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Abstract

Background: Liquid chromatography mass spectrometry (LC-MS) maps in shotgun proteomics are often too
complex to select every detected peptide signal for fragmentation by tandemmass spectrometry (MS/MS). Standard
methods for precursor ion selection, commonly based on data dependent acquisition, select highly abundant
peptide signals in each spectrum. However, these approaches produce redundant information and are biased
towards high-abundance proteins.

Results: We present two algorithms for inclusion list creation that formulate precursor ion selection as an
optimization problem. Given an LC-MS map, the first approach maximizes the number of selected precursors given
constraints such as a limited number of acquisitions per RT fraction. Second, we introduce a protein sequence-based
inclusion list that can be used to monitor proteins of interest. Given only the protein sequences, we create an
inclusion list that optimally covers the whole protein set. Additionally, we propose an iterative precursor ion selection
that aims at reducing the redundancy obtained with data dependent LC-MS/MS. We overcome the risk of erroneous
assignments by including methods for retention time and proteotypicity predictions. We show that our method
identifies a set of proteins requiring fewer precursors than standard approaches. Thus, it is well suited for precursor ion
selection in experiments with limited sample amount or analysis time.

Conclusions: We present three approaches to precursor ion selection with LC-MALDI MS/MS. Using a well-defined
protein standard and a complex human cell lysate, we demonstrate that our methods outperform standard
approaches. Our algorithms are implemented as part of OpenMS and are available under www.openms.de.

Background
LC-MS/MS-based proteomics is a key technique for pro-
tein quantitation and identification. A typical workflow
starts with the proteolytic digestion of protein samples,
using usually trypsin. The resulting peptide mixture is
inserted into a liquid chromatography (LC) column in
which the peptides are eluted at different time points,
called retention time (RT), according to their physico-
chemical properties (e.g. hydrophobicity and polarity).
LC system and mass spectrometer are connected, either
directly with Electrospray-MS (ESI-MS) or indirectly via
fractionation onto a target plate as used in MALDI-
MS. The resulting peptide signals in the LC-MS map
are referred to as features while the selection of features
for fragmentation with MS/MS is called precursor ion
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selection. Peptide identifications are assigned to MS/MS
spectra using database search tools, such as Mascot [1] or
X!Tandem [2], or by de novo sequencing [3,4]. The peptide
sequences are then used to reconstruct the proteins that
were present in the sample.
A problem for protein identification with tandem mass

spectrometry is the limited number of possible MS/MS
acquisitions. Even in simple protein digests there are
more detected peptide signals than possible selections for
MS/MS [5]. The number of possible fragmentations is
either limited by the elution time of the peptide (ESI)
or by the amount of sample available for each fraction
(MALDI). A standard method for precursor ion selection
with ESI-MS/MS is data dependent acquisition (DDA)
which selects the x most intense signals in each MS
spectrum for fragmentation, with x depending on the
instrument type. However, as biological samples have a
high dynamic range of protein abundance, the number of
peptide identifications is biased towards high-abundance
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proteins, although low-abundance proteins are mostly of
higher interest.
In order to circumvent redundancy, DDA can be com-

bined with a dynamic exclusion list (DEX) that prevents
fragmenting a signal at the samem/z-value within a spec-
ified RT range. Exclusion lists are often used for replicate
analyses [6-11]: after each LC-MS/MS run the exclusion
list is updated and contains the fragmented or identified
signals of previous runs. In comparison to simple repeti-
tions, Chen et al. [7] showed that the number of unique
peptide identifications can be significantly increased. Ben-
dall et al. [10] reached a higher number of proteins
identifications.
A complementary strategy to exclusion lists is directed

MS/MS. Instead of excluding potentially uninteresting
signals, the selection focusses particularily on signals of
interest. These signals are part of an inclusion list that
contains the m/z-values and usually an RT window for
each peptide. This procedure is a typical approach for LC-
MALDI MS/MS where MS and MS/MS are decoupled.
Thus, MS acquisition can be used to create a map of all
detected signals which guides the precursor ion selection.
Moreover, inclusion lists have also been used in combi-
nation with ESI-MS/MS: a consensus map of detectable
LC-MS features created from previous runs was used to
create the inclusion list [12-15]. These studies showed
that compared with DDA directed MS/MS might identify
a higher number of peptides [14,15]. This effect is more
pronounced for low intensity peptides [14].
In the last years, in several studies iterative approaches

for precursor ion selection were applied. For instance,
Scherl et al. [16] added theoretical m/z-values of tryp-
tic peptides of already identified proteins to an exclusion
list. In a previous study, we showed the effect of combin-
ing both the directed analysis of interesting signals and
the exclusion of uninteresting signals through a heuristic
[17]. In our study, a prioritized list of all possible pre-
cursors was reranked during ongoing MS/MS acquisition
based on the identifications yielded so far. Precursors hav-
ing an m/z- value matching tryptic peptides of already
identified proteins received a lower priority, whereas pre-
cursors matching tryptic peptides of uncertain protein
candidates were assigned higher priorities. We demon-
strated that this strategy can identify the same number
of proteins as standard methods using fewer precursors.
In our study, theoretical peptides were matched onto
observed features using only the m/z-value. Thus, our
method showed a clear dependence on mass accuracy and
sample complexity.
Liu et al. [18] developed an iterative MS/MS acquisition

