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Abstract

Background: Several tools have been developed to enable biologists to perform initial browsing and exploration
of sequencing data. However the computational tool set for further analyses often requires significant
computational expertise to use and many of the biologists with the knowledge needed to interpret these data
must rely on programming experts.

Results: We present VisRseq, a framework for analysis of sequencing datasets that provides a computationally rich
and accessible framework for integrative and interactive analyses without requiring programming expertise. We
achieve this aim by providing R apps, which offer a semi-auto generated and unified graphical user interface for
computational packages in R and repositories such as Bioconductor. To address the interactivity limitation inherent
in R libraries, our framework includes several native apps that provide exploration and brushing operations as well
as an integrated genome browser. The apps can be chained together to create more powerful analysis workflows.

Conclusions: To validate the usability of VisRseq for analysis of sequencing data, we present two case studies
performed by our collaborators and report their workflow and insights.

Background
Sequencing data is the generic name for the datasets
acquired using high-throughput nucleic acid sequencing
techniques. This technology can be used to measure the
biochemical states of cells such as the expression levels
of genes or binding sites of proteins in DNA. For exam-
ple, RNA sequencing (RNA-seq) measures the presence
and quantity of total RNA in a cell at a given moment
in time and is widely used in gene expression analysis.
Another example is ChIP-sequencing (ChIP-seq) which
is used to analyze protein interactions with DNA.
Sequencing data come in a variety of formats. In the
simplest form, each dataset represents a numerical array
of the size of a genome that varies by the species (on
the order of 3 billion for most mammals). Biologists are
often interested in studying these data in specific regions
of interest. The regions of interest are typically genomic

intervals specified by features of biological interest such
as the location of genes or neighbourhoods of specific
genomic locations. These regions of interest are often
structured in a table with rows corresponding to the
regions of interest and columns being the properties of
those regions, such as the genomic location, biological
ID and quantified measures of enrichment of each
sequencing dataset within those regions.
While computational methods to interpret these data

continue to evolve, the rapidly changing computational
tool set for data analysis often requires significant com-
putational expertise to use. The Bioconductor project [1]
is an open source software repository which hosts a wide
range of statistical tools developed in the R programming
environment [2]. Taking advantage of a rich set of statis-
tical and graphical capabilities in R, numerous Biocon-
ductor packages have been developed to address a variety
of data analysis needs. The use of these packages, how-
ever, requires a basic understanding of the R program-
ming/command language and an understanding of the
documentation accompanying each package. As a result,
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R and the Bioconductor packages are primarily used by
computer scientists and biologists that have a strong
computational background, but remain inaccessible to
most biologists who would significantly benefit from the
ability to analyze such datasets. Hence, there is a clear
need for a framework with an accessible user interface
that allows biologists easy access to analytical tools for
genomics data without requiring programming expertise.
Many useful tools have been developed in recent years

for the visual analysis of biological data (e.g. MizBee [3],
Pathline [4], or ChAsE [5]). What most of these tools have
in common is that they have been designed to analyze and
solve specific biological questions. The goal of this paper
is to push the envelop toward a more general-purpose
visual analysis tool that can be applied to a broad range of
analyses of sequencing datasets. This is not unlike such
successful attempts as VTK [6], Prefuse [7], Polaris/
Tableau [8], KNIME [9], Orange [10], Lyra [11] and
CSIRO Workspace [12]. These systems attempt to bring
data analysis through visual means to a large audience.
Most of these tools also provide some form of integration
with R and enable enriching their interactive data mining
and visualization components with the statistical capabil-
ities in R, however they are mostly accessible to users who
have the technical skills for R development. In addition,
they do not address the specific challenges associated with
sequence analysis. Simple standards, such as integration of
a genome browser or support for sequencing data are
missing. Many of the tools for sequence analysis are
meant to be used by bioinformaticians (as opposed to for
biologists), and require programming skills. Those tools
aimed at the biologists, on the other hand, offer limited
analytical tools and are hard to extend or generalize.

R-based visualization systems
The lack of a graphical user interface (GUI) for the
majority of the packages makes most of them inaccessi-
ble to biologists without programming expertise. Several
frameworks have been developed to provide graphical
user interfaces in R. Packages such as RGtk2 [13], fgui
[14], R-Tcl/Tk [15], gWidget [16], JGR [17] and Sci-
Views-R [18] allow programmers to create graphical
user interfaces for command-line R packages. They have
been used in general purpose packages such as Deducer
[19], R Commander [20], GrapheR [21] and Rattle [22]
as well as packages for biological data analysis, such as
SeqGrapheR [23], limmaGUI [24], affylmGUI [25] and
OLINgui [26].
With the increased popularity of web-based analysis

applications, several solutions such as shiny [27], ggvis
[28] and googlevis [29] have been developed to provide a
web-based interface or an interactive implementation for
R libraries. The graphical interfaces created by these
libraries provide means to make the individual underlying

R packages more accessible, however their scopes remain
limited to the specific modules they are designed for and
it is difficult, if not impractical, for biologists to link sev-
eral modules to create more complex workflows. In addi-
tion, due to the significant coding effort required to
create the graphical layout for each library and to pass
the data to and from the GUI, most R libraries still
remain without a graphical user interface.

