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Abstract

Background: Gene expression profiling and other genome-scale measurement technologies provide comprehen-
sive information about molecular changes resulting from a chemical or genetic perturbation, or disease state. A crit-
ical challenge is the development of methods to interpret these large-scale data sets to identify specific biological
mechanisms that can provide experimentally verifiable hypotheses and lead to the understanding of disease and
drug action.

Results: We present a detailed description of Reverse Causal Reasoning (RCR), a reverse engineering methodology
to infer mechanistic hypotheses from molecular profiling data. This methodology requires prior knowledge in the
form of small networks that causally link a key upstream controller node representing a biological mechanism to
downstream measurable quantities. These small directed networks are generated from a knowledge base of
literature-curated qualitative biological cause-and-effect relationships expressed as a network. The small mechanism
networks are evaluated as hypotheses to explain observed differential measurements. We provide a simple imple-
mentation of this methodology, Whistle, specifically geared towards the analysis of gene expression data and using
prior knowledge expressed in Biological Expression Language (BEL). We present the Whistle analyses for three tran-
scriptomic data sets using a publically available knowledge base. The mechanisms inferred by Whistle are consistent

with the expected biology for each data set.

disease, drug action, and drug toxicity.

Conclusions: Reverse Causal Reasoning yields mechanistic insights to the interpretation of gene expression
profiling data that are distinct from and complementary to the results of analyses using ontology or pathway gene
sets. This reverse engineering algorithm provides an evidence-driven approach to the development of models of

Background

Molecular profiling technologies have enabled the col-
lection of large, exploratory data sets consisting of mea-
surements for tens of thousands of molecular entities.
These rich data sets hold promise for understanding the
molecular bases of disease, drug action, and drug tox-
icity, but do not often lead to a reasonable short list of
potential molecular mechanisms that can be investigated
further by targeted experiments. For example, gene ex-
pression profiling experiments frequently result in a list
of hundreds or thousands of gene expression differences
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that characterize a comparison of biological states like
diseased versus normal tissue or treatment versus con-
trol. The development of methods to interpret these lists
of differential measurements and extract testable hy-
potheses is necessary to realize the full potential of these
large data sets.

The use of prior knowledge in the form of functional
groupings of genes into gene sets is central to many
methods for interpreting molecular profiling data. Gener-
ally, a collection of gene sets is assessed to identify those
for which differentially expressed genes from the data set
are over-represented (reviewed in [1-3]). Genes can be
grouped into sets based on a variety of criteria including:
(1) functional annotation, (2) pathway maps, (3) regulatory
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or structural motifs, and (4) common response to an ex-
perimental perturbation.

Analyses using gene sets based on pathway maps (e.g.,
KEGG, [4]) or functional annotation (e.g., Gene Ontol-
ogy, [5]) rely on the assumption that differential RNA
expression is equivalent to differential protein activity.
This assumption can be problematic because RNA abun-
dances are not generally a good measure for the abun-
dance or activity of the corresponding proteins. The
correlation of RNA expression to protein expression is
variable, with changes in RNA levels accounting for only a
modest portion of changes in levels of the corresponding
proteins [6-8]. As a group, signal transduction proteins are
more poorly correlated with their corresponding RNAs
than are structural proteins, thus extrapolation of RNA
microarray data to infer changes in signal transduction re-
quires caution [6,7]. Protein abundance is regulated via
translation and proteolysis in addition to regulation via
transcription and stability of mRNA. Moreover, protein
expression levels are frequently not the key determinant of
protein activity; many pathways are regulated by post-
translational events such as protein modification or bind-
ing, and only secondarily by protein abundance.

Experimental result-based gene sets, for example the
L2L, GeneSigDB, and MsigDB chemical and genetic per-
turbations (CGP) gene sets [9-11], do not evaluate differ-
entially expressed RNAs based on the function of the
proteins they encode, but rather by a common mechan-
ism controlling their expression (e.g., the experimental
perturbation). This type of gene set has the additional
advantage that the function of the corresponding gene
products need not be well defined to be considered. One
limitation of experimental result-based gene sets is that
the sets of genes up-regulated and down-regulated within
an experiment are often either handled as distinct “up”
and “down” sets or combined without regards to direction.
Additionally, gene sets from experiments with similar
chemical or genetic perturbations are not generally inte-
grated into a single cohesive gene set.

In this paper, we present a detailed description of Re-
verse Causal Reasoning (RCR), a reverse engineering
algorithm to identify biological mechanisms that are
statistically significant explanations for differential mea-
surements in a molecular profiling data set. This ap-
proach uses prior knowledge in the form of a large
network of biological cause and effect relationships,
from which smaller networks representative of discrete
biological mechanisms are derived. These smaller net-
works are essentially structured gene sets, where the up-
stream node represents an experimental perturbation
like a chemical, protein, or protein activity, the down-
stream nodes represent entities such as RNAs that have
been measured in the data set, and the edges specify an
“increased”, “decreased”, or “ambiguous” relationship.
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These mechanism networks are evaluated for both over-
representation and consistency with respect to differen-
tial measurements from a data set.

This general approach has been in use by Selventa since
2005 to identify and evaluate molecular mechanisms in-
volved in diverse biological processes, but not formally de-
scribed or tested using a publically available knowledge
base [12-19]. A related approach has been recently re-
ported [20]. In addition, an approach using the same
network structure to represent mechanisms has been de-
veloped to quantify and allow comparison of the level of
activity of a mechanism between related data sets [21].

We provide an implementation of RCR, Whistle (avail-
able at https://github.com/Selventa/whistle), specifically
designed for analysing gene expression profiling data, and
apply Whistle to three example gene expression profiling
data sets. Whistle uses prior knowledge in the form of
Biological Expression Language (BEL) statements compiled
into a causal graph. BEL is a language for representing
causal and correlative biological relationships from the sci-
entific literature in a computable form. The BEL Frame-
work, which provides tools for compiling and managing
BEL statements, has recently been made available to the
general public as open source along with a starter corpus of
statements, used in this paper to analyse the example data
sets (https://github.com/OpenBEL/openbel-framework).

Methods

Overview of RCR and whistle

RCR interprets molecular profiling data sets by inferring
a set of molecular mechanisms with associated direction
(increased or decreased) that can serve as potential causes
for the observed profiling differences between two sample
groups (e.g., RNAs differentially expressed in diseased vs.
normal tissue). This algorithm requires a large knowledge
base consisting of prior biological knowledge in the form
of cause-and-effect relationships, where the entities mea-
sured by the molecular profiling experiment are included
as targets of the cause-and-effect relationships.

