BIVIC Bioinformatics moml.?@mral

Correspondence Open Access

Reproducibility of microarray data: a further analysis of microarray
quality control (MAQC) data

James ] Chen*1, Huey-Miin Hsueh?, Robert R Delongchamp3, Chien-Ju Lin!
and Chen-An Tsai4

Address: Division of Personalized Nutrition and Medicine, National Center for Toxicological Research, Food and Drug Administration, Jefferson,
Arkansas 72079, USA, 2Department of Statistics, National ChengChi University, Taipei, Taiwan, 3Department of Epidemiology, University of
Arkansas for Medical Sciences, Little Rock, AR 72205, USA and 4Department of Public Health & Biostatistics Center, China Medical University,
Taichung, Taiwan

Email: James ] Chen* - jamesj.chen@fda.hhs.gov; Huey-Miin Hsueh - hsueh@nccu.edu.tw; Robert R Delongchamp - rdelongchamp@uams.edu;
Chien-Ju Lin - chien-ju.lin@fda.hhs.gov; Chen-An Tsai - catsai@mail.cmu.edu.tw

* Corresponding author

Published: 25 October 2007 Received: || September 2007
BMC Bioinformatics 2007, 8:412  doi:10.1186/1471-2105-8-412 Accepted: 25 October 2007
This article is available from: http://www.biomedcentral.com/1471-2105/8/412

© 2007 Chen et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: Many researchers are concerned with the comparability and reliability of microarray gene
expression data. Recent completion of the MicroArray Quality Control (MAQC) project provides a
unique opportunity to assess reproducibility across multiple sites and the comparability across multiple
platforms. The MAQC analysis presented for the conclusion of inter- and intra-platform comparability/
reproducibility of microarray gene expression measurements is inadequate. We evaluate the
reproducibility/comparability of the MAQC data for 12901 common genes in four titration samples
generated from five high-density one-color microarray platforms and the TagMan technology. We discuss
some of the problems with the use of correlation coefficient as metric to evaluate the inter- and intra-
platform reproducibility and the percent of overlapping genes (POG) as a measure for evaluation of a gene
selection procedure by MAQC.

Results: A total of 293 arrays were used in the intra- and inter-platform analysis. A hierarchical cluster
analysis shows distinct differences in the measured intensities among the five platforms. A number of genes
show a small fold-change in one platform and a large fold-change in another platform, even though the
correlations between platforms are high. An analysis of variance shows thirty percent of gene expressions
of the samples show inconsistent patterns across the five platforms. We illustrated that POG does not
reflect the accuracy of a selected gene list. A non-overlapping gene can be truly differentially expressed
with a stringent cut, and an overlapping gene can be non-differentially expressed with non-stringent cutoff.
In addition, POG is an unusable selection criterion. POG can increase or decrease irregularly as cutoff
changes; there is no criterion to determine a cutoff so that POG is optimized.

Conclusion: Using various statistical methods we demonstrate that there are differences in the intensities
measured by different platforms and different sites within platform. Within each platform, the patterns of
expression are generally consistent, but there is site-by-site variability. Evaluation of data analysis methods
for use in regulatory decision should take no treatment effect into consideration, when there is no
treatment effect, "a fold-change cutoff with a non-stringent p-value cutoff' could result in 100% false
positive error selection.
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Background

Microarray technology provides powerful tools to meas-
ure expression levels of thousands of genes simultane-
ously. Gene expression data are increasingly being used in
disease diagnosis, identifying biomarkers, and predicting
clinical outcomes. However, many researchers are con-
cerned with the comparability and reliability of microar-
ray data [1-4]. Various studies have been published on
comparing data reproducibility across different platforms
or different laboratories with mixed results. Some have
found that microarray experiments generated similar
results obtained at different test sites and using different
platforms [2-5]. Others showed little overlap among lists
of differentially expressed genes across platforms [6-8].
Recent completion of the MicroArray Quality Control
(MAQC) [9] project provides a unique opportunity to
assess reproducibility of gene expression data across mul-
tiple sites and the comparability across multiple platforms
[10].

In the MAQC project, transcript levels of four titration
samples were measured on seven microarray platforms
and three alternative gene expression technologies. Each
microarray platform was generally tested at three inde-
pendent sites with five replicates of each sample. The
MAQC project has generated many manuscripts; each has
a specific aim and objective in the data generation, pres-
entation, and analysis. The analysis presented for the con-
clusion of inter- and intra-platform comparability/
reproducibility of microarray gene expression measure-
ments [9] is inadequate. The MAQC design is essentially a
factorial design with four titration samples and three sites.
The MAQC analysis performed pairwise comparison
between two samples within each site and never formally
evaluated the consistency of expression of the four sam-
ples across sites (sample by site interaction). The assess-
ment of inter platform comparability was limited to the
fold change between two samples, namely, Samples A and
B within each site in the analysis [9]. The three metrics
were considered in that analysis: differential gene list
overlap, log ratio compression, and log rank correlation.
For example, the rank correlations of the log ratios of sam-
ple B to sample A between two platforms or two sites were
calculated as a measure of comparability. The correlation
is a measure of concordance. A low correlation is an indi-
cation of poor reproducibility, but a high correlation itself
is no sufficient to conclude reproducibility. Furthermore,
the differential gene list overlap is used as a measure of
reproducibility to evaluate a gene selection procedure. The
MAQC Consortium [9] suggested a fold-change cutoff
with a non-stringent p-value cutoff as a baseline practice
to improve reproducibility. Many researchers have ques-
tioned this approach [11-15].
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This paper presents further analyses of the reproducibil-
ity/comparability of the MAQC data for five high-density
one-color microarray platforms and the TagMan technol-
ogy. Various statistical techniques are used to evaluate
inter- and intra-platform reproducibility and consistency.
A "gold standard" data set is constructed for assessment of
sensitivity, specificity, and accuracy for evaluation of indi-
vidual platforms' performances on selection of differen-
tially expressed genes. We discuss some of the problems
with the use of correlation coefficient as metric to evaluate
the inter- and intra-platform reproducibility and the use
of differential gene list overlap for evaluation of gene
selection by MAQC Consortium [1,16].