Visualization systems for biological data analysis
Several visualization systems have been developed to
mitigate the dependence of biologists on programmers
and allow biologists to be more involved in computa-
tional analysis tasks. Genome browsers such as UCSC
[30] and IGV [31] allow users to navigate across the
genome for detailed data inspection and exploration.
While genome browsers are useful for viewing specific
genomic regions, they are not effective for global analy-
sis and pattern discovery. Several systems such as
CisGenome [32], seqMINER [33], Cistrome [34], EpiEx-
plorer [35], Genomic HyperBrowser [36], FlowJo [37]
and SeqMonk [38] have been developed to address the
need for global pattern analysis. The strength of these
tools lies in their ability to connect several analysis
methods in a single application, but adding newly devel-
oped analysis pipelines is not easy and researchers may
find themselves waiting for state-of-the-art algorithms to
be implemented within these packages. A more recent
related tool is Epiviz [39] that provides an interactive
genome browser and data-analysis platform for func-
tional genomics data. A scripting interface is also pro-
vided to invoke R functions and display the results
within the tool, however this extension remains accessi-
ble only to users with relevant technical skills.

Conventional analysis workflow
The initial task in a typical analysis workflow is creating
the data table for the regions of interest and sequencing
data specific to the study. For each sequencing dataset,
biologists compute a summary of the values of the
sequencing data near each region of interest. The method
for computation varies based on the type of the dataset
and the study and can be as simple as adding up all
values within the genomic interval, or more sophisticated
methods involving machine learning (e.g. Hidden Markov
Models or Baysian Networks) and non-linear normaliza-
tion, but ultimately each dataset is generally summarized
to one or multiple columns in a table.
Many tools (e.g. Galaxy [40] and SeqMonk [38])

have been developed to create these data tables, which
come with command line or graphical user interfaces.
These tools do a satisfactory job of helping biologists with
the initial steps of data preparation such as quality control,
sequence alignment, file format conversion and filtering.
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However they provide limited functionality for exploratory
analyses and visualization. Thus far, such analyses can only
be provided through additional programming interfaces /
languages, such as R.
During the initial exploration phase, biologists fre-

quently want to browse their datasets in a genomic con-
text while studying the data table. Genome browsers are
a popular approach for visualizing genome-scale data in
which each dataset is displayed as a histogram plot or
heat map, often called a “track”, and multiple datasets
can be viewed simultaneously by stacking these tracks.
The data tables exploration is often performed in com-
mon spreadsheet applications such as Microsoft Excel
and involves sorting columns and looking and verifying
the information at known regions of interest. Simulta-
neous use of the genome browser and table view is
often a tedious task requiring switching back-and-forth
between various applications while copy-pasting names
or locations of genomic addresses from one application
to the other.
Biologists employ a variety of computational methods

from simple numerical calculations on the columns to
more advanced generic or domain specific statistical or
machine learning algorithms. Many biologists are com-
fortable doing the simple calculations supported by
most spreadsheet software packages. However using
more advanced techniques requires familiarity with pro-
gramming or scripting environments, making them inac-
cessible to most biologists.
Results of the computations are then illustrated in

plots such as histograms, bar charts, scatter plots and
heat maps. Based on those results biologists often repeat
and iterate the analyses with more refined subsets, for
instance with rows for which a computed p-value is
lower than a certain threshold.

Methods
In this section we will present the general framework
and the design choices we made for VisRseq. We start
with an overview of our design process and the tasks
identified during the requirement analysis stage. We
then present the R apps framework, which offers a
semi-auto generated and unified graphical user interface
for computational R packages and repositories such as
Bioconductor [1]. We will then give an overview of the
interface and its ability to chain apps together to create
analysis workflows.