Whistle is an implementation of RCR that uses a BEL
knowledge assembly model (KAM) as the knowledge
base to analyse a gene expression profiling data set com-
paring two sample groups. Whistle uses the following
general strategy (Figure 1):

1. A KAM is assembled from biological findings

2. Small networks representative of a mechanism
(HYPs) are derived from the KAM; each KAM node
immediately upstream of a minimum number of
measured RNA abundance nodes represents a HYP.

3. Differential mRNA abundance measurements are
mapped to mechanism networks and a direction
(increased, decreased, or none) is assigned for each
network.
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Figure 1 Overview of whistle. Whistle evaluates molecular mechanisms as potential explanations for gene expression data by mapping
measurements and differentially expressed genes to a directed network of prior scientific knowledge.

3. Differential 4. Significance
measurements statistics are
are mapped to calculated to

the HYPs evaluate and

prioritize HYPs as
explanations for the
data

4. Evaluation statistics (richness and concordance) are
calculated for each mechanism network.

Term definitions related to Whistle input and output
are provided in Table 1.

Whistle evaluates prior knowledge as HYPs
The prior knowledge structures used by Whistle are
termed ‘HYPs’ (derived from hypotheses). A HYP is a

Table 1 Whistle term definitions

small, directed acyclic network containing an upstream
node and downstream nodes that map to measured en-
tities (Figure 2). A HYP can be compared to a qualitative
Bayesian network or qualitative probabilistic network
[22,23]. Each edge in a HYP represents a qualitative in-
fluence of increases (+), decreases (-), or ambiguous (?).
Unlike qualitative probabilistic networks, zero influences
(0) are not included within HYPs. Like a naive Bayes
classifier, all downstream nodes in a HYP are assumed

Term Definition
HYP A small, directed causal network comprised of a single upstream node representing a biological entity or process connected by a
causal increase, decrease, or ambiguous edges to downstream nodes representing measured entities.
KAM Knowledge Assembly Model. A knowledge base of biological cause-and-effect relationships in the form of a network.
Population The set of measured RNA abundances present in the KAM and included in the possible for at least one HYP.

State changes

RNA abundances in the population assigned a state of significant increase or decrease, based on the data set.

Inferred state of the upstream node of a HYP, based on the states of the downstream nodes. Possible values are increased,

Direction
decreased, and none.
Possible The number of downstream nodes for a given HYP, representing measured RNA abundances.
Correct The number of significantly increased or decreased downstream nodes for a given HYP that are consistent with the
inferred direction.
Contra The number of significantly increased or decreased downstream nodes for a given HYP that are inconsistent with the
inferred direction.
Ambiguous The number of significantly increased or decreased downstream nodes for a given HYP that are connected to the upstream
node by an ambiguous edge.
Observed The total number of significantly increased or decreased downstream nodes for a given HYP.
Richness A HYP evaluation statistic characterizing the enrichment of significantly increased or decreased downstream nodes in a HYP
relative to the population. Calculated using the hypergeometric distribution.
Concordance

A HYP evaluation statistic characterizing the consistency of significantly increased or decreased downstream nodes.
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Figure 2 Mapping of differential measurements to a HYP network. A HYP consists of an upstream node, U, and downstream nodes,
designated r(A) — r(F), that represent abundances of RNAs measured in the experiment. This example network has six measured downstream
nodes (possible), five of which map to significantly increased or decreased genes (observed). Node E is not significantly changed in expression.
Three nodes, r(A), r(D), and r(F), support increased U (correct). One node, r(B), supports decreased U (contra). One node, r(C), is connected to U by
both causal increase and causal decrease edges (ambiguous). On the basis of the mapped measurements, the direction “increased” is assigned

independent from each other, given a fixed value of the
upstream node; the downstream nodes are assumed to
be uncorrelated with each other.

In the case of Whistle, HYPs are essentially gene sets
structured as directed networks, such that both the en-
richment of differentially expressed genes and consistency
of the directions (increased, decreased) can be evaluated.
Each Whistle HYP is derived from a KAM. An increases
edge connecting two nodes within a HYP means that the
nodes are connected by an increases or directlylncreases
BEL relationship in the KAM. Similarly, a decreases HYP
edge is derived from a decreases or directlyDecreases
KAM relationship. An ambiguous HYP edge means that
the KAM contains multiple, conflicting edges connecting
an upstream and downstream node, e.g., both an increases
and decreases edge. Other classes of HYPs, e.g., those
using other edge types, paths consisting of multiple edges,
and/or other types of measured downstream nodes, can
be derived from KAMs and evaluated by RCR, but they
are not described here or evaluated by Whistle.

Mapping probe sets to the KAM
First, Whistle maps the set of measured RNAs for a data
set to the KAM. This mapping is used to generate HYPs
for evaluation, determine the downstream nodes for
each HYP (possible), and determine the set of down-
stream nodes for all HYPs evaluated (the population).
Probe set names or other identifiers (e.g., gene symbol
or Entrez gene ID) are mapped to RNA abundance nodes
in the KAM using the equivalence files provided by the
BEL Framework (see http://wiki.openbelorg/ for docu-
mentation of BEL Framework namespaces and equivalence

files). Next, each KAM node with at least four causally
downstream measured RNA abundance nodes is selected
as the upstream node for a HYP, resulting in a set of HYPs
from the KAM for evaluation against the data set.

Mapping differential measurements to HYP networks
Next, the data set of differential measurements is mapped
to the HYP networks and basic metrics including direc-
tion, correct, and contra are calculated (see Table 1). Dif-
ferential gene expression data is processed such that each
measurement is expressed as one of three discrete states:
significant increase, significant decrease, or no significant
change, based on user-defined significance criteria. These
criteria generally include thresholds for fold change, ad-
justed p-value, and average abundance (see Data analysis
for examples).