Results

Microarray Cross platform comparability

Figure 1 shows a hierarchical clustering analysis of the 293
arrays from five platforms, three sites, four samples, and
five replicates. The arrays are well separated by platform,
by sample, and then by site. The five major branches of
the dendrogram represent the five platforms. This indi-
cates that there are differences in the intensities as meas-
ured by the different platforms. Therefore, intensities
measured by different platforms are not directly compara-
ble. Within each platform, the samples were well sepa-
rated, except for GEH. For the GEH platform, samples C
and samples D do not completely cluster together. Fur-
thermore, since sample C is a 75%A+25%B mixture, the
sample pair A and C should be clustered together. Like-
wise, sample D is a 25%A+75%3B mixture, so the sample
pair B and D should be clustered together. All platforms
show good discriminability among the four biological
samples. Within each sample, the replicates from the
same sites are generally clustered together; this indicates
site effects in all five platforms.

The correlation coefficients between platforms were eval-
uated for each of the four samples (A, B, C, and D) and
each of the fold-changes (B/A, C/A, D/A, C/B, D/B, and D/
C). For a given sample (A, B, C, or D), all pairwise corre-
lations between each of the (up to) 15 replicates in one
platform and each of the (up to) 15 replicates in another
platform were computed. A total of up to 2250 inter plat-
form correlations were computed. The fold-changes were
calculated for each site within each platform. The fold-
change correlations across platforms were then calculated.
There were 90 fold-change correlations. The summary sta-
tistics of the sample correlations and fold-change correla-
tions are shown in Table 1. The median correlations are
0.74, 0.70, 0.71, and 0.68 for Samples A, B, C, and D,
respectively. The highest correlation observed is 0.82 in
Sample A; the smallest correlation is 0.45 observed in
Sample D. The median fold-change correlation are 0.85,
0.75, 0.82, 0.84, 0.78, 0.78 for fold-changes B/A, C/A, D/
A, C/B, D/B, D/C, respectively. The highest correlation is
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Hierarchical clustering. Hierarchical clustering of 293 arrays from the five microarray platforms, four samples, and three
sites, in most cases, five technical replicates for each sample. The five platforms are colored: Affymetrix (AFX), Applied Biosys-
tems (ABI), Agilent Technologies (AGI), GE Healthcare (GEH), and lllumina (ILM). The four samples are colored: A, B, C, and
D. The three sites are colored: site |, site 2, and site 3. The correlation coefficient of the standardized intensity measurements
over the 12091 genes were calculated for all pairwise combinations of the 293 arrays. The one-minus-correlation is used for

the distance metric.

0.92 observed in fold-change B/A; the smallest correlation
is 0.53 observed in fold-change C/A. The median fold-
change correlations are higher than the sample correla-
tions. Table 1 indicates that Sample A is more similar to C
than Sample B is to D; and Sample A and C are the most
similar among the four samples.

Figure 2 shows the scatter plots of all pairwise compari-
sons of the fold-changes B/A (upper triangle of each
square) and D/C (lower triangle of each square) for all
genes from the five platforms. The scatter plots provide an
assessment of agreement in the measured fold-changes
between two platforms. The fold-change estimates for B/A
are somewhat consistent across platforms. However, a

Table I: Inter-platform correlation coefficients: the sample and fold-change correlation coefficients between platforms.

Sample Correlations

Fold-change Correlation

Correlation A B C D B/A C/IA D/IA C/B D/B D/C
Minimum 0.56 0.49 0.50 0.45 0.78 0.53 0.71 0.73 0.59 0.6l
25%tile 0.63 0.58 0.60 0.57 0.83 0.73 0.8l 0.8l 0.76 0.76
Median 0.74 0.70 0.71 0.68 0.85 0.75 0.82 0.84 0.78 0.78
Mean 0.71 0.66 0.68 0.65 0.86 0.74 0.82 0.84 0.77 0.78
75%tile 0.77 0.74 0.74 0.72 0.89 0.80 0.87 0.88 0.83 0.82
Maximum 0.82 0.81 0.80 0.80 0.92 0.85 0.90 0.91 0.87 0.88

For each sample (A, B, C, or D) and each fold-change (B/A, C/A, D/A, C/B, D/B, or D/C) all pairwise inter platform correlations were computed.
For each sample correlation coefficient, up to 2250 correlation coefficients were computed; for each fold-change correlation, 90 correlations were

computed.
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Figure 2

Matrix scatter plot of the logarithms of the fold-change estimates. B/A (upper triangle) and D/C (low triangle), for
the five platforms. The diagonal line shown between lower left and upper right is for reference.