Design
VisRseq was developed through an iterative user-centred
design process. In our approach we followed a design
study methodology [41], however as the developed solu-
tion converged toward a more general purpose frame-
work, we realized a system’s paper format would be more

appropriate for presenting our results. We held formative
interviews with biologists from three centres (BC Gen-
ome Sciences Centre, UBC Life Sciences Institute and
later UBC Biomedical Research Centre), to understand
their analysis workflow and the limitations of their exist-
ing tools. Our collaborators then evaluated the early
wire-frame prototypes like the one shown in Figure 1
(created using Wireframe Sketcher [42]) and later iter-
ated on several interactive prototypes built using Java
and libraries in IGV [31] to read sequencing data formats.
Our main rationale behind using a desktop platform
(Java) as opposed to the a web platform (JavaScript) was
being able to handle the inherently large sequencing data
sets (Gigabytes) while providing an interactive user
experience, a similar rationale behind popular desktop
genomic viewers such as IGV [31].
As we progressed through our design we realized that

all three groups of our collaborators required a more
general purpose system that was capable of solving sev-
eral biological data analysis problems and flexible
enough to adapt to new challenges. Our requirements
eventually boiled down to:

• Not requiring programming skills to use
• Inherent support for sequencing data
• Integration of a base set of analysis methods such
as dimensionality reduction (PCA, MDS), clustering
(Kmeans, hierarchical), and RNA-seq analysis tools.
• Integration with a genome browser
• Ease of adopting new analysis methods
(extensibility)

In the following sections we will discuss our design
decisions in more detail:

R apps
There are two types of apps in VisRseq: R apps and
native apps. Every R app consists of an R script file with
the caller functions accompanied by a JSON file specify-
ing the parameters to be passed to the R script. Native
apps are created in Java and are pre-compiled with the
framework to allow interactive graphics. They are dis-
cussed in the following section.
We had three main design goals when creating the R

apps. The first was to provide an accessible interface for
biologists to use libraries in R, without requiring pro-
gramming expertise. The second was to allow users to
link the R apps with the interactive components. The
third was to minimize the effort required by R develo-
pers to create the R apps user interface for new or exist-
ing R libraries.
At the core of an R app is an R document which con-

tains the required script to perform the desired func-
tionality. It is up to the developer of the app to decide
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which parameters will be exposed to the user. These
parameters will be assigned unique parameter names
(exposed to the user of the app and therefore can be dif-
ferent from internal names). The parameter names and
their types are then placed in a file in JavaScript Object
Notation (JSON) format with the same name prefix and
with the .json extension.
Table 1 shows the current supported variable types,

the corresponding R type and the generated GUI com-
ponent. An optional icon can also be specified by pro-
viding a .png file with the same name prefix.
Once VisRseq starts, it searches through a specific direc-

tory for all *.R files with an accompanying .json file
and populates the Apps pane in the main user interface. A
default gray box is used as the apps icon if an image with
the app’s name is not found. When the user drags an app
into the workspace, the app’s .json file is parsed and the
graphical user interface is automatically created using
Java’s Swing library. In addition to providing a unified user
interaction model, our intention was to minimize the
effort required by developers to create apps. Unlike the
previously mentioned related work on creating user inter-
faces for R, which required users to write the code for the
actual graphical interface, we have kept the requirements
to the minimum of specifying the input parameter names
and types.

Once the user specifies the parameters and hits the
Run button, an R session is created using the Rserve
[43] library. Rserve is a TCP/IP server which allows cli-
ent programs to use facilities of R from various lan-
guages including Java without the need to initialize R or

Figure 1 Wire-frame prototype. A later stage wire-frame prototype created using the WireframeSketcher software.

Table 1. Supported types for input parameters

variable type R data type GUI component

int integer JSpinner

double numeric JSpinner

boolean boolean JCheckBox

string character JTextField

string with items character JComboBox

filename character JFileDialog

color character JColorChooser

range-int vector MyRangeSlider

range-double vector MyRangeSlider

column matrix JComboBox

column-numerical matrix JComboBox

multi-column data.frame JList

multi-column-numerical data.frame JList

ouput-column vector JTextField

output-table data.frame / matrix JTextField

Variable type definition keywords, corresponding R data types and the
generated GUI component.
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link against R library. The input data table and user spe-
cified parameters are passed to the R session and the
R code is executed line by line. The textual output of
the R is directed to a console pane and the final graphical
output is displayed in the pane assigned to the specific
app. A progress animation is displayed inside the app’s
pane while the code is running and the user may termi-
nate running the app by pressing the cancel button.
Apps may also have output variables. Currently we

support column, table or file output. If the user specifies
a name for the output (i.e. the name for the column,
table or file), the output of the app is read back from
the R session. A user may specify a new name to create
a new column, table or file or use an existing name to
overwrite one. These outputs can also be used as inputs
in other apps, allowing the users to link several apps.
In addition to the auto-generated GUI, more experi-

enced users may also browse and modify the R code by
selecting the “Code” tab above the parameters pane.
This will show a syntax highlighted text editor with the
R code that can be edited and executed within the tool.
While this is not meant to be a full featured R develop-
ment environment such as RStudio [44] it is useful for
more technical users as a quick way of browsing the
R code and making small modifications to the apps
without requiring to exit the tool.
By default the input data is loaded to the R session

before the execution of the R script, but an app develo-
per can place a line in the script with ###applyPara-
meters to specify when exactly the parameters should
be loaded. Since the R script is processed line by line,
commands or structures extending over multiple lines
will not execute properly. To resolve this, users can
either place the lines of code inside a {{ }} block or
simply put the code in a separate R file and use R’s
source() command to include the code.
As mentioned, our goal is to minimize the effort of R

developers to create R apps. Thus the information
required to create the GUI is kept to the minimum of
specifying the variable’s name and type (in fact specifying
the type is also optional when the input is a string). How-
ever the app developer has the option to enrich the inter-
face by specifying the following additional information:

• categories: grouping variables together. They
can be collapsed or expanded by default.
• label: specifying the label shown in the GUI. If
not specified, a label will be generated from the vari-
able name by replacing the underscore “_” characters
with space “ “ and removing the “input“ prefix, if any.
• info: specifying details about the variable to be
shown as a tool tip text.
• default: specifying a default value for the vari-
able displayed in the initialized GUI.

• min / max: specifying the valid input range for
the integer and numeric variables.
• items: showing a list of string items to choose
from.
• ui: customizing the user interface. Currently, this
is only implemented for file variables where specify-
ing “load“ or “save“ will create a load or save dialog
box. Additional options are planned to be added to
the system to add more customization to other vari-
able types, such as choosing between a spinner or sli-
der for numerical columns or between combo box
and radio groups for items.

A simple R app
To show the simplicity of creating R apps we walk
through a simple 2D plot that uses R’s default plotting
functionality. Figure 2(a) shows the R code for a simple
2D plot. It takes two required parameters, input_x
and input_y, the column names used for × and y, and
three optional parameters, input_color for the point
colors, input_log for selecting logarithmic scale and
input_title for the plot title.
Figure 2(b) shows the input parameters specified in

JSON format. The type specified for input_x and inp-
ut_y is column_numerical which indicates the GUI
should list only the numerical columns of the input table,
while the type of input_color is specified as column
so any column is a valid selection. For input_log a list
of four strings ("”, “x“, “y“, “xy“) is specified with the first
one being the default. The type for input_title is not
specified so it will be considered a string input by default.
The graphical user interface generated from the para-

meter specification is shown in Figure 2(c) and the gra-
phical output of running the app with example input
parameters is shown Figure 2(d).
Thus far we have implemented several plotting and ana-

lysis apps as well as widely used packages from the Bio-
conductor project. Among those, are DESeq [45,46] and
EdgeR [47] which are popular packages used for differen-
tial expression analysis using RNA-Seq data statistics. We
spent about half an hour for simple apps such as the Pie-
Chart and BarPlot apps and about two hours for the two
Bioconductor apps as they required going through each
package’s documentation and samples. These approximate
times are just for the initial creation of the apps with basic
functionality and naturally we had to spend additional
time iterating on each app with the users to improve the
usability or to add new functionality.

Native apps
The basic mental model of our views is a table that ties
all views together. However, during our requirement
analyses, our users frequently asked for an interactive
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interface for some of the apps to allow interactive navi-
gation as well as brushing operators to select subsets.
Since R doesn’t provide such interactivity, we realized
the tool would not be completely useful without interac-
tivity at least for basic plot types. The ones with popular
request were histogram, scatter plot, Venn diagram and
a genome browser.
Table view: displays a data table in a layout common

in spreadsheet software (Figure 3(a)). Clicking a column
header shows a popup menu allowing users to perform
several tasks such as sorting the table by that column,
removing, or editing columns (e.g. changing the equa-
tion for calculated columns).
Histogram: provides a standard interactive frequency

plot (Figure 3(b)). Any numerical table column can be
used for the x-axis. The y-axis can have optional trans-
formations such as log, cumulative distribution function
and percentage. Users can perform standard panning
and zooming interaction or directly specify exact values.
The histogram plot offers a range filter that can be used
to create a subset of the rows with their value falling

within the range. Users can choose to have more than
one segment for each range filter and specify whether
the ranges should be equally spaced or have equal num-
ber of items. Once a filter is created it persists for that
table and it is updated whenever the data values change.
Scatter plot: shows an interactive 2d scatter plot

(Figure 3(c)). Users can specify multiple columns to the
horizontal or vertical axis to effectively create a scatter
plot matrix. Users can select a group of points and cre-
ate a subset using the rectangle, polygon and quad filter
provided. Similar to the histogram range filter, the scat-
ter plot filters will persist and update as the data is
changed.
Venn diagram: shows approximate area preserving

Euler diagrams or symmetric Venn diagrams (up to 5
sets) for the subsets assigned to the plot (Figure 3(d)).
Users can toggle between the two modes. The transition
from one mode to the next is animated. The diagram is
updated when any of the subsets change.
Genome browser: we integrated IGV [31] a widely used

genome browser (Figure 3(e)). Users can load the tracks

Figure 2 Components of SimplePlot R app. (a) The R code. (b) The input parameters in JSON format. (c) The auto-generated UI. (d) The
graphical output after running the app.
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that are displayed in the genome browser into their data
tables. For tables that have columns with genomic loca-
tion, clicking on the rows in the Table app or on the
points in the Scatter plot app navigates the Genome
Browser to the corresponding genomic location.
These apps are currently implemented natively in Java.