A direction of increased, decreased, or none is assigned
to each HYP, representing the inferred state of the up-
stream node of the network based on the states of the
downstream nodes mapped from the data set. The direc-
tion is the state consistent with the majority of the signifi-
cantly increased and decreased downstream nodes of the
HYP network. For each significantly increased or de-
creased HYP downstream node, the causal linkage(s) to
the upstream node determines if the observed state is con-
sistent with an increased, decreased, or neither (ambigu-
ous) state of the upstream node. For example, if upstream
node A is connected to RNA abundance node B by a
causal decrease, a significant increase in B would be con-
sistent with a decrease in A. If upstream node A is con-
nected to B by an ambiguous edge, an increase in B would
be considered an ambiguity.
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Evaluation statistics (concordance and richness)

Two evaluation statistics, concordance and richness, are
calculated for each HYP. These statistics allow the HYPs
to be prioritized based on the strength and consistency of
their support in the data set. Lower concordance and rich-
ness p-values reduce the number of false positive, but in-
crease the number of false negative HYP inferences. As is
common for other prior knowledge-driven approaches [3],
both the concordance and richness statistics are biased in
favour of HYP networks with a larger number of down-
stream nodes. For most statistic-based metrics, values as-
sociated with a larger number of measurements can
achieve higher levels of significance than those associated
with a small number of measurements (see Results - Bias
in evaluation statistics by HYP size). Thus, we use these
metrics primarily as a filter to identify potential explana-
tions for the gene expression data, and not as a strict rank-
ing for the most interesting explanations. A threshold of
p <0.1 for both concordance and richness generally limits
both false negatives and false positives to an acceptable
level, and provides a manageable set of HYPs for manual
evaluation (see Results).

Concordance
The concordance statistic is calculated as a p-value that
characterizes the consistency of the observed states of
the downstream nodes with the direction assigned to the
HYP upstream node. Concordance is calculated as a bi-
nomial distribution where the directions expected for
the downstream RNA abundance nodes, based on the
assigned direction of the HYP upstream node and the
causal relationships to the downstream nodes are tested.
Downstream nodes with the assigned state no significant
change and nodes connected to the upstream node by
an ambiguous relationship are excluded. For the set of
significantly increased or decreased nodes comprising
the correct and contra for a HYP, the concordance statis-
tic is the probability of getting at least the number of
state changes consistent with the direction (correct).

The binomial distribution can be written as flkn,p)
where:

k is the number of successful predictions (correct),
n is the number of trials (observed), and

p is the probability of achieving a result, 0 <p < 1.

The point probability of getting exactly k successful
predictions is calculated as:

prob = f(k;n,p) = (Z)Pk(l—l?)nk

For the purposes of evaluating a HYP, the probability
of getting the direction of prediction correct, p, is 0.5;
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the network can either predict the observed direction
for a state change correctly or incorrectly. For some
HYP x;, the number of trials, n; corresponds to the
number of downstream nodes for the mechanism that
are mapped to state changes (observed). The number of
successful predictions k; is the number of downstream
nodes of x;, mapped to state changes that are consistent
with the HYP direction (correct). Let [; be the number of
downstream nodes for which the predicted direction
cannot be determined (ambiguous).

The point probability for some HYP, x;, for some k; is
then calculated as:

o n,-—li
proby = < k;

The concordance p-value is a cumulative probability
based on the area under the curve of a probability distri-
bution function. Thus, concordance for some HYP, x;, is
the sum of prob; for all j=k;k;+1,..., min(n; - I, m).
The concordance for x; is then given as:

)pk" (1 _p)ni*kz*li

min(rn;-1,m)

conc; = E

<I’sz l; >p1(1_p)m/li
J=ki
Richness
The richness statistic for a HYP indicates the enrichment of
nodes that have an observed significantly increased or de-
creased state in the downstream nodes of the network (pos-
sible) compared to the number of significantly increased or
decreased RNAs (state changes) in the total population of
measured RNAs mapped to HYPs. Richness is calculated as
a p-value using a hypergeometric probability distribution, a
method commonly used to characterize the degree to
which a subset of a whole is particularly notable.

The hypergeometric distribution can be written as f(k,
N,m,n) where:

k is the number of notable items in the subset
(observed),

N is the number of items in the full set (population),
m is the number of notable items in the full set (state
changes), and

n is the size of the subset (possible).

The probability that the subset is not due to chance
can be calculated as:
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For the richness calculation, the size of the full set, N,
corresponds to the number of observations in the ex-
periment that can be identified and mapped to at least
one downstream node in the set of all possible HYPs
(for a given HYP generation algorithm); m1 is the cardinal-
ity of the set of state changes. These values are constant
for all mechanisms x;, i = 1,2,...,n. For any mechanism, x;
n; is the number of downstream nodes that are mapped to
measurements in the experiment (possible), and the
number of notable items, k;, corresponds to the number
of downstream nodes also found in the set of m state
changes (observed).

The point probability for some HYDP, x;, for some £; is
then calculated as:

(2) ()
()

The richness p-value is a cumulative probability based
on the area under the curve of a probability distribution
function. Thus, richness for a HYP, x;, is the sum of pro-
by for all j 2 k;. Additionally, j is bounded by the size of
the subset n; and number of notable events m. The
complete richness calculation is then given as:

v (7) ()
ich =S~ A\ )

j=ki N
()

which determines the cumulative probability over the
range j = k;, k; + 1, ..., min(n;, m).

proby =

Data analysis for examples

Three gene expression data sets were used as examples
to evaluate Whistle output: (1) a mouse high fat diet in-
sulin resistance model [24]; (2) human microvascular
endothelial cells treated with TNF [25]; and (3) human
breast epithelial cells treated with a PI3 kinase inhibitor
[26]. Microarray data sets used as input for the TNF
(GSE2638) and PIK3CA (GSE17785) examples were down-
loaded from Gene Expression Omnibus (GEO) (http://
www.ncbinlm.nih.gov/gds). The high fat diet (E-MEXP-
1755) data set was downloaded from ArrayExpress (http://
www.ebi.ac.uk/arrayexpress/). GSE2638 used the Affyme-
trix Human Genome U133A, GSE17985 uses Affymetrix
Human Genome U133 Plus 2.0, and E-MEXP-1755 used
the Affymetrix Mouse genome 430 2.0 Array. Raw RNA ex-
pression data for each data set was analysed using the “a
(2.10.0) and “limma” (2.10.1) packages of the Bioconductor
suite of microarray analysis tools available for the R sta-
tistical environment [27-29]. Robust Microarray Analysis
(RMA) background correction and quantile normalization
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were used to generate microarray expression values. An
overall linear model was fit to the data for all sample
groups, and specific contrasts of interest were evaluated to
generate raw p-values for each probe set on the expression
array [30].