(IMMA) approach that used different filtering techniques
to exclude uninteresting signals. Proteotypic peptides of
already identified proteins are excluded as well as signals
with a mass defect untypical for peptides. This way, a

larger number of proteins could be identified than with
DDA.
In this manuscript, we introduce a deterministic frame-

work that formulates the precursor ion selection problem
as Integer Linear Program (ILP). We show that it can
be easily adapted to variations of the original problem.
We present three different scenarios and their corre-
sponding optimization problems.We address the problem
of erroneous peptide-precursor assignments by includ-
ing predictions of RTs and proteotypic peptides into the
matching. Furthermore, we employ a probabilistic scoring
to infer proteins from peptide identifications. Our meth-
ods are implemented as part of the open-source library
OpenMS [19] and will be available as a TOPP tool [20] as
part of the next release of OpenMS.

Methods
Several precursor ion selection strategies are conceiv-
able depending on the aim of a study and the available
prior knowledge about the sample. Here, we focus on
three settings: the first two use static inclusion lists cre-
ated once before the MS/MS acquisition starts. The third
changes the selection based on previous identifications.
The two static inclusion list approaches differ in the infor-
mation used during the selection process. In the following,
when talking about peptides we refer to protein subse-
quences as opposed to precursors which denote MS/MS
measurements.

• Feature-based inclusion list: Given an LC-MS
feature map, we want to maximize the number of
scheduled precursors given some constraints on the
number of simultaneous acquisitions per RT fraction.
This is a common scenario with LC-MALDI due to
its decoupled nature of LC and MS.

• Protein-based inclusion list: Given a list of protein
sequences but no prior LC-MS run, we want to find
an optimal set of precursors that represents the
proteins of interest best. As proteins are not
identified directly we need to find a peptide set that
optimally covers our specific proteins. For this
peptide set, we predict the LC-MS features (i.e.
retention time andm/z acquisition window) and add
them to the inclusion list.

• Iterative precursor ion selection: Given an
LC-MALDI-MS feature map, we want to optimally
exploit the set of possible precursors. Optimality in
this case means that we want to identify the proteins
in a sample using a minimal set of precursors, so that
the remaining precursors can be used to discover
other proteins. The precursor ion selection shall be
adjusted during the ongoing MS/MS acquisition
based on previous peptide and protein identifications.
This way, we combine the discovery nature of DDA
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with directed MS/MS. As with both inclusion list
formulations, the number of MS/MS acquisitions is
limited by the number of precursors per RT fraction.

These settings can be formulated as optimization prob-
lems, which can be formalized as Integer Linear Programs
(ILP). Solving the ILPs yields a list of precursor ions,
the actual inclusion list. In the following sections we will
introduce and explain the formulations.

Feature-based inclusion list
Given a feature map, we want to schedule the highest
possible number of features as precursors for MS/MS-
fragmentation. Since a feature elutes over several scans
we have the option to choose the feature as precursor in
any of those scans. Ideally, one would like to use for each
feature a fraction with a high signal intensity for fragmen-
tation. A greedy approach (GA) chooses for each feature
the fraction with the highest signal intensity. Then, in each
fraction the highest of these feature maxima are sched-
uled for MS/MS. However, situations can be constructed
where GA selects less features than a global strategy that
tries to optimize the selection for all features simulta-
neously. An illustration of such a situation is shown in
Figure 1. In the following, we present a formulation of
the feature-based precursor ion selection as optimization
problem.
For each feature j, we introduce a set of binary vari-

ables xj,s, which are set to 1 if we choose feature j in
scan s as a precursor and 0 otherwise. Since we want to
choose the best possible fraction for each precursor, we do
not simply maximize the number of scheduled precursors
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Figure 1 Feature-based precursor ion selection. (a) LC-MS map
containing four features a - d. (b) MS spectra of the same map with
feature peaks. The coloured ellipses show the selected precursors for
the different strategies: green with DDA, blue with GA and red with
the ILP. Limiting the number of precursors to 2 per spectrum, feature
c is never chosen neither with DDA nor with GA. With GA no feature is
selected in spectrum S3. The ILP selection selects all four features once.

but use the feature intensities as weights, because high
intensity features are more likely to produce good and
interpretable MS/MS spectra. The intensities are normal-
ized by the maximal signal intensity the respective feature
has in any spectrum. This results in weights between 0 and
1 and prevents a bias towards selecting only high intensity
features.
We have two constraints: first, the capacity of spectrum

s, i.e., the maximal possible number of acquired MS/MS
spectra in spectrum s. And second, the number of times
a feature can be selected as a precursor which is set to 1
here, but this constraint could easily be relaxed to other
values. Table 1 gives an overview of all variables and
constants used in the LP formulations.