We plan to investigate the possibility of creating the
interactive apps utilizing the capabilities of frameworks
such as D3.js [48] and BioJS [49] to allow for easier inte-
gration of new interactive apps, however, that will
require overcoming several technical challenges such as
embedding JavaScript based visualizations within a Java
application.
It is also worth mentioning that while we were aware

of the inferiority of some of the visualization techniques
(e.g. pie charts and Venn diagrams) we included them
as they were requested by our collaborators and used in
their workflows.

The VisRseq graphical user interface
The VisRseq graphical user interface is shown in Figure 4.
It is split into several panes exposing the different func-
tionalities provided in the framework.
At the left-hand is the Data Pane (Figure 4(a)) which

depicts current data tables loaded in the system. The
right-hand panel contains the Apps pane on the top
(Figure 4(b)) and the Parameters pane on the bottom
(Figure 4(c)). The Apps pane contains the icons for the
modules available to the user; we will refer to them as
“apps” throughout the rest of the paper. The Parameters

pane shows the input parameters for the currently
selected app. At the center is the workspace area (Figure
4(d)), where the panes for the currently running apps
are laid out. Each pane is customized based on the utili-
ties of each app, but for most apps it displays a graphi-
cal output. The textual output of apps is displayed
in the Console pane at the bottom of the workspace
(Figure 4(e)).
Figure 4 shows an example layout after some analysis

steps. Users may change the layout of the panes to cus-
tomize it based on their display size or workflow
requirements. For example, we observed some users
preferring to overlap the parameters and apps pane into
a tabbed pane to utilize the entire horizontal space
when specifying parameters. In the following sections
we will describe the interface in more detail.
Data pane
As previously mentioned, VisRseq’s internal data is a
tabular data model: a collection of records with named
attributes of a given data type. Users can create tables
either from the feature files containing genomic regions
or load text files in comma separated format. During
analysis, subsets may be created through filtering, pre-
serving the inherit hierarchy of these sets.
Table columns are either data columns created from

sequencing data, calculated columns, or output columns
of apps. VisRseq provides an interface with a variety of
options to process and normalize sequencing data in
BAM [50] and WIG [51] formats. This was one of the
first features in the working prototype and was much

Figure 3 Interactive Apps. (a) Table view. (b) Histogram plot. (c) Scatter plot. (d) Venn/Euler diagrams. (e) IGV genome browser.
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appreciated by our collaborators as it enabled them to
use their own as well as available public datasets for
their analysis. Inspired by the calculation option in most
spreadsheet software, we added a calculator interface
using a similar syntax to Microsoft Excel that our colla-
borators were well familiar with. As discussed pre-
viously, R apps may also be used to create new columns
or overwrite columns of an existing table (e.g. a com-
puted cluster id or p-value).
Apps pane
Apps are the analysis modules of VisRseq. The Apps pane
hosts an iconic view of the available apps. Individual panes
for any App are created by dragging the app’s icon and
dropping it at the desired location in the workspace. A
highlight box shows the placement of the new pane as the
user drags and moves the app over the workspace area.
Once an app pane is added to the workspace, the user
assigns the input table to the app by dragging the desired
data node from the Data pane into the app’s pane.
Parameters pane
Whenever the user clicks on the output pane of an app,
the parameters pane is updated to show the parameters
for the app. As previously explained, the user interface
for the parameters of R apps is automatically generated
from a JSON file describing the input and output vari-
ables. We initially had the parameters within a popup
dialog, but that made it hard for the user to incrementally
tweak the parameters and see the results, especially for
the interactive plots. We then placed the parameters side

by side with each app, but realized this was an inefficient
use of screen space, especially since users were usually
modifying the parameters for a single app at a time.
Workspace pane
The panes in the workspace are laid out in a tabbed/tiled
document interface similar to the layout system in rich
client platforms (RCP). Our initial prototypes used a
multi document interface (MDI) with fixed position for
the default panes. Through user evaluations we noticed
that the workflow frequently became cluttered, making it
hard to organize and find the open apps. Changing to an
RCP interface took time for our test users to get comfor-
table with, but then they expressed satisfaction with its
flexible layout and how it allowed them to keep their
workflow organized and clean.
Console pane
The console pane was required to show the textual out-
put, progress and error messages of the apps. Since mul-
tiple R apps may be running together, we only show the
textual output of the currently selected app.