Unless otherwise specified, state changes for probe
sets were generated using the following significance cri-
teria: (1) adjusted p-values of less than or equal to 0.05,
corrected for multiple testing effects using Benjamini-
Hochberg FDR, (2) absolute fold changes of at least
1.3, and (3) an average normalized Affymetrix abun-
dance of at least 32. Other thresholds were used to
determine differential probe sets as specified. Genes
represented by multiple probe sets were considered to
have changed if at least one probe set met criteria for
differential expression. Gene expression changes that
met these criteria are considered to be significantly dif-
ferentially expressed and have the directional qualities
of increased or decreased, i.e., they were upregulated or
downregulated, respectively, in response to the experi-
mental perturbation.

Knowledge base
The “BEL Large Corpus”, version 1.4, (available at http://re-
source.belframework.org/belframework/1.0/knowledge/lar-
ge_corpus.bel), was used as the prior knowledge source for
the examples. The Large Corpus contains approximately
80,000 causal statements manually curated from the pub-
lished biomedical literature, each statement representing
an observation from experiments performed in human,
mouse, or rat. Each statement is associated with a citation
and key experimental context information (species, cell line,
tissue, etc.). The Large Corpus was compiled into a
Knowledge Assembly Model (KAM) using the BEL
Framework, version 3.0.0 (available at http://download.
openbel.org/OpenBEL_Framework-3.0.0-preview.zip) with
the default compiler settings. For the examples, KAM
nodes representing orthologous nodes were collapsed to
either mouse or human as appropriate, using the BEL
Framework APIL

Because a BEL KAM is used as the prior knowledge
source, each HYP is referred to by the BEL term label of
its upstream node. BEL terms follow the general format
flns:v), where f is a function like ‘proteinAbundance’
(short form ‘p’) or ‘biologicalProcess’ (short form ‘bp’);
ns is a reference to a namespace like ‘MGI' (Mouse
Genome Informatics symbol) or ‘EGID’ (Entrez Gene
Id); and v is a value from the indicated namespace, like
‘Aktl’. A list of BEL functions and namespace abbrevi-
ations used in the examples is provided in Additional
file 1. Full BEL language documentation can be found
in the OpenBEL Portal (http://www.openbel.org/content/
bel-lang-language).
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Results

Example data sets

To highlight the utility of RCR for generating testable
mechanistic hypotheses from gene expression profiling
data, we provide examples of the application of Whistle
v1.0 to three published gene expression data sets using
a network compiled from the BEL Large Corpus as the
prior knowledge source. Each data set was analysed to
identify significantly differentially expressed probe sets
(see Methods) and the resulting data analysed using
Whistle and the Large Corpus KAM (Table 2). These ex-
amples demonstrate the use of Whistle to identify potential
molecular upstream controllers of observed differential
gene expression from experimental data sets.

Example 1 - high fat diet diabetes model

We applied Whistle to data set E-MEXP-1755, the liver
gene expression profile from mice fed a high fat diet, a
model for impaired glucose tolerance and type 2 dia-
betes [31]. For this data set, C57BL/6 ] male mice were
fed either a high fat diet or standard chow for 15 weeks,
and RNA was extracted from the liver for profiling [24].

Mapping of measurements from the Affymetrix MG-
430 2.0 microarray supported the generation of 606
HYPs for evaluation from the mouse Large Corpus
KAM (see Additional file 2), with a population of 7594
unique downstream RNA abundance nodes. The 372
probe sets meeting criteria for significant differential ex-
pression between high fat diet and normal diet mouse
livers map to 193 unique RNA abundance nodes in the
population (Table 2).

Of the 606 HYPs evaluated from the mouse Large Cor-
pus KAM, 13 met the standard richness and concordance
p-value significance thresholds of 0.1 (Table 3) (see Ran-
domized data sets for threshold selection). For example,
the HYP bp(GO: “response to endoplasmic reticulum stress”)
is inferred to be significantly increased for the high fat data
set (Figure 3). This mechanism, representing the biological
process defined by the GO term ‘response to endoplasmic
reticulum stress; is causally upstream from 27 measured
RNA abundances in the mouse-orthologized Large Corpus
KAM (possible). Of the 193 significantly increased or
decreased RNA abundance nodes resulting from high fat

Table 2 Overview of data sets used for examples
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diet, seven map to the bp(GO:“response to endoplasmic
reticulum stress”) HYP, representing a significant enrich-
ment in endoplasmic reticulum stress-regulated RNA
abundance nodes (richness p =3.5E-6). Of these seven,
six are in a direction consistent with increased response
to endoplasmic reticulum stress, and one is consistent
with decreased response. Thus, the direction increased is
assigned to the bp(GO:“response to endoplasmic reticulum
stress”) HYP. The concordance p-value, which evaluates the
directions of the observed states of the downstream nodes
against the predictions made by the HYDP, is 6.3E-2, sup-
porting the inference of increased bp(GO:‘response to
endoplasmic reticulum stress”).

Several of the significant mechanisms inferred by
Whistle are consistent with the dietary changes and in-
sulin resistance associated with this mouse model.
Increased food intake (path(SDIS:“food intake”)) and de-
creased response to starvation (bp(GO:“response to star-
vation”)) are consistent with the dietary differences
characterizing the high-fat diet group and the control
group. Circulating insulin levels are reported to be in-
creased in the high fat diet fed mouse model [31], and
several HYPs representing increased insulin (p(MGI:
Ins2), a(CHEBI:insulin), and a(SCHEM: “serum insulin”))
are inferred by Whistle. Increased response to endoplas-
mic reticulum stress (bp(GO:“response to endoplasmic
reticulum stress”) is consistent with reports of ER stress
induction in mouse obesity models [32]. The decreased
transcriptional activity of Foxa2 protein (¢script(p(MGI:
Foxa2))) is consistent with the reported inactivation of
Foxa2 in insulin-resistant mouse models [33].