small fold-change observed in one platform may have a
large fold-change in another platform. Figure 3 provides
more detailed scatter plots of various platform compari-
sons in Figure 2. The two lines represent a 2-fold change.
The points in the lower right or upper left region have a 2-
fold change in one platform and less than 2-fold change
in the other platform. Quite a number of genes falls in
these two regions. For the fold-change D/C in Figure 2, the
range of the fold-changes for D/C is smaller than the range
for B/A. It is rather variable, relatively. AFX appears to
have smaller ranges than the other four platforms. Pat-
terns of the expression of the four samples across the plat-
forms are evaluated using a two-factor ANOVA model
with interaction. The proportion of genes that showed a
significant Sample*Platform interaction is 0.30 at the
FDR = 1% significance level. That is, 30% of genes in

which the four samples show inconsistent patterns of
expression across the five platforms.

TaqMan and microarray platform comparability

The summary statistics of the sample correlation coeffi-
cients and fold-change correlation coefficients between
the TagMan and each of the five microarray platforms for
all pairwise combinations are evaluated (see Table 2). The
medians of the sample correlation coefficients range from
0.57 to 0.79. This range is comparable with the sample
correlation coefficients observed between microarray plat-
forms. The fold-change correlation coefficients are also
comparable with the fold-change correlation coefficients
observed among the microarray platforms. Figure 4 shows
boxplots of the sample A, sample B and fold-change (B/A)

Page 4 of 14

(page number not for citation purposes)



BMC Bioinformatics 2007, 8:412

r=0.924

http://www.biomedcentral.com/1471-2105/8/412

3 3 g o -
o~
A T
-4
o
o
I = I
L [TT-
O = o
T4 T 4
T T T T T T T T T T T T T T
4 2 [u] 2 4 4 2 2 4 4 -2 ] 2 4
ABI AG1 AG1T
Figure 3

Scatter plots of the fold-change estimates between two platforms and the correlation coefficients. The fold
change estimates in the plots was the larger of the A/B or B/A. The two lines represent a 2-fold change. The points in the
lower right or upper left region have a 2-fold change in one platform and less than 2-fold change in the other platform. The six
plots represent the 10 possible plots and include the largest and smallest correlations.

correlation coefficients of TagMan versus microarray plat-
forms.

Using an ANOVA for the data from each of the five plat-
forms and Tagman, the proportions of the genes that have
a significant Sample*Platform interaction are 0.72, 0.57,
0.49, 0.65, 0.39 for AFX, ABI, AG1, ILM, and GEH, respec-
tively. These values are higher than the Sample*Platform
interaction of 0.30 obtained from the inter microarray
platform comparability discussed above. Figure 5 shows
that Gene NM_000168 has good consistency of patterns
of expression of four samples in all five platforms; but pat-
terns between the each of the five platforms and Tagman
for the four samples are inconsistent. The IDs for this
genes are 205201_at, 100093, A_23_P111531, GE57983,
GI_13518031-S, Hs00609233_m1 for 5 AFX, ABI, AG1,
ILM, GEH, TAQ, respectively.

Analysis of titration response

The correlation coefficients between the observed
responses for Sample C and Sample D and the expected
responses predicted by Samples A and B are shown in Col-

umns 2 and 3 of Table 3. The correlations are at least 90%
in both samples C and D from all platforms.

The differences between the observed responses and the
predicted responses were evaluated. The proportion of
genes with a difference less than 0.5 in log, scale (this cor-
responds to 205 = 1.41 fold change) was calculated for
each site. The averaged proportions from the three sites
are shown in Columns 4 and 5 of Table 3. The AFX has the
highest proportions, greater than 99%. These numbers
appear inconsistent with the lowest correlation coeffi-
cients. The inconsistency is, perhaps, that AFX has a
shorter expression range than other platforms.

Using the two-step goodness of fit procedure, the propor-
tions of genes follow the titration trend are at least 90%
(Columns 6-7 of Table 3). All analyses indicate a good,
self-consistent relationship between the expression meas-
urements from the four samples.
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Table 2: TagMan and microarray platform comparability".
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Table 2a. Summary of sample correlation coefficients of TAQ v.s.5 platforms