Limitations
VisRseq provides a simple way to link multiple apps,
however it is currently limited to libraries that use R’s
standard data types as their parameters and output. More
complex data types such as complex tables and custom
classes cannot be integrated through the current interface
options, making it difficult to link apps that require more
complex data formats as parameters. One workaround is

Figure 4 VisRseq interface. (a) Data pane. (b) Apps pane. (c) Parameters pane. (d) Workspace populated with several app panes. (e) Console
pane.
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to use a file as a connecting medium but in addition to
performance requirements, this approach requires writ-
ing the code to serialize the objects to and from files.
We were not able to fully automate the creation of the

apps from the Bioconductor packages due to the large
variety in the interfaces and input parameters for the
these packages. There is no standardized meta data pro-
vided with these packages, however text mining meth-
ods might be a possibility to explore to extract those
meta data from the user manuals. Still, in comparison to
the previous GUIs for R, we believe we have significantly
reduced the extra work by only requiring the parameter
types and the function calls for each library to generate
the GUI and link between different libraries in an analy-
sis workflow.
In terms of scalability, our users have typically dealt with

datasets of tens of thousands to a few million data points.
Some users have worked with about 30 million data points
(one data point per 100 base pair for a 3 billion base pairs
genome). The framework has been robust to handle these
cases, however the interactive apps become less responsive
for data sets with more than few million data points. The
responsiveness of R apps depends significantly based on
the computational complexity of the implementation of
the corresponding R packages. A simple box plot of 30
million data points takes 10-20 seconds on a typical perso-
nal computer, while a hierarchical clustering can take
hours to finish.

Validation
In our work, we differentiate between biologists and bioin-
formaticians. Biologists have the knowledge to analyze the
sequencing data. However, they often do not have strong
programming skills to use computational tools that only
have a scripting interface. Bioinformaticians on the other
hand have a strong algorithmic training and enough famil-
iarity with the problem domain to develop computational
tools for biologists. However, they often do not have the
biological understanding required to analyze the data. The
former are the target end users of this tool and the later
are most suited to develop new apps.
VisRseq, as it currently stands, is used in expression ana-

lyses (i.e. RNA-seq data) and epigenomics analyses (e.g.
ChIP-seq and DNA Methylation data). We believe it may
also be used with most data in table format (such as
microarray data), but we haven’t done any evaluations on
this. Also, even though our collaborators have only used
the tool for mouse and human data, there is no practical
limitation in using the tool for other species as long as the
sequencing data is available in one of the standard formats
supported by the tool (BAM [50] and WIG [51]).
To validate the usability of the tool to achieve the

design goals, we conducted several case studies with col-
laborators who were interested in analyzing such data

sets in their laboratories, two of which are presented in
this section.

Case Study 1: Gene expression in stages of mouse
development
For this case study our collaborators were studying RNA-
Seq data from cells from two stages of mouse develop-
ment: embryonic stem cells (mESCs) and primordial germ
cells (PGCs). For each development stage cells lacking
expression of specific genes (knock-out/KO) as well as
“control” cells with normal expression (wild-type/WT)
were analyzed. Our collaborators specifically selected KO
and WT datasets for four genes, “SETDB1”, “KAP1”,
“G9a”, and “HP1” to investigate the overall transcriptional
correlation among cells lacking expression of these genes
and the corresponding WT controls. In addition, they
were also interested in identifying the genes that were up
or down-regulated in knock-out cells compared to their
corresponding wild-type controls. It was previously shown
that these four genes play a role in the deposition of cer-
tain repressor epigenomic modifications [52-54]. There-
fore, lack of expression of these genes is likely to alter the
transcription of many genes. Because mouse strains are
genetically diverse and each biology lab typically uses just
one or a small number of the available strains to conduct
their experiments, a strain-specific heterogeneity is
observed among wild-type mice which complicates the
comparison of KO cells derived from different mouse
lines. So our collaborators were interested in characteriz-
ing this heterogeneity among those four wild-type mESC
lines derived from different mouse strains.
Analysis 1: Identification of transcriptional correlation
Our collaborators started by using the data import func-
tionality to generate a data table containing the 10
RNA-seq datasets, using the RPKM (reads per kilobase
per million mapped reads) statistic [55] for normaliza-
tion. Subsequently, they used the “correlation” R app,
and chose the Pearson coefficient option to calculate the
correlation of expression profiles among these 10 col-
umns. The result, a 10 × 10 correlation matrix, was
added to the Data pane as a new data table. To visualize
the correlation, they used this new table as the input of
the heatmap and MDS R apps. In Figure 5(a), the heat-
map output pane displays a heatmap visualization with
hierarchical clustering on the correlation values illustrat-
ing the biological difference of these samples based on
expression profiles of all genes. The MDS output pane
added two new columns to the correlation table as the
result of multi-dimensional scaling. These two columns
were then used as the input of the R scatter plot app
(Figure 5(b)). Both visualizations showed that the overall
gene expression profile for each KO sample is more
similar to its corresponding WT than any other KO
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sample. In addition, PGCs show significant dissimilarity
of gene expression to mESCs.
Analysis 2: Investigation of differential expression
While the overall gene expression of KO and WT cells
were fairly similar, our collaborators were interested in
exploring the small fraction of genes which were up or
down-regulated in KO compared to WT cells. To identify
such genes, they used the R apps for two Bioconductor