Table 1 Variables and constants used in LP formulations

Variable name Explanation

xj,s Indicator variable, 1 if feature j is selected in spec-
trum s,

0 otherwise

xj Indicator variable, 1 if feature j is part of the
solution,

0 otherwise

intj,s Normalized signal intensity of feature j in spec-
trum s

caps Maximal number of MS/MS precursors in spec-
trum s

Di Detectability of protein i

yi −log(1−Di), higher values reflect a better protein
detectability

dk Detectability of peptide k

ai,k Indicator variable, 1 if peptide k is part of protein i,

0 otherwise

ws RT window size

tp Predicted RT

max list size maximal number of elements in inclusion list

pk Probability that peptide k was identified correctly

Pi Probability that protein i was identified correctly

k1, k2, k3 Weights

bi Indicator variable, 1 if the protein probability of
protein i is at least c, 0 otherwise

c Minimal protein probability to declare a protein
identified

zi zi = 1 if Pi ≥ c, otherwise zi ∈[ 0, 1)
Mk Set of features having an m/z within a speci-

fied ppm range around the theoretical m/z of
peptide k

mk,j Matching probability of feature j with peptide k

precs Number of already fragmented precursors

step size Number of selected precursors in each iteration
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The LP formulation of the feature-based inclusion list
can be formalized in the following way:

max
∑
j,s

xj,s·intj,s (1)

subject to ∀s :
∑
j
xj,s ≤ caps (2)

∀j :
∑
s

xj,s ≤ 1 (3)

xj,s ∈ {0, 1}. (4)

Here, xj,s is an indicator variable, it is 1 if feature j is
selected in spectrum s and 0 otherwise. intj,s is the nor-
malized intensity of feature j in spectrum s, and caps is
the “capacity” of spectrum s, i.e., the maximal possible
number of precursors for that spectrum. The problem of
finding an optimal inclusion list is an instance of a well-
known combinatorial problem, the Knapsack problem.
We will show that solving our ILP yields a global optimal
inclusion list.
In our implementation, we solve the ILP formulation

using the GNU Linear Programming Kit (GLPK, www.
gnu.org/software/glpk/). The solution provides values for
all xj,s and all features j where xj,s = 1 are part of the final
inclusion list. Due to Constraint (3), xj,s can only be 1 for
at most one s for each precursor j. Thus, each precursor is
scheduled in a specified fraction.

Protein sequence-based inclusion list
In the last section, we developed a method for inclu-
sion list creation based on LC-MS feature maps. In the
following, we describe another inclusion list scenario:
protein-based precursor ion selection. Given a list of pro-
tein sequences that we want to identify in a sample, the
task is to select a set of precursors that represents the
whole set of proteins. However, with LC-MS/MS we can-
not identify proteins directly. Instead, we need to collect
peptide identifications that can afterwards be assembled
to protein identifications. As it is known which peptide
sequences are part of which protein sequence, we can
select a set of peptides that yields a sufficient protein
coverage. For these peptides we can predict the RT and
calculate their m/z-value. This way, we retrieve a set of
possible precursors based on a set of protein sequences.
Figure 2 shows the relation between precursors, peptides
and proteins.
This problem can be formulated as an optimization

problem as well. Again, we have the spectrum capacity
and the number of times a feature can be selected as con-
straints. Additionally, we want to achieve a certain like-
lihood for each protein to be identified with the selected
precursors. In the following, we will refer to this as the
protein detectability, in analogy to peptide detectability
which is the likelihood to detect and identify a peptide in

Figure 2 Protein sequence-based inclusion list. Given a set of
proteins of interest P1 to P6, we compute all their possible tryptic
peptides a1 to a11. For each of the peptides, we calculate theirm/z,
and predict the RT and their likelyhood to be detectable in a given
experimental setup. With these values we create a map of predicted
features that are used for the inclusion list.

a given experimental setup.We develop a formula to com-
pute the protein detectability via the protein probability
calculation in the next section. This finally leads to the
formulation of the protein sequence-based LP.

Protein probability calculation
A basic problem for shotgun proteomics is inferring pro-
tein identifications from peptide identifications. Several
approaches for the protein inference problem were pub-
lished during the last years [21-23]. In order to calculate
protein probabilities, we use the basic formulas of Pro-
teinProphet [22], a widely used tool part of the Trans-
ProteomicsPipeline [24]. Thus, the probability Pi that pro-
tein i is present in the sample can be calculated as the
probability that at least one of its constituting peptides
was correctly identified:

Pi = 1 −
∏
j

(1 − pj) . (5)

Here, pj is the probability that peptide j is correctly identi-
fied. As peptide j might be part of more than one protein,
ProteinProphet uses additional weights to distribute the
contribution of pj to several proteins. Using the loga-
rithm, we reformulate the product in Equation (5) to a
summation:

∏
j

(1 − pj) = 1 − Pi (6)

∑
j
log(1 − pj) = log(1 − Pi), (7)

which is invalid for Pj = 1, so in this case we enter a
pseudo count instead.

www.gnu.org/software/glpk/
www.gnu.org/software/glpk/
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Prediction of peptide properties
In shotgun LC-MS/MS experiments typically not all
tryptic peptides of a protein are observed. Instead, a
characteristic set of peptides exists which can be often
identified for a specific protein, these peptides are called
proteotypic peptides [25]. Closely related to proteotyp-
icity the detectability of a peptide is the likelihood that
the molecular ions of the peptides are detected, frag-
mented by MS/MS and identified through a database
search. There exist several approaches to predict pep-
tide detectabilities [26-29]. We use a machine-learning
approach from Schulz-Trieglaff et al. [29] for the predic-
tion of the detectability of a peptide and denote it with dp.
As dp is a likelihood, it ranges between 0 and 1.
Similar to detectability prediction it is also possible to

predict the retention time of a peptide. Again, we use a
machine-learning approach to predict the RTs of peptides
[30]. In our approach, we then assume an RT window
around the predicted RT for the precursor ion selection.
Both methods for detectability and RT prediction use

support vector regression (SVR) with a kernel function
that works solely on the peptide sequence. For RT predic-
tion, a training set of peptide identifications with accurate
retention times is required. Model training for detectabil-
ity prediction requires a positive set of observed peptides
and a set of undetectable peptides.