Minimum 25%tile Median Mean 75%tile Manimum
AFX A 0.763 0.776 0.783 0.782 0.791 0.797
B 0.749 0.763 0.774 0.771 0.778 0.785
C 0.722 0.74 0.744 0.745 0.751 0.762
D 0.715 0.725 0.731 0.733 0.74 0.755
ABI A 0.73 0.746 0.754 0.755 0.763 0.78
B 0.656 0.686 0.707 0.701 0.717 0.737
C 0.684 0.698 0.71 0.711 0.725 0.736
D 0.644 0.661 0.671 0.674 0.685 0.717
AGI A 0.718 0.731 0.737 0.74 0.752 0.76
B 0.699 0.704 0.709 0.713 0.724 0.734
C 0.67 0.68 0.685 0.687 0.697 0.706
D 0.636 0.649 0.654 0.656 0.662 0.673
ILM A 0.727 0.746 0.758 0.755 0.763 0.771
B 0.703 0.715 0.744 0.738 0.756 0.761
C 0.685 0.692 0.711 0.706 0.716 0.725
D 0.666 0.675 0.694 0.69 0.704 0.709
GEH A 0.583 0.626 0.66 0.651 0.67 0.7
B 0.518 0.542 0.619 0.598 0.63 0.65
C 0.502 0.525 0.608 0.587 0.623 0.638
D 0.455 0.468 0.57 0.542 0.584 0.609
Table 2b. Summary of fold-change correlation coefficients of TAQ v.s.5 platforms
Minimum 25%tile Median Mean 75%tile Manimum
AFX B/A 0.885 0.888 0.892 0.891 0.893 0.895
C/IA 0.81 0.824 0.838 0.831 0.841 0.844
D/A 0.867 0.868 0.869 0.871 0.872 0.875
C/B 0.867 0.87 0.874 0.874 0.878 0.882
D/B 0.86 0.861 0.862 0.866 0.868 0.875
C/B 0.825 0.83 0.836 0.832 0.836 0.836
ABI B/A 0.858 0.858 0.859 0.863 0.865 0.872
C/IA 0.715 0.72 0.725 0.729 0.736 0.748
D/A 0.794 0.795 0.797 0.805 0.81 0.824
C/B 0.867 0.868 0.869 0.87 0.871 0.873
D/B 0.833 0.842 0.852 0.846 0.853 0.854
C/B 0.776 0.785 0.794 0.788 0.795 0.796
AGI B/A 0.878 0.879 0.88 0.884 0.887 0.893
C/IA 0.741 0.753 0.765 0.763 0.774 0.783
D/A 0.827 0.831 0.835 0.836 0.84 0.845
C/B 0.87 0.877 0.884 0.88 0.885 0.887
D/B 0.849 0.853 0.856 0.855 0.857 0.858
C/B 0.81 0811 0811 0.815 0818 0.824
ILM B/A 0.878 0.886 0.894 0.891 0.898 0.903
C/IA 0.75 0.758 0.767 0.771 0.782 0.797
D/A 0.827 0.836 0.845 0.845 0.854 0.863
C/B 0.882 0.888 0.893 0.891 0.896 0.899
D/B 0.871 0.876 0.88 0.882 0.887 0.893
C/B 0.823 0.827 0.831 0.831 0.835 0.839
GEH B/A 0818 0.838 0.858 0.845 0.859 0.859
C/IA 0.603 0.665 0.726 0.69 0.733 0.741
D/IA 0.709 0.751 0.793 0.768 0.798 0.803
C/B 0.782 0.824 0.866 0.839 0.867 0.869
D/B 0.726 0.787 0.848 0.809 0.851 0.854
C/B 0.594 0.691 0.787 0.724 0.789 0.79
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Within microarray platform reproducibility and individual
platforms' discriminability

For each platform, the correlation coefficients between
two sites were calculated for each of the four samples to
assess intra-platform reproducibility across sites. There
were seventy-five correlation coefficients for each sample.
In Table 4, Columns 2-5 show the median correlation
coefficients between two arrays from two different sites.
The median correlations are high; the smallest median
correlation coefficient is 0.862 observed in Sample D
from the GEH platform.

Using a two-factor ANOVA, the proportions of genes that
are significant at the significance level of FDR = 1% are
given in Columns 6-8. All platforms show good discrim-
inability to distinguish the four samples, about 80%; all
platforms show large site effects, ranged 70% to 99%. The
proportions of Sample*Site interaction for the AFX, ABI,
and GEH platforms are low; but, the proportions for the
AG1 and GEH platforms are more than 10%.

Sensitivity, specificity, and accuracy in gene selection

Selection of differentially expressed genes is one of the
most important goals of microarray experiment. How-
ever, it is difficult to validate whether the selected genes
are truly differentially expressed, and those not selected
genes are truly non-differentially expressed. The MAQC
project used technical replicates (small variance) with two
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distinct biological samples (large difference). We exam-
ined the number of genes expressed differently between
Sample A and Sample B across platforms. Of the 12,091
genes, 9879 have p-value < 10-5 in at least 1 platform,
8265 have p-value < 10-5 in at least 2, 6846 in 3, 5241 in
4 and 3128 in all five. These numbers are larger than the
number commonly observed in typical microarray exper-
iments. We constructed a "gold standard data" set of dif-
ferentially expressed and non-differentially expressed
genes for evaluation of individual platforms' perform-
ances. A gene is "differentially expressed" if it was shown
to be significant (p < 10-%) in at least two of the five plat-
forms. A gene is non-differentially expressed if its fold
change was shown to be between 0.90 and 1/0.90 in at
least two of the five platforms at the significance level 10-
3. Excluding the overlapping genes, the "gold standard
data" set selected 8,187 differentially expressed genes and
420 non-differentially expressed genes.