packages, DESeq [45] and edgeR [47], which are the state
of the art methods in the genomics field for conducting
differential expression analysis. Both of these methods
show their best performance when biological or technical
replicates exist for RNA-seq samples. Since our colla-
borators did not have biological replicates for any of their
RNA-seq samples, they created four random sample sets
for each dataset containing 30% of the data and used it as

Figure 5 Workflow of gene expression analysis in case study 1. (a) Heat map with dendogram plot, and (b) MDS plot, showing the
transcriptional correlation. (c-f) scatter and bar plots showing the genes up-regulated (blue color and labeled “1”), down-regulated (red color and
labeled “-1”) or non-differentially expressed (green color and labeled “0”) based on DESeq and edgeR Apps with replicates ("DR” and “ER”,
respectively) or without replicates ("D” and “E”, respectively). The results for pair-wise comparison of DR, ER, D, and E runs have been shown as
Venn diagrams for up-regulated and down-regulated genes. (g) Native scatter plot app showing the intersection between the result of DR
(DESeq with replicates) and D (DESeq without replicates) runs for up ("1”) vs. down ("-1”) regulated genes. The rectangle filter in native scatter
plot is used to create the four subsets for Venn diagrams (h-k).
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a technical replicate. They were curious to compare the
results of these two methods with and without technical
replicates. To do a fair comparison, our collaborators
chose the Benjamini and Hochberg algorithm [56] imple-
mented in both DESeq and edgeR to generate the false
discovery rate (FDR) for each gene and applied an FDR
threshold of 0.01 to identify genes showing significant
changes. The output for each app was a new column
indicating the predicted cluster id for each gene: “+1” for
up regulated, “-1” for down regulated and “0” for no dif-
ference. The result of the two methods, DESeq and
edgeR, on the data without and with replicates, are
shown in Figure 5(c-f). The bar plots show the size of
each predicted group and the scatter plots show the
genes colored by their predicted group, on a log scale of
the normalized gene expression value in the wild type
(HM1) vs. knock out (HP1aKO) cells. Our collaborators
then used the interactive scatter plot app to create 8 sub-
sets of up and down regulated sets ("+” or “-”) for each of
the two methods ("D” or “E”), with ("R”) and without
replicates (Figure 5(g)). These subsets were then com-
pared in the Venn diagrams shown in Figure 5(h-k). As
shown, the edgeR result is relatively more robust in
terms of the genes that are identified as up or down-
regulated in HP1aKO compared to WT, whereas the
DESeq result changes significantly when technical repli-
cates were used. However, the number of genes reported
by edgeR as differentially expressed genes in HP1aKO
compared to WT is at least three times more than their
counterparts in the DESeq analysis. This indicates that
edgeR is more sensitive to the outliers, as reported pre-
viously [46]. Because the high specificity was more
important than high sensitivity for our collaborators, they
chose to use DESeq for their differential expression ana-
lyses because of the low false positive rate of DESeq
shown by these empirical results.

Case Study 2: Allele-specific gene expression
Each diploid cell consists of two copies of the genome,
one from each parent (haplotype genome). In inbred
mice, these paternal and maternal copies of the genome
are identical. Hybrid mice, on the other hand, can be
derived from crosses between distantly related labora-
tory inbred mouse strains, which differ at numerous
genomic loci. Our second group of collaborators used a
recently published dataset for trophoblast cells from
hybrid crosses between CAST/EiJ (Cast) and C57BL/6J
(B6) mice [57] and generated allele-specific (AS) profiles
using the ALEA pipeline tool [58]. They were interested
in a quantitative analysis of their allele-specific (AS) pro-
files to identify genes in RNA-seq data and/or genomic
regions in ChIP-seq data showing allelic skew in one
haplotype vs. the other.