Calculation of protein detectabilities
When creating the protein sequence-based ILP, there are
no MS/MS measurements available. Therefore, peptide
probabilities can not be considered. Instead, we sub-
stitute them by peptide detectability which reflects the
likelihood of a peptide to be detected and identified
by MS/MS. We calculate the detectability of protein i
(Di) via:

∑
p, with aip=1

∑
s

log(1 − dp · xp,s) = log(1 − Di), (8)

where aip is 1 if peptide p is part of protein i and 0 oth-
erwise. xp,s indicates whether a peptide p is part of the
inclusion list and selected as precursor in spectrum s. In
our specific case the indicator variable xp,s can only be 0
or 1, hence the left hand side sum in Equation (8) equals:

∑
p, with aip=1

∑
s

xp,s · log(1 − dp) = log(1 − Di). (9)

LP formulation
In the following, we use the previously developed pro-
tein detectabilities for the creation of inclusion lists to
maximize the sum of the protein detectabilities.

max
∑

yi (10)

s. t. ∀s :
∑
j
xj,s ≤ caps (11)

∀j,s : xj,s ≤ xj (12)
∑
j
xj ≤ max list size (13)

∀j :
∑

s/∈[tp−ws,tp+ws]
xj,s = 0 (14)

∀i : yi = −log(1 − Di) (15)

∀j,s : xj,s, xj ∈ {0, 1} (16)

tp denotes the predicted RT for peptide p and ws is the RT
window size.
Again, solving the LP formulation using a solver like

GLPK yields a set of variables xj,s = 1 that build the inclu-
sion list. In this case, we provide RT windows for each
precursor in the inclusion list. Thus, for each precursor j
there can be multiple xj,s = 1.

LP for iterative precursor ion selection
The methods described in the previous sections are used
for inclusion list creation prior to MS/MS acquisition. In
the following, we develop an LP formulation for iterative
precursor ion selection where the selection is adapted dur-
ing ongoing MS/MS acquisition. In contrast to replicate
analyses, where new LC-MS and LC-MS/MS measure-
ments are performed in each replication step, in iterative
MS/MS acquisition the same sample and the same LC-MS
map is used for the whole analysis. This is especially suited
for LC-MALDI MS/MS as there the sample is “frozen” on
the target and data acquisition can be suspended. After
the initial LC-MS step an LC-MS feature map is created
for the sample which is used for precursor ion selection.
During the iterative analysis, in each iteration a set of pre-
cursors is chosen whose MS/MS acquisition is triggered.
Variables corresponding to the selected precursor set are
fixed for subsequent iterations. As we describe methods
for LC-MALDI, we can step forward and backward “in
time” by selecting fractions corresponding to different,
not necessarily consecutive RTs.
The goal of the iterative precursor ion selection is

twofold. On the one hand, a maximal number of proteins
shall be identified with a given statistical confidence. On
the other hand, a maximal possible number of precur-
sors shall be fragmented which is limited by the available
sample. For both aims, LP formulations were presented in
the last sections. For the iterative precursor ion selection
we combined these LPs. After each iteration, a database
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search is performed for each MS/MS spectrum. After-
wards, the LP formulation is adapted based on the search
results. In the following, we describe the iterative work-
flow in detail.
As shown in Figure 3, we start with the LC-MS map

based on which a feature-based LP is created. By solv-
ing the LP we retrieve a set of precursors for which
the fragmentation is triggered. Subsequently, we perform
a database search for the resulting MS/MS spectra and
assign peptide probabilities to the peptide hits. Then, vari-
ables and constraints of the LP formulation are updated:
if a new protein was found it is inserted into the LP.
Additionally, variables of already fragmented precursors
are fixed and peptide weights updated. Afterwards, the
LP is solved again yielding a new set of precursors. This
procedure is iterated until a predefined termination cri-
terion is fulfilled. This can either be a maximal number
of iterations or selected precursors, or the drop of the
efficiency of the last x spectra below a given threshold.
Note, efficiency is given by the number of identified pro-
teins per iteration. Additionally, the iterative precursor ion
selection terminates if there exist no LC-MS features that
contribute positively to the objective function.
Considering proteins in the LP has two main advan-

tages: first, we want to target peptides hitting protein
candidates. These are proteins for which we received
peptide identifications, but that did not reach a suffi-
cient significance to declare a protein identified. That
way, lower intensity features are included into the pre-
cursor set which are likely to yield the missing identi-
fications. On the other hand, signals potentially derived
from already identified proteins contribute less weight to
the objective function as these do not provide additional
information.