Individual platforms' performances from the "gold stand-
ard data" set are shown in Table 5 using the FWE = 0.05
and FDR = 0.05 cutoff criteria. The FWE criterion gives
high specificity and the FDR criterion gives high sensitiv-
ity. At the FDR = 0.05, the FDR estimates are all well below
0.05. An explanation is that the Benjamin and Hochberg
procedure!® assumed a complete null hypothesis that all
8,607 genes considered are not differentially expressed.
The three platforms AFX, ABI, AG1 have similar perform-

0.90 i

@& - 0
0.88 - H
0.86 - D
0.84 - '
0.82 1 H

GEH

TaqMan and microarray platform comparability — correlation coefficients. (a) Boxplot of the correlation coefficients
of TAQ v.s. microarray for sample A and sample B. (b) Boxplot of the fold-change(B/A) correlation coefficients of TAQ v.s.

microarray.
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TaqMan and microarray platform comparability. (a)
Plots of the mean expressions of 3 sites (after standardized)
of the five microarray platforms for Gene NM_000168. Using
a Two-factors ANOVA model with interaction, the interac-
tion term of this gene is not significant (p = 0.74). This indi-
cates this gene has a good consistency of patterns of
expression of four samples in all five platforms. (b) Plots of
each of the mean expression of the five microarray platform
versus Tagman for this gene. The interaction terms from the
ANOVA for the data from the each platform and Tagman
have the p-values of 10-17, 10-'¢, 107, 10-'7, 10-'2for AFX,
ABI, AGI, ILM, AND GEH, respectively. The IDs for this
genes are 205201 _at, 100093, A_23_PI11531, GE57983,
GI_13518031-S, Hs00609233_m1 for 5 AFX, ABI, AGI, ILM,
GEH, TAQ, respectively.

Table 3: Titration trend.

http://www.biomedcentral.com/1471-2105/8/412

ance. ILM has the best specificity, but lower sensitivity.
The low sensitivity of the ILM platform is due to large o2
(Table 4), high specificity is because ILM does not select as
many genes as AFX, ABI, and AG1 at the FWE and FDR lev-
els.

The "gold standard data" is further used as a reference data
set to examine the value of overlapping criterion as a
measure of reproducibility in the evaluation of cross plat-
form comparisons. At the FWE = 0.05, a specificity of 95%
implies 21 false positives for AFX, ABI, AG1, and GEH.
ILM correctly identifies 53% (= 4,339) of differentially
expressed genes without a false positive. If 4,000 genes are
selected, then the numbers of false identifications are 1, 3,
2, 1, and 14 for AFX, ABI, AG1, ILM, and GEH, respec-
tively. That is, regardless of the percentages of the overlap
gene list between two platforms, more than 99.8% of the
4,000 genes identified by each of the five platforms are
truly differentially expressed between the samples A and
B. In other words, each platform can correctly identify dif-
ferentially expressed genes. The percentage of overlap is
not a useful measure to evaluate selection of differential
expressions.

Discussion

Accuracy and precision of an estimator are the accepted
metrics to evaluate the reproducibility [18]. Accuracy is
the expected difference between an estimate and the true
value. In these samples the true values of the fold changes
are unknown, and an evaluation of accuracy is arguably
not possible. Further, the accuracy of the estimator would
depend upon the background correction and the normal-
ization applied to the observed intensities. The MAQC
Consortium! adopted the platform manufacturers' recom-
mended procedures, and no attempt was made here to
evaluate alternative background corrections or normaliza-
tions. Precision measures the similarity of repeated meas-
urements. Because the accuracy is difficult to validate,
evaluation of reproducibility is often based on the differ-

Correlation Coefficients

Within 1.41 fold change

Titration Trend

Platform Sample C Sample D Sample C Sample D FDR = 0.05 FDR = 0.01
AFX 0.909 0911 0.997 0.993 0.989 0.993
ABI 0916 0.928 0.880 0.897 0.981 0.986
AGI 0.930 0.939 0.947 0.928 0.961 0.970
ILM 0.930 0.936 0.963 0.972 0.968 0.975
GEH 0.923 0.934 0919 0919 0.995 0.997

Titration trend: The correlation coefficients between the observed responses for Samples C and D and the expected responses as predicted by the
corresponding mixture of the observed values of Samples A and B. The proportions of the genes that the difference between the observed and the
expected responses are within the 295 = |.4| fold change. The proportions of the genes follow the titration trend model from the 2-step goodness-

of-fit procedure.
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Table 4: Intra-platform performance: Median correlation coefficients between two sites.

Correlation Coefficient

Two-factor ANOVA

Platform A B C

AFX 0.988 0.988 0.991
ABI 0.968 0.964 0.972
AGI 0.978 0.982 0.982
ILM 0.98 0.979 0.98
GEH 0.925 0.904 0.872

D Sample Site Interaction
0.992 0.802 0.933 0.013
0.969 0.784 0.707 0.008
0.981 0.797 0.807 0.123
0.981 0.806 0.995 0.025
0.862 0.781 0.882 0.177

For each sample A, B, C, or D, 125 all pairwise correlation coefficients were computed. The proportions of significances from the two-factor
model: y = m + Sample; + Site + Sample*Site;+ Error. The level of significance is set at FDR = [%.

ence (i.e., closeness) of the two measurements from differ-
ent platforms or laboratories. Such differences reflect
differences in accuracy as well as precision. The measure-
ment for evaluation can be either the measured intensities
or the intensity ratios (fold-changes), or both. Both the
sample intensity and the fold-change are evaluated in our
analysis. Five MAQC microarray platforms were com-
pared in this analysis.