Several of the highly relevant HYPs inferred by Whistle
for the E-MEXP-1755 data set represent the abundance or
activity of proteins for which the corresponding RNAs are
not differentially expressed. These mechanisms would not
be identified by standard overrepresentation analyses
based on the functions of the proteins encoded by the dif-
ferentially expressed genes. For example, insulin (repre-
sented by the HYPs p(MGI:Ins2), a(CHEBI:insulin), and a
(SCHEM : “serum insulin”)) is inferred increased, but probe
sets for the mouse insulin genes Ins1 and Ins2, and the in-
sulin receptor gene Insr do not meet criteria for differen-
tial expression. Insulin is produced by the pancreas, and is

Data Set Reference PMID  Species Platform Perturbation  Significant Population State Evaluated Significant
probe sets changes HYPs HYPs
E-MEXP-1755 19196459 Mouse MG-430 2.0 High fat diet 372 7594 193 606 13
GSE2638 16617158 Human HG-U133A TNF 557 6644 330 593 58
GSE17785 22570710 Human  HG-U133 Plus 2.0 GDC-0941 3410 7500 1126 603 45
(PI3K inhibitor)

Probe sets were considered significantly differential if average abundance > = 32, fold change > = 1.3, and adjusted p-value < = 0.05. The population size is defined
as the number of unique measured RNA abundances mapped to HYPs. The number of state changes is defined as the number of differential RNAs in the popula-
tion. Mechanisms were evaluated as HYPs if at least four measured RNAs are downstream nodes. HYPs were considered significant if both richness p <= 0.1 and

concordance p<=0.1.
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Table 3 Significant HYPs for mouse high fat diet data set (E-MEXP-1755)

Mechanism Direction Correct Richness Concordance Ambiguous Contra Possible Observed
a(SCHEM:"”serum insulin”) 1 13 2.1E-04 1.1E-02 0 3 228 16
path(SDIS:“food intake”) 1 16 2.0E-07 2.6E-02 0 6 244 22
p(MGL:Ins2) 1 5 1.3E-03 3.1E-02 0 0 33 5
a(CHEBL:insulin) 1 5 3.6E-03 3.1E-02 0 0 41 5
kin(p(PFM:“Akt Family”)) 1 5 8.4E-03 3.1E-02 0 0 50 5
path(SDIS:"lung adenocarcinoma”) 1 8 4.0E-04 5.5E-02 0 2 108 10
tscript(complex(NCM:"AP-1 Complex”)) 1 8 1.2E-02 5.5E-02 0 2 172 10
a(CHEBIl:androgen) 1 1 84E-04 59E-02 0 4 233 15
bp(GO:"response to endoplasmic reticulum stress”) 1 6 3.5E-06 6.3E-02 0 1 27 7
bp(GO:"response to oxidative stress”) -1 4 3.1E-02 6.3E-02 0 0 47 4
tscript(p(MGl:Foxa2)) -1 6 3.6E-02 6.3E-02 0 1 122 7
a(CHEBI:glucocorticoid) -1 6 8.3E-02 6.3E-02 0 1 148 7
bp(GO:"response to starvation”) -1 7 44E-04 9.0E-02 0 2 90 9

Thirteen HYPs meet both richness and concordance thresholds of p <= 0.1 for data set E-MEXP-1755. Five mechanisms meet more stringent p < 0.05 thresholds

(in bold).

not expected to be regulated by gene expression in the
liver. Similarly, the HYP representing the transcriptional
activity of Foxa2, tscript(p(MGIl:Foxa2)), is inferred de-
creased, but the Foxa2 RNA (probe set 1422833 _at) is not
differentially expressed. Foxa2 is an insulin-regulated liver
transcription factor whose activation leads to oxidation
of fatty acids and secretion of triacyglycerols, and whose
impairment has been implicated in diabetes [34]. Foxa2
regulation by insulin occurs via phosphorylation [33],

consistent with the lack of observed regulation of Foxa2
RNA.

Example 2 - TNF treatment of human microvascular
endothelial cells

We applied Whistle to a gene expression profile of the re-
sponse of human microvascular endothelial cells to TNF.
This data set (GSE2638) was generated by stimulating
HMEC-1 cells with 2 ng/ml TNF for 5 hours [25]). In
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Figure 3 Scored HYP example. The HYP with the upstream node bp(GO:response to endoplasmic reticulum stress”), scored for the E-MEXP-1755
high fat diet data set. This network contains 27 measured RNA abundance nodes (possible), represented as ovals coloured by differential expres-
sion (red - significantly increased, green - significantly decreased, grey — no significant change). A total of seven differentially expressed RNAs
mapped to the network (observed), including six supporting increased mechanism activity (correct) and one supporting decreased activity (contra,
marked with an ‘X’ on the edge).
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endothelial cells, TNE, a potent mediator of inflammatory
signalling, acts through its cognate receptors to initiate
downstream signalling, including activation of the tran-
scription factor NF-kB, resulting in increased transcription
of cell surface receptors involved in leukocyte adhesion
[35-37].

Mapping of measurements from the Affymetrix U133A
microarray supported the generation of 593 HYPs from
the human Large Corpus KAM (see Additional file 2),
with a population of to 6644 unique downstream RNA
abundance nodes. The 557 probe sets meeting criteria for
significant differential expression between TNF stimulated
and untreated cells map to 330 unique RNA abundance
nodes in the population.

Of the 593 HYPs evaluated from the human Large
Corpus KAM, 58 met the standard richness and concord-
ance p-value significance thresholds of 0.1. The top 20
significant mechanisms as ranked by the concordance
statistic are shown in Table 4. These significant mecha-
nisms include several molecules and processes canonically
associated with TNF signalling. Transcriptional activity of
NE-kB complex (tscript(complex(PFH: “Nfkb Complex”))) is
inferred increased, consistent with the complex’s role as a
key mediator of TNF-induced transcription [36]. TNF re-
duces endothelial cell lifespan [38], consistent with the in-
ferred increase of replicative cell aging (bp(GO: “replicative

Page 9 of 14

cell aging”)). TNF activates p38 MAPK in endothelial cells
[37], and increased kinase activity of p38 MAPK (kin(p
(PFH:‘p38 MAPK Family”))) is inferred by Whistle.
Interestingly, while the inferred increases of lipopolysac-
charide (a(CHEBILlipopolysaccharide)) bacterial infection
(path(SDIS:“bacterial infection”)) seem biologically im-
plausible to occur during the 5 hour TNF treatment used
to generate the data set, these mechanisms are aligned
with reports that LPS and TNF activate very similar tran-
scriptional responses in endothelial cells [39]. A HYP
representing TNF itself was not evaluated, as TNF is not
connected to sufficient downstream RNA abundance
nodes in the Large Corpus KAM.

