
potentially involved in muscle regeneration. By further
incorporating biological knowledge, we hope to extend
this approach to analyzing muscle dystrophy data for
novel pathway discovery and biomarker identification
[8].

Competing interests
The authors declare that they have no competing interests.

Authors' contributions
CW and JX formulated the problem and developed the
theoretical framework of the algorithm. CW and LC car-
ried out the development and implementation of the
algorithm. PZ and EH directed the application of the algo-
rithm to muscle regeneration data. YW and RC provided
technical and biological support to the project. All authors
participated in the writing of the manuscript, and have
read and approved the manuscript.

Additional material

Additional file 1
Stability analysis using mNCA with different number of perturbations 
(denoted as NP). Stability measurements with (a) NP = 10, (b) NP = 
15, (c) NP = 20 and (d) NP = 30. The boxes with red, green, purple col-
our are the stability measurements of YY1, myogenin and MyoD, respec-
tively.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-S1-S21-S1.pdf]

Gene expression pattern of calpain IIFigure 5
Gene expression pattern of calpain II. Note: x-axis – time 
points; y-axis – log expression ratio.
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