The estimate of a fold change involves a comparison
between measurements (relative change) made under dif-
ferent conditions. The correlations for the fold change B/
A have the range from 0.78 to 0.92 across platforms
(Table 1). Despite these good correlations, fold-changes
estimates from two platforms can be very different (Figure
3). Within platform the fold-change correlations across
sites are 96.5% or higher (Table 4). Figure 6 is a scatter
plot of the fold-changes for Site 1 versus Site 3. A small
fraction of genes falls in lower right or upper left region.
This is consistent with the ANOVA (Table 4) that a small
fraction of genes show significant Site*Sample interac-
tion; that is, some of the fold-change estimates are not
consistent across sites. The inconsistencies are typically
small and unlikely to be consequential in studies where
comparisons incorporate biological variation. The esti-
mated fold changes at different sites within a platform
appear to be reasonably reproduced. But the high correla-
tions can be deceptive (Table 4). In the MAQC data, the

Table 5: The five platforms' feature of "Gold standard dataset”.

high correlations reflect the extreme range in the fold-
changes (B/A), which can exceed 1/1000 to 1000.

For a given gene, assume a linear relationship between the
observed intensities and the mRNA concentrations,

I=a[mRNA] + .

This provides a first approximation since we know that the
intensity records contamination from cross hybridization,
which will supply a component to g, and the intensity is
subject to the efficiency of transcription/labeling/hybridi-
zation as well as arbitrary amplification associated with
the dye/laser signal, which all supply components to a.
Platform and site differences presumably reflect differ-
ences in & and f. The fold-change of Sample A and Sample
Bis

Iy o[mRNA],+B [mRNA]
Iy a[mRNA], +B ~ [mRNAJ,

That is, the ratio of intensities does not estimate the true
fold-change (platforms would not strictly reproduce fold-
changes) unless #= 0. The MAQC data show that the fold-
changes are more consistent across platforms than the
intensities (Table 1); that is, a high correlation is observed
over a broad range of fold-change estimates. An important
implication of the above equation is that significant dif-
ferences in intensities imply significant differences in

Bonferroni FWE = 0.05 FDR = 0.05
Platform AC SN SP AC SN SP FDR
AFX 0.77 0.76 0.95 0.004 0.92 0.94 0.55 0.024
ABI 0.74 0.73 0.95 0.004 0.89 091 0.59 0.023
AGI 0.81 0.80 0.95 0.003 0.92 0.94 0.55 0.024
ILM 0.55 0.53 0.99 0.001 0.88 0.88 0.95 0.003
GEH 0.54 0.52 0.95 0.005 0.82 0.82 0.69 0.019

"Gold standard dataset": Accuracy (AC), sensitivity (SN), specificity (SP), and the true FDR for the five platforms using the Bonferroni (FWE = 0.05)

and FDR = 0.05 as threshold cutoff.
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Figure 6

Scatter plots of the fold-change estimates between two sites for the five platforms. The fold change estimates in
the plots was the larger of the A/B or B/A. The two lines represent a 2-fold change. The points in the lower right or upper left
region have a 2-fold change in one platform and less than 2-fold change in the other platform. The six plots represent the |5

possible plots and include the largest and smallest correlations.

mRNA concentrations even though the ratio of intensities
is a biased estimate of the true fold-change. Essentially,
the genes identified will depend on the statistical power to
resolve differences and this is likely to differ by the plat-
form, laboratory, technician, and sample size for any
given gene.

The reproducibility of the fold-change estimate entails an
experimental design that needs to properly address the
relevant sources of variation. Reproducible estimates of
fold changes can be achieved in experiments of reasona-
ble size provided that the experiment blocks on major
sources of variation. In the MAQC data, the reproducibil-
ity of estimated fold changes arises by blocking measure-
ments within platforms and sites. This result agrees with
recent analyses of other data sets which also have demon-
strated that good comparability/reproducibility can be
achieved across platforms and laboratories (sites) [2,3].

Even though accuracy cannot be evaluated directly, sam-
ples C and D are known mixtures of samples A and B, and
the mixing proportions should specify the relationship

among the sample means (Table 4). Assume that the
intensities satisfy the mixing relationship,

Ie=ply+ (1-p) I,

for 0 = p=1, and in these data most of genes adhere to this
mixing relationship for p = 0.75 and p = 0.25 within each
site/platform (Table 4). Then inferences concerning differ-
ences in intensities imply differences in mRNA concentra-
tions,

Ic=p (o [mRNA], + B) + (1-p) (a [mRNAJy + ) = «
[mMRNA]-+ S.

The Pearson (and rank) correlation coefficients and the
slope (and R) of the linear regression are the most com-
mon statistical measures to assess the agreement between
two measurements [4,9,16,19,20]. The correlation coeffi-
cient is a measure of linear association between two plat-
forms. These two metrics do not detect changes in
location or scale. A correlation coefficient of 0.90 or
higher does not necessarily imply reproducibility between
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two measurements (Table 4 and Figure 6). The interaction
effect from the two-factor ANOVA model can be used to
determine if the pattern of responses is consistence across
the platforms (or sites). Larkin et al. [3] compared Affyme-
trix GeneChip 430 and TIGR cDNA array and showed that
9% of genes had significant platform *treatment interac-
tion. The proportions of significances for the MAQC data
are more than 30%. One explanation is that the MAQC
project used technical replicates, and the ANOVA test is
powerful because of small residual variability. Finally,
microarray is generally a comparative experiment, the
data analysis is about the relative expression levels of a
gene among the samples, rather than its absolute intensity
measures of each sample. Comparisons are made about
the expression levels for a gene in different samples but
not about the level of expression of one gene in relation
to other genes. Correlation coefficient is a useful metric to
assess the reliability of the measurements between two
arrays in the same laboratory.