Example 3 - PI3K inhibitor treatment of human breast
epithelial cells
We applied Whistle to data set GSE17785, the gene ex-
pression profile of human breast epithelial cells treated
with a PI3K inhibitor. For this data set, a clone of cell line
MCF10A with a knock-in of the activating PIK3CA muta-
tion H1047R was treated with either the PI3K inhibitor
GDC-0941 or the vehicle DMSO for 4 hours [26]. The
phosphatidylinositol 3-kinase (PI3K) signalling pathway is
a key mediator of cell survival and proliferation [40].
Mapping of measurements from the Affymetrix U133
Plus 2.0 microarray supported the generation of 603 HYPs

Table 4 Top 20 significant HYPs for TNF data set (GSE2638)

Mechanism Direction Correct Richness Concordance Ambiguous Contra Possible Observed
tscript(complex(NCH:“Nfkb Complex”)) 1 69 6.2E-25 9.2E-16 2 5 417 76
path(SDIS:"bacterial infection”) 1 34 1.6E-10 1.0E-09 0 1 211 35
bp(GO:"replicative cell aging”) 1 33 3.1E-19 1.18-07 0 3 121 36
P(PFH:"IFNA Family”) 1 25 4.0E-12 4.0E-07 0 1 105 26
a(CHEBLlipopolysaccharide) 1 26 1.8E-06 7.6E-06 0 3 225 29
tscript(complex(NCH:"AP-1 Complex”)) 1 19 2.1E-04 2.0E-05 0 1 167 20
path(SDIS:"tissue damage”) 1 19 1.2E-03 2.0E-05 0 1 191 20
a(SCHEM:"Dietary Lipid") 1 14 1.0E-07 6.1E-05 0 0 51 14
a(SCHEM:Allergens) 1 17 4.5E-08 7.2E-05 0 1 80 18
bp(GO:angiogenesis) 1 20 6.7E-09 2.4E-04 0 3 115 23
P(HGNCAGT) 1 17 4.0E-06 3.6E-04 0 2 117 19
tscript(p(HGNCTP63)) 1 17 1.2E-05 3.6E-04 0 2 126 19
Kin(p(PFH:"PRKC Family")) 1 17 4.2E-04 3.6E-04 0 2 163 19
kin(p(PFH:"MAPK p38 Family")) 1 14 6.8E-09 4.9E-04 0 1 49 15
a(SCHEM:Tetradecanoylphorbol acetate”) 1 16 2.5E-04 6.6E-04 0 2 144 18
bp(GO:“response to hypoxia”) 1 49 7.8E-05 9.1E-04 1 22 943 72
path(SDIS:"Photo-oxidative Stress”) 1 10 3.6E-06 9.8E-04 0 0 34 10
a(CHEBI"arachidonic acid”) 1 15 2.6E-07 1.2E-03 0 2 80 17
tscript(p(HGNCMEOX2)) -1 17 8.6E-10 1.3E-03 0 3 79 20
a(SCHEM:"Oxidized Low Density Lipoprotein”) 1 17 1.3E-04 1.3E-03 0 3 161 20

Fifty-eight HYPs met richness and concordance thresholds of p <= 0.1 for data set GSE2638; the top twenty significant HYPs, as ranked by concordance
are shown.
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from the human Large Corpus KAM (see Additional
file 1), with a population of 7500 unique downstream
RNA abundance nodes. The 3410 probe sets meeting cri-
teria for significant differential expression between PI3K
inhibitor-treated and DMSO-treated cells map to 1126
unique RNA abundance nodes in the population.

Of the 603 mechanisms evaluated from the human
Large Corpus KAM, 45 met the standard richness and
concordance p-value significance thresholds of 0.1, in-
cluding decreased PI3K complex activity (kin(complex
(NCH:“p85/p100 PI3Kinase Complex”))) and several
mechanisms canonically associated with inhibition of
PI3K signalling, e.g., increased activity of FOXO tran-
scription factors FOXO1, FOX03, and FOXO4 (tscript
(p(HGNC:FOXO01)), tscript(p(HGNC:FOXO3)), tscript(p
(HGNC:FOX04))); decreased AKT kinase activity (kin(p
(PFH:“AKT Family”))), and decreased insulin signalling
(a(SCHEM:“serum insulin”)) [40]. The top 20 significant
mechanisms as ranked by the concordance statistic are
shown in Table 5.

Randomized data sets

Random data are not expected to produce a biological sig-
nal. To further investigate the significance of the mecha-
nisms inferred by Whistle, we generated a set of 1,000
matched random data sets for each example data set and
compared the Whistle results to those for the matched
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real data. These random data sets were generated such
that the population was the same as the matched example
data set and that the total number of significantly in-
creased and decreased RNAs in the randomized data
matched that of the real data set.

We used the random data Whistle results to guide the
selection of a generally applicable threshold for richness
and concordance p-values to use to identify significant
HYPs, minimizing false positive and false negative sig-
nificant HYPs. Whistle results for the randomized data
sets supported the selection of 0.1 as a standard thresh-
old for richness and concordance p-values. Applying
thresholds of p < = 0.1 for both richness and concordance
to all three example data sets and their matched random
data yields a median number of significant HYPs in-
ferred for the 1,000 random data sets equal to 5-10% of
the number of HYPs inferred for the corresponding real
data at the same threshold (Table 6, Figure 4). Thus, we
expect this threshold to yield less than 10% false positive
inferred HYPs for most data sets. While selection of a
more stringent p-value threshold such as 0.05 reduced
the number of HYPs meeting significance criteria in the
random data sets, it resulted in false negatives, i.e., the
loss of several biologically relevant mechanisms. Specific-
ally, lowering the p-value threshold from 0.1 to 0.05 for
the high fat diet data set resulted in the loss of eight of the
thirteen HYPs including increased bp(GO: response to

Table 5 Top 20 significant HYPs for the PI3K inhibitor data set (GSE17785)