Analysis 1: Characterization of genes with allelic
imbalanced expression
Our collaborators started by using the DESeq R app on
the AS RNA-seq data, the output of which was dis-
played using the R scatter plot app shown in Figure 6
(a). DESeq identified 438 genes with allelic expression
skew toward CAST and 55 toward B6 haplotypes. A
subset of these genes were so called “imprinted genes”
[59], which are known to show mono-allelic expression.
Our collaborators were curious why the number of

genes that are highly expressed in CAST but not B6 was
significantly higher than the number of genes that are
expressed in B6 not CAST. So they opened the interactive
histogram app and used the range filter to create the sub-
sets for genes with mono-allelic expression for CAST and
B6 Figure 6(b). Plotting the two subsets in separate pie
charts, revealed that the majority of genes (> 350) with
allelic expression skew toward CAST are located on the ×
chromosome (Figure 6(c)), but there is no visible pattern
for B6 (Figure 6(d)). This was expected as the × chromo-
some is known to host a large number of maternally
expressed genes (expressed in CAST haplotype here)
through × chromosome inactivation [57].
Analysis 2: Exploration of allele-specific relation between
H3K36me3 and gene expression
The epigenomic modification H3K36me3 was previously
shown to be enriched in the gene body of active genes [60].
To support the above AS analysis workflow for RNA-seq
data, our collaborators decided to study the potential rela-
tion between AS profiles in RNA-seq and H3K36me3
data for the genes showing allelic imbalanced expression.
The CAST allelic contribution in both RNA-seq and
H3K36me3 data was calculated using the tool by dividing
the allelic read counts assigned to CAST to the total num-
ber of allelic reads per gene. As shown in Figure 6(e), all the
438 genes characterized in the RNA-seq analysis by DESeq
as candidates with high CAST allelic contribution, show
the same pattern for H3K36me3. In contrast, the genes
having low CAST contribution (high B6 contribution) in
RNA-seq data do not necessarily show low CAST contribu-
tion in H3K36me3 data. An IGV browser view of AS pro-
files for H3K36me3 and RNA-seq data (Figure 6(f)), shows
two of the known imprinted genes “Slc38a4” and “Mirg”,
are expressed in a mono-allelic manner in B6 and CAST
respectively and concurrently enriched with H3K36me3.
Taken together, this case study showed the potential

of VisRseq as a visual analysis toolbox to enhance other
bioinformatics tools such as ALEA by providing a visual
interface to required statistical packages from R.

Conclusions and future work
In this paper we presented VisRseq, a framework for
analyzing sequencing data and creating interfaces for
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R libraries. By reducing the required technical expertise,
VisRseq facilitates data analysis for a broader set of biol-
ogists and bioinformaticians. We created a small but
diverse set of R-Apps to demonstrate VisRseq’s utility
and flexibility. We also provide several native apps to
support interactive exploration of the data together with
the output of the analysis methods. VisRseq is now
being used actively by our collaborators, who report that
they are able to perform their analysis pipeline more
quickly and efficiently than with existing tools.
There are a number of directions for future work. We

have begun to introduce VisRseq to other labs in addition
to our initial collaborations. We are currently observing
the use of VisRseq by these new users to evaluate and
improve the usability and effectiveness for more diverse
and complex analysis problems. Labs which were espe-
cially keen on working with VisRseq are employing stu-
dents with bioinformatics background in order to adapt
their existing R-based custom analysis modules into R
apps making them more accessible to more lab members.

In addition to making some of these modules available in
a future release of VisRseq, this has helped us improve
the process of developing new apps.
Several features are still required to support the usability

of our tool. For workflows to be truly useful, there must
be clear and repeatable records of what has been done,
like the history system offered by tools such as Galaxy
[40]. Other features include saving and loading the work-
space together with the parameters, and an undo possibi-
lity. Further, reusing common parameters between apps,
such as graphical variables shared among different plots,
would improve the usability of the tool.
Our primary focus during the development of VisRseq

was to create a tool for analyzing sequencing data. A
natural extension is toward a general statistical package
for other scientific data. This however requires colla-
boration with a broader range of scientists from differ-
ent disciplines. Our vision is to eventually encourage the
R package developers to also create the apps for their
packages themselves and make them available through a

Figure 6 Workflow of allele-specific gene expression analysis in case study 2. (a) 2D scatter plot of CASTEiJ (CAST) vs. C57BL6J (B6) allelic
read counts. (b) genes with allelic skew labeled by “1” for CAST and “-1” for B6 skew. (c-d) Pie charts showing chromosomal distribution of CAST
vs. B6 specific expressed genes. (e) CAST contribution for H3K36me3 vs. RNA-seq. (f) genome browser view of “Slc38a4” and “Mirg” imprinted
genes with mono-allelic expression in B6 and CAST.
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central app repository. Although most developers would
like to make their packages accessible to a broader
range of users, the platform must first be adopted by a
large group of biologists. Hence, for now we need to
continue including a rich collection of apps to the fra-
mework ourselves.
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