Protein probabilities Pi are computed as explained in the
context of the protein sequence-based ILP. For the itera-
tive precursor ion selection we require a minimal protein
probability c to declare a protein identified. Thus,

Pi ≥ c (17)
=⇒ log(1 − Pi) ≤ log(1 − c) (18)

⇐⇒ log(1 − Pi)
log(1 − c)

≥ 1. (19)

This way, we can define the indicator bi which is 1 if Pi ≥ c
and 0 otherwise:

bi =
⌊
log(1 − Pi)
log(1 − c)

⌋
. (20)

Matching of predicted peptides to observed LC-MS features
Every time we find a new protein hit, we consider all
its tryptic peptides and determine their matching LC-
MS features. Therefore, a feature set Mp is defined for
each peptide p, containing all features within a predefined
m/z-range around the theoretical m/z of p. Then, pep-
tide detectabilities and peptide RTs are used to compute
matching probabilities. m/z-values are only used to cre-
ate a set of matching features – those within a specified
m/z-range of peptide p – for which probabilities are com-
puted.m/z−values andmass accuracy are themselves not
included in the actual matching probability.
We assume the RT prediction error to follow a Gaus-

sian distribution, which is supported by Figure 4. Then,
we compute the RTmatching probability of a feature j and
a peptide p as the probability that the prediction error is
in the range of [ x1, x2], with x2 = tp − minRT(j) and
x1 = tp − maxRT(j). See Figure 5 for an illustration. The

Figure 3Workflow of iterative precursor ion selection. Starting from an LC-MS map, the iterative precursor ion selection creates a feature-based
LP and solves it. This way, a set of precursors is selected for which MS/MS acquisition is triggered. After a database search new protein hits are
inserted into the LP formulation and all LP variables are updated. Afterwards, the LP is solved again, leading to a new set of selected precursors.
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Figure 4 RT prediction. RT prediction error for HEK293 with
Gaussian distribution in red.

probability that a predicted RT tp is truly shifted by x
spectra can be calculated as:

P(tp − tobs = x) = 1
σ
√
2π

· e− 1
2 (

tp−x−μ

σ
)2 . (21)

Considering the minimal and maximal RT of the observed
feature j leads to an RTmatching probability rp,j computed
as:

rp,j = P(x1 ≤ tp − tobs ≤ x2)
= P(tp − tobs ≤ x2) − P(tp − tobs ≤ x1).

(22)

Peptide detectabilities and RT matching probabilities are
considered to be independent, thus, both are multiplied
to determine the probability that feature j is produced by
peptide p:

mp,j = dp · rp,j. (23)

x1 x2

Feature j
Discrete RT points

x
predicted RT t p

x1

x2

min RT max RT

Figure 5 RTmatching probability. The RT prediction error
presumably follows a Gaussian distribution. Thus, the probability that
the predicted RT tp results in an observed feature j corresponds to the
grey area under the curve and can be computed with the cumulative
Gauss function.

Now, we combine everything and receive the following
LP formulation:

max

protein-based inclusion︷ ︸︸ ︷
k1

∑
i
zi +

feature-based inclusion︷ ︸︸ ︷
k2

∑
j,s

xj,s · intj,s

−
exclusion︷ ︸︸ ︷

k3
∑
i
bi ·

∑
p

∑
j∈Mp

∑
s

ai,p · mp,j · xj,s

(24)

s. t. ∀i : zi ≤ log(1 − Pi)
log(1 − c)

+

∑
p

∑
j∈Mp

∑
s
xj,s · log(1 − ai,p · mp,j)

log(1 − c)

(25)

∀i : zi ∈[ 0, 1] (26)

∀s :
∑
j
xj,s ≤ caps (27)

∀j :
∑
s

xj,s ≤ 1 (28)

∑
j,s

xj,s ≤ precs + step size. (29)

The objective function consists of three parts: protein-
based and feature-based inclusion as well as exclusion.
The inclusion parts contribute a positive value weighted
by factors k1 and k2 while the exclusion part decreases
the value of the objective function for peptide signals
potentially derived from already identified proteins. It
is weighted by k3. Typical values for k1, k2 and k3 are
10, 1 and 10, respectively. Constraint (25) ensures that
a given protein significance is reached. It considers both
the peptide probabilities of already identified peptides and
the “theoretical probabilities” received from the match-
ing probabilities of tryptic peptides and observed LC-MS
features. By dividing by the transformed threshold sig-
nificance c and the limitation zi ≤ 1, additional pep-
tide identifications of an already identified protein do
not contribute to the objective function. Algorithm 1
shows the online precursor ion selection in pseudo
code.