Mechanism Direction Correct Richness Concordance Ambiguous Contra Possible Observed
a(CHEBIlapatinib) 1 21 1.5E-03 4.8E-07 0 0 72 21
tscript(p(HGNCFOXO1)) 1 43 22E-05 7.0E-06 0 11 208 54
tscript(p(HGNC:FOXO3)) 1 34 1.6E-10 34E-05 0 8 103 42
a(SCHEM:Hydrocortisone) 1 41 24E-07 4.1E-05 0 12 177 53
a(CHEBl:estradiol) -1 36 14E-03 7.8E-05 0 10 199 46
a(SCHEM:“serum insulin”) -1 46 1.5E-07 8.8E-05 0 16 217 62
kin(p(PFH:"PRKC Family") -1 26 33E-02 1.5E-03 0 8 166 34
a(CHEBI"nitric oxide”) -1 29 8.2E-03 1.7E-03 0 10 178 39
path(SDIS:lung adenocarcinoma”) -1 20 1.3E-02 2.0E-03 0 5 106 25
bp(MESHPP:"Menstrual Cycle”) 1 18 5.2E-03 2.2E-03 0 4 84 22
a(CHEBI:camptothecin) -1 23 31804 53E-03 0 8 m 31
P(HGNCAGT) -1 23 1.1E-03 5.3E-03 0 8 119 31
tscript(p(HGNC:FOX0O4)) 1 7 5.6E-03 7.8E-03 0 0 16 7
tscript(p(HGNC:SPS)) 1 17 3.2E-03 8.5E-03 0 5 81 22
a(CHEBIl:androgen) -1 35 8.0E-04 8.8E-03 0 17 226 52
bp(GO:“response to heat”) -1 39 1.2E-05 9.2E-03 0 20 229 59
path(SDIS:"viral infection”) 1 42 3.3E-08 1.2E-02 0 23 223 65
kin(complex(NCH:"p85/p110 PI3Kinase Complex”)) -1 22 2.5E-06 1.5E-02 0 9 89 31
kin(p(PFH:"AKT Family”)) -1 14 7.7E-05 1.5E-02 1 4 51 19
a(CHEBI:haloperidol) -1 6 24E-02 1.6E-02 0 0 16 6

Forty-five HYPs met both richness and concordance p < = 0.1 thresholds for data set GSE17785. The top twenty HYPs, as ranked by concordance are shown.
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Table 6 HYPs meeting significance criteria in matched real and randomized data sets

Richness and TNF PI3K inhibitor High fat diet
concordance p-value Random Real Ratio Random Real Ratio Random Real Ratio
threshold

0.2 13 94 14% 20 81 25% 7 33 21%

0.15 9 84 11% 12 66 18% 4 25 16%

0.1 3 58 5% 4 45 9% 1 13 8%

0.05 1 41 2% 1 29 3% 0 5 0%

0.01 0 24 0% 0 14 0% 0 0 N/A

0.005 0 21 0% 0 6 0% 0 0 N/A

For each example data set (TNF, PI3K inhibitor, and high fat diet), 1000 matched random data sets were generated. The number of HYPs meeting significance
criteria at each p-value threshold is indicated, for random data the median number of significant mechanisms is shown.
BOLD indicates the 0.1 p-value threshold applied to analysis of the three example data sets.

endoplasmic reticulum stress”), decreased bp(GO:“response
to starvation”), and decreased tscript(p(MGI:Foxa2)). As
the mechanisms represented by these HYPs are highly
biologically relevant for the high fat data set (see Example
1), we chose to apply the relatively permissive p<= 0.1
richness and concordance evaluation statistic threshold.

Bias in evaluation statistics by HYP size

We further evaluated the richness and concordance sta-
tistics by examining bias of both metrics to the number
of downstream RNAs (possible) in the HYP within the
randomized data sets. Because these data sets do not
contain true biological signal, the correlation of either
metric with the HYP size can be used to examine the ex-
pected bias.

Richness

Minimal correlation between richness and HYP size
(possible) was observed in the randomized data (Pearson
correlation coefficient —0.125; see Additional file 3). This
weak degree of correlation suggests that the HYP size
has minimal influence on richness.

Concordance

A higher level of correlation between concordance
and HYP size was observed in the randomized data
(Pearson correlation coefficient —0.457; see Additional
file 3: Figure S5).

To correct this bias, we fit a LOESS curve to the log
concordances from a subset of the randomized data
matching the example data sets (n=180,300 HYP scores)
and computed an adjusted concordance measure by sub-
tracting the fit from the log raw concordance. This correc-
tion reduced the overall correlation of concordance to the
HYP size (possible) in each of the three example data sets
(see Additional file 3: Figure S7). The Spearman correl-
ation of the top 50 HYPs by concordance versus adjusted
concordance was 0.80, 0.97, and 0.92 for the High Fat Diet
(E-MEXP-1755), TNF (GSE2638), and PI3K Inhibitor
(GSE17785) data sets, respectively. The corrected con-
cordance values had minimal effect on the ranking of the
top HYPs by concordance in the three example data sets.

Moreover, limiting the HYPs to those which are associ-
ated with a minimum number of differentially expressed
RNAs removes much of the concordance bias in the
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Figure 4 Numbers of significant HYPs at different richness and concordance thresholds in randomized data sets. Boxplot showing the
number of HYPs (mechanisms) meeting the specified richness and concordance threshold across 1,000 randomized data sets. The number of
significant HYPs at each threshold for the matching real data is plotted for comparison in green. (A) High Fat Diet, (B) TNF treatment, (C)
PI3K inhibitor.
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randomized data. Concordance evaluates the consistency
of the direction of the significant RNA expression changes
with the HYP sub-network and thus is most relevant when
applied to HYPs which have several significantly chan-
ging RNAs. The richness statistic is used to evaluate if
the number of differentially expressed RNAs for a given
mechanism is significant. In practice, concordance is
critically evaluated only for those mechanisms for which
at least four downstream RNAs are differentially expressed
(observed), as this number is the minimum required for
concordance to meet the 0.1 threshold. In the randomized
data sets, only about 20% of total scored HYPs have at
least four observed. Limiting to these scores reduces the
correlation coefficient between concordance and possible
in the randomized data from -0.457 to -0.181 (see
Additional file 3: Figure S6). While the concordance bias
is significant, it has limited impact on the use of concord-
ance to filter the HYPs to a list of interesting mechanisms
for a data set or to use concordance to rank the most in-
teresting HYPs. Given the limited influence of the con-
cordance bias within the range of interest, we have not
implemented correction of concordance in Whistle.

Discussion

RCR is a reverse engineering algorithm that reasons
from observed effects to potential causes, transforming
lists of differentially expressed genes into mechanistic
hypotheses. The use of a knowledge base structured as a
directed, causal network provides RCR with some key
advantages over other analysis techniques relying on
prior knowledge: (1) RCR does not rely on the assump-
tion that changes in RNA expression are equivalent to
changes in the activity of the corresponding protein, (2)
the structuring of gene sets as networks (‘HYPs’) allows
evaluation of genes up- and down-regulated by the same
mechanism as a cohesive, causally consistent mechan-
ism, and (3) flexibility to generate HYP networks for
evaluation from the knowledge base network, poten-
tially combining related upstream nodes to a single HYP
or dividing HYPs based on knowledge context.