In addition to the correlation coefficient and regression
coefficient, the MAQC project proposed differential gene
list overlap for a metric of reproducibility. The number of
genes in common or percent of overlapping genes (POG)
between two gene lists were used as a measure for evalua-
tion of cross platform reproducibility [9]. Reproducibility
of a selected gene list is not the same as reproducibility of
gene expression measurements or accuracy. The presump-
tion with this measure is that high values of POG are
indicative of reproducibility and good accuracy, and a low
POG value in two gene lists is indicative of inconsistency
or inaccuracy. However, POG does not reflect the accuracy
of a selected gene list. POG represents an overlapping of
two gene lists with unknown accuracy. A non-overlapping
gene can be truly differentially expressed with a stringent
cut (Table 5), and an overlapping gene can be non-differ-
entially expressed with non-stringent cutoff.

Consider selection of the first 100 genes from the AFX and
ABI platforms, an approach by the MAQC Consortium
[1]. Using the p-value ranking there are only 14 overlap-
ping genes, POG = 14%. The minimum of the fold-
changes for those 86 non-lapping genes is 8.5 with the p-
value less than 10-29. There are only 64 overlapping genes
using the fold-change ranking. The minimum of fold-
change for the 36 non-overlapping genes is about 4.2 with
the p-value less than 10-17. In either approach, those non-
overlapping genes are truly differentially expressed. An
analysis of the "gold standard" data set shows the same
result. Finally POG is unusable as a selection criterion.
POG can increase or decrease irregularly as a cutoff
changes; There is no criterion to determine a cutoff so that
the percentage of overlapping genes is optimized. How-
ever, POG will be 100% if all genes are selected; regardless
how many genes are truly differentially expressed.

http://www.biomedcentral.com/1471-2105/8/412

In selection of differentially expressed genes, it may be
desirable to generate a more reproducible list. However,
given that there are more than ten thousand genes in the
MAQC experiment, it is naive to evaluate a gene selection
procedure simply based on the POG with cutoffs of select-
ing tens or even hundreds of genes. The general goal of
gene selection is to identify a list of differentially
expressed genes as accurately as possible. Because of the
variation of the data, it is not possible to have an optimal
cutoff that simultaneously minimizes both false positive
and false negative errors. The tradeoff between the two
errors depends on the application. In class comparison,
for example, procedures that allow very few false positives
may be appropriate when a small number of genes are
selected to be validated by a PCR. While in class predic-
tion or class discovery setting, where the intent is to
develop genomic profiles or classifiers, the omission of
informative genes would have a much more serious con-
sequence than the inclusion of non-informative genes. In
such cases, procedures with fewer false negatives may be
more desirable.

The p-value (statistical) approach is much more than a
way of gene ranking; it provides a measure to estimate the
false positive error probability for a decision. In efficacy or
toxicity testing, the default assumption is that there is no
treatment effect. Statistical tests are designed to show a
positive effect for the clinical or pre-clinical data collected
in a study. Evaluation of data analysis methods should
have taken no treatment effect into consideration. An
evaluation based only on the data with treatment effects,
its recommendation and utility for use in regulatory con-
firmation are questionable. When there is no treatment
effect, 'a fold-change cutoff with a non-stringent p-value
cutoff' would result in 100% false positive error selection.

In microarray experiments, intensities recorded are sensi-
tive to several of the conditions under which the measure-
ments are made; it has been recognized that the intensities
cannot be reproduced across platforms and sites. One of
significant contributions of the MAQC project is the iden-
tification of 12,091 genes that are represented across the
platforms with an objective to compare expression data
generated at multiple test sites using several microarray
platforms. MAQC Consortium does not have specific con-
clusions about inter-platform compatibility and have the
conclusion of inter-platform reproducibility [9]. In this
study, we show there are differences in the intensities
measured by different platforms, within each platform
there is site-by-site variability. However, a microarray
experiment typically is conducted in one site using one
particular platform. As alternatives, an adequate normali-
zation method will be selected to normalize for optimal
comparisons of expression levels between tissue samples.
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In this regard, all of the five platforms perform well in
terms of discriminability.

Methods

The MAQC Study

The MAQC protocols for sample processing are available
at the MAQC website [10]. We consider five microarray
platforms and the TagMan alternative platform since the
NCI platform had data from only two sites and the Eppen-
dorf microarray platform and the other two alternative
platforms had less than 300 genes. The five microarray
platforms are: Applied Biosystems (ABI), Affymetrix
(AFX), Agilent Technologies (AGl), GE Healthcare
(GEH), and Illumina (ILM). The numbers of probes for
the five platforms were between 32,878 (ABI) and 54,675
(AFX). The TagMan platform consisted of 1,004 genes.
Four pools were used, two RNA sources as well as two
titrations of the original samples: Sample A) 100% Uni-
versal Human Reference RNA (UHRR); Sample B) 100%
Human Brain Reference RNA (HBRR); Sample C) 75%
UHRR: 25% HBRR; and Sample D) 25% UHRR: 75%
HBRR. All five microarray platforms used "one-color" pro-
tocols with five replicates for each of the four samples in
three sites. Hybridizations that failed to meet the quality
control criterions were not used. The number of arrays in
each platform range from 56 to 60. The total number of
arrays considered is 293. The TagMan platform had one
site with four replicates. The MAQC project generated
12,091 common genes for cross platform comparison;
906 of the 12,091 were assayed by the TagMan platform,
but only 849 genes were analyzed with the threshold
detectable limit of 35 cycles.