Results and discussion
Data
For evaluation of the described methods we used two
samples of different complexity. On the one hand, a well-
defined protein standard consisting of 5 pmol each of
48 human proteins (UPS1, Sigma Aldrich). Sample 2 is
a tryptic digest of a cell lysate of HEK293 cells. It was
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Algorithm 1Online precursor ion selection
createInitialLP(feature map)
solveLP()
solution indices ← getLPSolution()
all protein ids ← {}
i ← 1
while ¬ terminate() do

for s ∈ solution indices do
f ←getFeature(s)
acquireMSMS(f )
prot ids ← getProteinIds(f )
for p ∈ prot ids do

if p /∈ all protein ids then
all protein ids.insert(p)
addProteinCoverageConstraint(p)

end if
end for
updateLP()

end for
solveLP()
solution indices ←getLPSolution()
i ← i + 1

end while

prepared and provided by the group of Prof. H. Meyer
(Medical ProteomeCenter, RuhrUniversity Bochum,Ger-
many). The LC-MS/MS acquisition was done by Anja
Resemann (Bruker Daltonics, Bremen, Germany). Both
data sets were used in a previous study. See [17] for a
detailed description of the sample preparation.
Peptide identification was done with X!Tandem [2]

(release CYCLONE (2010.12.01)) using TOPP’s XTande-
mAdapter [20]. The combined target decoy version of the
Swiss-Prot protein sequence database in Release 2011 08
was searched with taxonomy limited to human. Other set-
tings included: 25 ppm mass tolerance, 0.3 Da fragment
tolerance, +1 as minimal and maximal charge, methion-
ine and tryptophane oxidation as variable modification, 1
allowed missed cleavage and tryptic cleavage sites. Addi-
tionally, carbamidomethylation of cysteines was used as
fixed modification for UPS1.
We calculated peptide posterior error probabilities

(PEP) using the TOPPtool IDPosteriorErrorProbability
and then converted the PEPs into peptide probabilities:
pi = 1 − PEPi.
For RT and detectability model training, the TOPPtools

RTModel and PTModel were used. The training data sets
for UPS1 consisted of three replicate LC-MS/MS runs, fil-
tered for peptide IDs with a probability of at least 0.99 and
that are part of one of the 48 constituent proteins. For the
HEK293 data set, we used the same probability threshold
and filtered additionally for proteins with at least 4 peptide
IDs in order to keep the training sets at a reasonable size.

Figure 4 shows the deviation of predicted and observed
RT for HEK293.

Evaluation workflow
The described algorithms were tested in a variety of set-
tings, for this reason a simulation study was best suited
for our purpose. However, not the spectra themselves are
simulated, only their selection (as illustrated in Figure 6).
Thus, an extensive fragmentation on all possible precur-
sors was performed. The resulting LC-MS feature map
and MS/MS spectra were then used as foundation for the
simulation of the precursor ion selection. This way it was
possible to discriminate performance differences from dif-
ferences due to technical replication. The latter pose a
serious problem as was shown by Tabb et al. in a sys-
tematic study where the overlap in peptide identifications
between technical replicates ranged between 35–60% [5].

Feature-based inclusion list
The three different strategies for creating a feature-based
inclusion list as presented in Figure 1 - a greedy approach
(GA), data dependent acquisition (DDA), and the ILP for-
mulation (ILP) - were evaluated with a varying maximal
number of precursors per RT bin, ranging from 1 to 40.
This led to inclusion lists of increasing size for each of
the strategies. We used RT bins of 30 and 10 seconds
for UPS1 and HEK293, respectively. Additionally, DDA in
conjunction with dynamic exclusion (DEX) of each sched-
uled precursor for the next two fractions was included in
the analysis.
For the evaluation, the number of uniquely selected

features was counted. This means, even if a feature was
selected more than once as precursor, it was only counted
once. The results are shown in Figure 7. As expected, the
two methods that use the feature information, ILP and
GA, clearly outperform DDA and DEX. Additionally, ILP
performs superior to GA as 18 precursors per RT bin are
already sufficient to select all possible features as precur-
sors. GA, in turn, needs 27 precursors per RT bin. With
DDA and DEX not all features present in the dataset get
selected within the limit of 40 precursors per RT bin.
With the HEK293 sample both DDA and DEX perform
even worse, less than half of all possible precursors are
selected with a maximum of 40 precursors per RT frac-
tion. ILP and GA perform equally well, until a maximum
of 15 precursors per fraction, for higher values ILP is bet-
ter. At maximal capacities of 20 and 25, which are realistic
numbers within our setup, GA selects around 400 and
650 precursors less than the ILP, respectively. No method
yields all 13,546 features within a limit of 40 precursors
per RT bin. GA selects 13,484 features and the ILP set
consists of 13,539 precursors.
The advantage of our method is that it considers all fea-

tures simultaneously and finds a global optimal solution.
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Figure 6 Evaluation workflow. First, the samples are analyzed by extensive LC-MS/MS, resulting in an LC-MS feature map and a number of MS/MS
spectra. These build the data pool for all evaluation experiment that simulate precursor ion selection upon the data.

This way, more precursors can be scheduled than with a
strategy that optimizes precursor ion selection for each
LC-MS feature separately.

Protein-based inclusion list
The inclusion list creation with the protein sequence-
based ILP was evaluated on the protein standard. We
compared the precursors in the inclusion list with the
observed features. Whenever a predicted precursor over-
lapped with a feature, the peptide annotation of the
feature was assigned to the precursor. This way, we
were able to evaluate how many peptide and protein
identifications an inclusion list would deliver. This is a
strong assumption as it implies that for a given fea-
ture the fragmentation works at all RT bins in a similar
quality. However, as pointed out before, it is justified
by the limited reproducibility of repetitive LC-MS/MS
analyses.