The integration of qualitative causal relationships in
Reverse Causal Reasoning fundamentally distinguishes it
from other techniques in which gene expression profil-
ing data is interpreted via over-representation analysis of
functionally related sets of genes. The HYP networks
assessed by RCR group measurable quantities based on a
shared upstream controller, and specify the direction of
control for each measurable quantity. Gene sets for over-
representation analysis derived from pathway maps such as
KEGG [4] or gene ontology (GO) annotation [5], differ
sharply from the HYPs used by RCR in that the genes
within a gene set are not related by a specified common
regulator. Gene sets derived from experimental data (e.g.,
L2L, [9]) are more similar to mechanism networks because
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they are selected by a common cause (the perturbation in
the experiment) but they generally do not express the
causal information in a single structure. The incorporation
of this causal information allows RCR to assess genes
both up- and down-regulated by a controller as a com-
mon mechanism, and evaluate the causal consistency of
the network against the observed data using the con-
cordance metric.

RCR provides a qualitative assessment of significance
of a mechanism, ideal for exploratory analyses to provide
qualitative hypotheses about molecular mechanisms con-
necting the perturbation (e.g., disease or drug treatment)
to the observed gene expression. In contrast, Network
Perturbation Amplitude (NPA) methods, which use the
same network structure as RCR to evaluate mechanisms,
provide quantitative comparison of the activity of interest-
ing mechanisms between data sets [21]. The RCR scores
and evaluation metrics do not indicate relative strength of
activation or inhibition of a mechanism, only the direction
and significance. HYPs with lower richness and concord-
ance p-values are more likely to be biologically relevant.
We found that filtering to p-values below 0.1 typically
results in a reasonable set of mechanisms for further man-
ual evaluation, with an acceptably low level of false posi-
tives. Of note, HYPs with a relatively small number of
downstream RNAs (possible) are intrinsically biased to-
wards less significant p-values than larger HYPs due to
the smaller sample size.

RCR shares a limitation with other analysis approaches
that require prior knowledge that only those mechanisms
or pathways that are represented in the body of prior know-
ledge can be inferred to be active. For example, the Whistle
analysis of the TNF data set (Example 2) did not infer TNF
itself to be significant. TNF is not connected to sufficient
downstream RNA abundance nodes in the Large Corpus
KAM, thus no HYP representing TNF was evaluated. The
knowledge base used for the example data sets, the Large
Corpus KAM, is significantly smaller than the knowledge
base that Selventa routinely uses with this algorithm. The
species-orthologized Large Corpus KAM generates ap-
proximately 600 mechanism networks. In contrast, the full
Selventa knowledge base permits evaluation of more than
2000 mechanisms, and contains more downstream ele-
ments for each mechanism. We selected the Large Corpus
KAM to use here because it is publically available and suffi-
ciently large for demonstration purposes.

The derivation of HYP networks from a larger causal
network provides two immediate logical extensions to
RCR. First, individual HYP networks can be causally
connected within the larger network (KAM). Each HYP
represents a node in the KAM, thus HYPs that meet sig-
nificance criteria can be joined through causal relationships
in the KAM to generate more complex explanatory net-
works. For example, for the PI3K inhibitor treatment data
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set, decreased PI3K activity (kin(complex(NCH: p85/p110
PI3Kinase Complex”))), decreased AKT kinase activity (kin
(p(PFH:"AKT Family”))), and increased activity of FOXO
transcription factors FOXO1, FOXO3, and FOXO4 (¢script
(p(HGNC:FOXO01)), tscript(p(HGNC:FOXO03)), tscript(p
(HGNC:FOX04))) can be causally joined. Second, while
Whistle is designed to create and score very simple HYP
networks from a larger network, HYPs representing more
complex networks can be derived from the KAM and eval-
uated by RCR. For example, algorithms could be created to
generate HYPS representing transcriptional motifs like sets
of genes co-regulated by multiple transcription factors, or
signalling pathway motifs like a ligand and receptor and
their combined set of downstream RNA targets.

Conclusions

RCR, a reverse engineering algorithm, provides mechan-
istic explanations for molecular profiling data sets, redu-
cing data complexity and providing hypotheses to guide
follow-up experimentation. This approach of identifying
upstream causes that can explain the data offers some
advantages over methods that map differential entities to
gene ontology categories or pathway maps, because it does
not rely on the assumption that changes in RNA expres-
sion leads to comparable changes in active protein.

To identify potential explanations for a set of differen-
tial measurements obtained by comparison of two sam-
ple groups, this algorithm evaluates small networks
representing biological mechanisms. These small net-
works are comparable to gene sets, but differ in their
network structure that incorporates the direction of
causal influence (increase or decrease) of the mechanism
on the measured quantity. This network structure en-
ables both evaluations incorporating the direction of in-
fluence and the possibility to link multiple significant
networks into a larger explanatory network.

Whistle, an implementation of RCR focused on the
interpretation of gene expression data that uses prior
knowledge in BEL format, is available at (https://github.
com/Selventa/whistle).

Additional files

Additional file 1: BEL term and namespace abbreviations.

Additional file 2: Evaluated HYPs for the TNF (HG- U133A), PI3K
inhibitor (HG- U133 Plus 2.0), and high fat diet (MG-430 2.0 Array)
data sets.

Additional file 3: Figure S5. Evaluation of richness correlation with
HYP size. Scatter plot (left) and boxplot (right) of richness versus HYP size
(possible) for randomized data matched to the example data sets.
Pearson correlation coefficient = -0.125. S6. Evaluation of concordance
correlation with HYP size. Scatter plot (top left) and boxplot (top right) of
concordance versus HYP size (possible) for randomized data matched to
the example data sets. Pearson correlation coefficient = -0.457. Boxplot
(bottom right) shows reduced correlation for scores limited to those HYPs
with at least four RNA expression changes; correlation coefficient -0.181.
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S7. Evaluation of LOESS fit-adjusted concordance for example data sets.
Boxplots for concordance versus HYP size (possible) for the High Fat Diet,
TNF, and PI3K inhibitor example data sets (left) and adjusted concordance
(right).
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