In the inter-platform comparison, in order to minimize
potential biases due to differences in scaling among plat-
forms the data were standardized within each array so that
each array had the median 0 and variance 1.

Inter and intra platform comparisons

Hierarchical clustering analysis

We used a hierarchical clustering analysis to assess simi-
larity for the 293 arrays. A hierarchical clustering tree
presents a binary dendrogram representing the associa-
tion structure of pairwised arrays. The association
between two arrays was measured in terms of their corre-
lations. The correlation coefficient of the standardized
intensity measurements over the 12091 genes were calcu-
lated for all pairwise combinations of the 293 arrays. The
algorithm identified the pair of arrays with the smallest
distance and groups them with a link, where distance is
defined to be one-minus- correlation. The algorithm pro-
ceeds in a recursive manner to build the tree structure step
by step.

http://www.biomedcentral.com/1471-2105/8/412

Correlation coefficient

The correlation coefficient was used to assess inter or intra
platform concordance. All pairwise correlation coeffi-
cients between two arrays from different sites or/and plat-
forms were calculated for each of the four samples (A, B,
C, and D) and each of the fold-changes (B/A, C/A, D/A, C/
B, D/B, and D/C).

Analysis of variance models

Two-factor ANOVA models with interaction were used to
evaluate inter- and intra-platform reproducibility. The
ANOVA for evaluation of the intra-platform performance
was yjj, = m + Sample; + Site; + Sample*Site;; + Error, where
Vijk was the log2 expression level for sample i, site j, and
replicated k. for each gene. The main effects Sample and
Site and the interaction Sample*Site were tested for each
platform. The proportion of genes that showed significant
sample effect is a measure of platform's discriminability.
Similarly, the proportion of significant site effects is a
measure of reproducibility, and the proportion of signifi-
cant interactions is a measure of consistency of the expres-
sions of the four samples across sites. The comparison
across platform was tested similarly.

Assessment of titration mixture

The expression levels of the two mixture samples C and D
were compared to the expected responses predicted by
samples A and B to assess the ability of each platform to
follow the titration relationship. Denote R(A), R(B), R(C),
and R(D) as the expression levels for the four samples, the
linear titration relationship implies R(C) = 0.75
R(A)+0.25 R(B) and R(D) = 0.25 R(A)+0.75 R(B). The
(titration) correlation coefficient of R(C) and Sample C
was computed to assess titration trend, likewise for the
correlation coefficient of R(D) and D. The differences of
R(C) and C and the differences of R(D) and D were eval-
uated.

We further proposed a two-step goodness-of-fit procedure
to estimate the proportion of genes that follow a titration
relationship. The titration relationship can be modelled
by

M1, yjp= m + fConc + Site; + Error,

where Conc is the concentration of Sample A. The good-
ness-of-fit of the titration model can be tested by compar-
ing the model M1, to the (full) ANOVA model.

M2 :y;, = m + Sample; + Site; + Error.

The first step is to test for the sample effect: HO,; : u, = 1
= L = Up. Rejection of the hypothesis indicates a signifi-
cant difference in expressions among the four samples.
For those genes that are significant, the second step is to
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test if the titration model can adequately fit the data: HO,,
: M1 = M2. Rejection of the second hypothesis implies the
rejection of the titration relationship. The proportion of
the genes that are significant in the first hypothesis and
not significant in the second hypothesis is a measure of
consistency of the platform. The FDR = 0.05 and 0.01 wee
used for the significant levels.

Sensitivity, specificity, and accuracy in gene Selection

We present a statistical approach to construct a gold stand-
ard set of differentially expressed and non-differentially
expressed genes to evaluate the MAQC data and individ-
ual platforms' performance. In order to minimize biases
due to differences in measured expression values on dif-
ferent platforms, the standardized data were used to con-
struct the "gold set". But, the un-standardized data were
used in the evaluation for individual platform perform-
ance. In this analysis, only Samples A and B were consid-
ered.

A gene is "differentially expressed" if it was shown to be
significant (p = 10-5) in at least two of the five platforms.
We use this criterion in order to avoid potential false pos-
itive error. It will ensure that the probability of false posi-
tive is smaller than 1010 = 105 x 10> under the
assumption of independence. Eight thousand two hun-
dred sixty five (8,265) genes were selected. A gene is non-
differentially expressed if its fold change was shown to be
between 0.90 and 1/0.90 in at least two of the five plat-
forms at the significance level 10-3. Specifically, the non-
differentially expressed genes were selected by applying
the equivalence test [21]:

Hy: |ps - pg| = Sversus Hy o | g1y - pag| <0,

where g, and 45 are the means of Samples A and B, respec-
tively, and 8 = log,1.11 = -log,0.90, (the equivalence
limit). The significance level was set at 10-3 since majority
of genes are differentially expressed. Four hundred ninety
eight (498) genes were selected. We eliminated 78 over-
lapping genes resulting in 8187 differentially expressed
genes and 420 non-differentially expressed genes. These
8607 genes were used as the gold standard set to evaluate
each platform performance using the Bonferroni and FDR
at 0.05 significance as cutoff for gene selection criterions.
The accuracy, sensitivity (proportion of true positives),
specificity (proportion of true negatives), and FDR (pro-
portion of false positives among the selected genes were
computed.
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