In Figure 8 (a) the number of peptide identifications
for increasing inclusion list sizes is shown for RT window
sizes of 100, 300 and 500 seconds. The number of identifi-
cations rises with the inclusion list size, for larger windows
this effect is stronger. Their maximum width is indirectly
limited by the maximum possible number of precursors
per RT bin. Interestingly, when looking at the number
of protein identifications, we observe a steep increase up
to a size of around 500, afterwards a plateau is reached
(Figure 8 (b)). Note that already around 700 predicted
features yield all possible protein identifications.
We further analyzed the influence of the RT window

size on the number of protein IDs. We checked sizes from
30 up to 990 seconds and using either an inclusion list
with maximally 1000 entries or one of unlimited size. The
results for both are similar (Figure 9). With a moderate
window size of 150 seconds 34 proteins can already be
identified.
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Figure 8 Results of protein-based inclusion list. Inclusion list creation via a protein-based ILP formulation for the protein standard, (a) the
inclusion list size vs. the number of peptide identifications. (b) the inclusion list size vs. the number of protein identifications.

Our results show that considering the peptide-protein
relation at the level of inclusion list creation prevents
frequent and unnecessary identification of uninformative
peptides. By incorporating protein detectabilities into the
ILP we can directly control the expected protein signifi-
cance. The moderate RT window sizes needed to identify
a high number of proteins emphasizes further the effect of
including RT predictions.

Iterative precursor ion selection
We compared the performance of the iterative precursor
ion selection with LPs (IPS LP) with a heuristic approach
presented in a previous study [17] (HIPS) and with a static
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Figure 9 Influence of RT window size. Inclusion list creation via a
protein-based ILP formulation for the protein standard, influence of
RT window size.

precursor ion selection based on an inclusion list which is
sorted by intensity (SPS).
Figure 10 shows the performance of the three methods

applied to the UPS1 sample with a mass accuracy of 25
ppm. In Figure 10(a) the number of identified proteins
over the number of selected precursors is shown. Similar
to a ROC curve, a line closer to the upper left side implies a
better result. All three methods start with a steep increase
in protein IDs which flattens before 100 selected precur-
sors and reaches in the end a plateau of 36 protein IDs.
Finally, IPS LP identifies the same number of proteins as
the other two methods, yet by exploiting fewer precur-
sors. This effect is shown explicitly in Figure 10(b), where
the difference in the number selected precursors needed
to identify a given number of proteins for the two itera-
tive methods compared to SPS is plotted. For identifying
a maximal number of proteins, IPS LP saves a quarter
of required MS/MS spectra compared to SPS. HIPS per-
forms also better than SPS, but the advantage is smaller
than with IPS LP.

Sample complexity
In a previous study we observed a drawback of the heuris-
tic IPS: it showed a clear performance loss when applied
to a complex sample with limited mass accuracy [17]. This
was due to erroneous assignments of theoretical peptides
to observed features. In IPS LP the specificity of assign-
ments is increased by including RT and detectability of a
peptide.
In Figure 11 the performance of HIPS is compared to

SPS and IPS LP for HEK293. For Figure 11(a), the RT
bin capacity was set to at most 25. Both iterative meth-
ods require less precursors than SPS to identify up to
200 proteins. HIPS is the best method to identify up to
150 proteins as it needs up to 30% less MS/MS spectra
than SPS. With ongoing analysis the advantage decreases.
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Figure 10 Iterative precursor ion selection for UPS1. Iterative precursor ion selection for UPS1 with 25 ppmmass accuracy. (a) shows the
number of identified proteins over the number of acquired MS/MS spectra. In (b) the difference between IPS and SPS in the number of MS/MS
spectra required for a certain number of protein IDs is shown.

In order to identify 200 or more proteins, HIPS requires
around 10% more precursors than SPS. On the contrary,
IPS LP is almost always better than SPS and can save
a maximum of around 20% of the spectra. This shows
that the heuristic makes good precursor choices at the
beginning of the analysis, but after a certain number of
iterations the number of false assignments of precursors
to predicted peptides increases too much and thus the
performance of HIPS drops. In turn, the inclusion of RT
and detectability predictions increases the specificity of
peptide-precursor assignments with IPS LP.
We further examined the performance of the different

methods with respect to limited number of precursors per
fractions, as shown in Figure 11(b). When the maximal

number of precursors in each fraction is less than ten
IPS LP is able to identify more proteins than the other
methods. This implies that IPS LP is particularily applica-
ble in conditions with limited amounts of sample.
As pointed out before, intensity-based selection meth-

ods like DDA identify many peptides especially for high
abundance proteins. Our method aims at reducing this
redundancy by excluding precursors matching peptides of
already identified proteins. In Figure 12(a), we analyzed
how many peptide identifications matching the 10% most
abundant proteins were found with the evaluated meth-
ods. Abundance of a protein was estimated by the mean
of all its corresponding feature intensities. For both IPS
methods, we receive fewer peptide identifications for the
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Figure 11 Iterative precursor ion selection for HEK293. Iterative precursor ion selection for HEK293 for 10 ppmmass accuracy. (a) shows the
difference to SPS in the number of selected precursors in percent required to identify a given number of proteins. In (b) the total number of proteins
IDs with a limited rt bin capacity is shown.
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Figure 12 Identification of high and low abundance proteins. For the HEK293 sample protein abundance was estimated as the mean intensity
of all features with corresponding peptide identifications. (a) show the number of total peptide identifications covering the 10% most abundant
proteins. In (b) the number of identified 10% lowest abundant proteins is displayed.

high intensity proteins at the first stage of the experi-
ment. Thus, in this part the bias towards high abundance
proteins is less pronounced for IPS LP and HIPS than
with SPS. However, after 3,500 (HIPS) and 5,500 (IPS LP)
MS/MS spectra the numbers quickly reach the ones from
SPS. This is due to the selection of previously down-
ranked or excluded precursors. When considering low
abundance proteins, we observe that IPS LP identifies
proteins belonging to the 10% lowest abundant ones with
less MS/MS spectra than HIPS and SPS(Figure 12(b)).

Weights
The objective function of IPS LP contains the weights k1,
k2 and k3. We tested both samples with different values to
determine how robust the system is for changes of these
weights and if different samples require different weights.
Both samples were examined with a mass accuracy of 10
ppm. We evaluated different values for k1 and k3 while k2
was fixed to 1 (Figure 13). Setting k2 to 0 results in early
termination due to a lack of positive contributions to the
objective function. As expected, k1 = k3 = 0 leads to the
same performance as SPS since only feature-based inclu-
sion is switched on. A small k1 does not greatly improve
the performance as it can not compensate for the weight
of all features. Especially for the complex HEK293 sample
we can see that the exclusion part has a greater influence
on the results. Large values for k3 lead to a good perfor-
mance for a large part of the experiment, but for more
than 400 identified proteins the results are worse than
for SPS. This deterioration is probably due to erroneous
precursor-peptide assignments and shows that too large
values for k3 might impair the results. In summary, we
can see that for both samples although being of different

complexity the same values (k1 = 10, k2 = 1, and k3 = 10)
yield good results.

Sequential precursor ion selection
Although with LC-MALDI MS/MS it is possible to select
precursors in an order independent of their RT, in practice
the sample is analyzed following a specific fraction order.
Thus, in the following, we adapt the LP formulation so
that it proceeds through the precursor set in a sequential
order according to the fraction number.
We start with spectrum s∗ = 0. Only the capacity con-

straint of the LP formulation (In eq. 27) has to be adapted
to account for the sequential selection:

∀s>s∗ :
∑
j
xj,s = 0 (30)

∀s<s∗ :
∑
j
xj,s = cap∗

s (31)

∑
j
xj,s∗ = caps∗ (32)

Capacities of fractions with a lower number than s∗ are
fixed at the number of selected precursors for the respec-
tive fraction to prevent going back in RT dimension.
Capacities of fractions after s∗ are set to 0. When all
precursors in s∗ were selected or its capacity has been
reached, the next fraction is set as s∗.
When selecting precursors with this sequential IPS LP

the percentage of saved precursors to reach a certain num-
ber of protein identifications rises with ongoing analysis
(Figure 14). Finally, IPS LP saves more than 30% of the
precursors. As in most fractions IPS LP selects fewer pre-
cursors than SPS, this sums up to more than 4,000 saved
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Figure 13 Influence of weighting terms. Different values for k1 and k3 were tested, k2 was fixed to 1. (a) and (b) are based on UPS1, (c) on HEK293.

MS/MS spectra in the end without a loss in protein iden-
tifications. This reduction of precursors per fraction was
also observed for the non-sequential IPS LP. There, in
total 7,275 were selected, in contrast to more than 13,546
with SPS.

Conclusions
We presented methods for precursor ion selection with
LC-MALDI MS/MS. We showed that inclusion list
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Figure 14 Sequential iterative precursor ion selection for
HEK293. Iterative precursor ion selection for HEK293 for 10 ppm
mass accuracy and a sequential precursor ion selection.

creation can be formalized as optimization problem and
efficiently solved with Linear Programs. Our methods can
be used to schedule an optimal set of precursors. We
presented exemplarily two situations where the available
information prior to MS/MS acquisition differs. When
the protein sequences of interest are known our method
for inclusion list creation using protein sequences is well
suited, as it creates very efficient inclusion lists. Various
adaptations to our methods are possible that can be eas-
ily integrated. For instance, the protein sequence-based
inclusion list can be adapted to consider not all tryptic
peptides of a protein but a specific predefined set of pep-
tides that can be used for quantification of proteins in
different cell states or in time series.
Finally, we presented a new method for iterative precur-

sor ion selection that identifies proteins more efficiently
than data dependent methods. This efficiency improve-
ment is twofold: peptides from already identified proteins
contribute less weight to the objective function and thus
are less likely to be selected as precursors. This way the
redundancy of information obtained with MS/MS can be
reduced. On the other hand, IPS LP requires considerably
fewer MS/MS acquisitions to identify the same number
of proteins as a static inclusion list. The remaining sam-
ple and analysis time can be used for identifying more
proteins in a sample. Compared to our previously pub-
lished heuristic method, IPS LP does not suffer from
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massive false exclusion of signals in complex samples
by incorporating machine learning methods for RT and
proteotypicity predictions.
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