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Abstract

Background: The analysis of gene expression from time series underpins many biological studies. Two basic forms
of analysis recur for data of this type: removing inactive (quiet) genes from the study and determining which
genes are differentially expressed. Often these analysis stages are applied disregarding the fact that the data is
drawn from a time series. In this paper we propose a simple model for accounting for the underlying temporal
nature of the data based on a Gaussian process.

Results: We review Gaussian process (GP) regression for estimating the continuous trajectories underlying in gene
expression time-series. We present a simple approach which can be used to filter quiet genes, or for the case of
time series in the form of expression ratios, quantify differential expression. We assess via ROC curves the rankings
produced by our regression framework and compare them to a recently proposed hierarchical Bayesian model for
the analysis of gene expression time-series (BATS). We compare on both simulated and experimental data showing
that the proposed approach considerably outperforms the current state of the art.

Conclusions: Gaussian processes offer an attractive trade-off between efficiency and usability for the analysis of
microarray time series. The Gaussian process framework offers a natural way of handling biological replicates and
missing values and provides confidence intervals along the estimated curves of gene expression. Therefore, we
believe Gaussian processes should be a standard tool in the analysis of gene expression time series.

Background
Gene expression profiles give a snapshot of mRNA con-
centration levels as encoded by the genes of an organ-
ism under given experimental conditions. Early studies
of this data often focused on a single point in time
which biologists assumed to be critical along the gene
regulation process after the perturbation. However, the
static nature of such experiments severely restricts the
inferences that can be made about the underlying dyna-
mical system.
With the decreasing cost of gene expression microar-

rays time series experiments have become commonplace
giving a far broader picture of the gene regulation pro-
cess. Such time series are often irregularly sampled and
may involve differing numbers of replicates at each time
point [1]. The experimental conditions under which

gene expression measurements are taken cannot be per-
fectly controlled leading the signals of interest to be cor-
rupted by noise, either of biological origin or arising
through the measurement process.
Primary analysis of gene expression profiles is often

dominated by methods targeted at static experiments, i.
e. gene expression measured on a single time-point, that
treat time as an additional experimental factor [1-6].
However, were possible, it would seem sensible to con-
sider methods that can account for the special nature of
time course data. Such methods can take advantage of
the particular statistical constraints that are imposed on
data that is naturally ordered [7-12].
The analysis of gene expression microarray time-series

has been a stepping stone to important problems in sys-
tems biology such as the genome-wide identification of
direct targets of transcription factors [13,14] and the full
reconstruction of gene regulatory networks [15,16]. A
more comprehensive review on the motivations and
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methods of analysis of time-course gene expression data
can be found in [17].

Testing for Expression
A primary stage of analysis is to characterize the activity
of each gene in an experiment. Removing inactive or
quiet genes (genes which show negligible changes in
mRNA concentration levels in response to treatments/
perturbations) allows the focus to dwell on genes that
have responded to treatment. We can consider two
experimental set ups. Firstly, we may be attempting to
measure the absolute level of gene expression (for exam-
ple using Affymetrix GeneChip microarrays). In this
case a quiet gene would be one whose expression level
is indistinguishable from noise. Alternatively, we might
be may be hybridizing two samples to the same array
and quantifying the ratio of the expression levels. Here a
quiet gene would be one which is showing a similar
response in both hybridized samples. In either case we
consider such expression profiles will consist principally
of noise. Removing such genes will often have benign
effects later in the processing pipeline. However, mista-
ken removal of profiles can clearly compromise any
further downstream analysis. If the temporal nature of
the data is ignored, our ability to detect such phenom-
ena can be severely compromised. An example can be
seen in Figure 1, where the temporal information is
removed from an experimental profile by randomly
reordering its expression samples. Disregarding the tem-
poral correlation between measurements, hinders our
ability to assess the profile due to critical inherent traits
of the signal being lost such as the speed and scale of
variation.
Failure to capture the signal in a profile, irrespective

of the amount of embedded noise, may be partially due
to temporal aggregation effects, meaning that the coarse
sampling of gene expression or the sampling rates do
not match the natural rates of change in mRNA

concentrations [18]. For these reasons, the classification
scheme of differential expression in this paper is focused
on reaching a high true positive rate (TPR, sensitivity or
recall ) and is to serve as a pre-processing tool prior to
more involved analysis of time-course microarray data.
In this work we distinguish between two-sample testing
and experiments where control and treated cases are
directly-hybridized on the microarray (For brevity, we
shall refer to experiments with such setups as one-sam-
ple testing). The two-sample setup is a common experi-
mental setup in which two groups of sample replicates
are used [13,19]; one being under the treatment effect of
interest and the other being the control group, so to
recover the most active genes under a treatment one
may be interested in testing for the statistical signifi-
cance of a treated profile being differentially expressed
with respect to its control counterpart. Other studies
use data from a one-sample setup [11,12], in which the
control and treated cases are directly hybridized on a
microarray and the measurements are normalized log
fold-changes between the two output channels of the
microarray [20], so the analogous goal is to test for the
statistical significance of having a non-zero signal.
A recent significant contribution in regards to the esti-

mation and ranking of differential expression of time-
series in a one-sample setup is a hierarchical Bayesian
model for the analysis of gene expression time-series
(BATS) [11,12] which offers fast computations through
exact equations of Bayesian inference, but makes a con-
siderable number of prior biological assumptions to
accomplish this (cf. Simulated data).

Gene Expression Analysis with Gaussian Processes
Gaussian processes(GP) [21,22] offer an easy to imple-
ment approach to quantifying the true signal and noise
embedded in a gene expression time-series, and thus
allow us to rank the differential expression of the gene
profile. A Gaussian process is the natural generalisation
of a multivariate Gaussian distribution to a Gaussian
distribution over a specific family of functions – a family
defined by a covariance function or kernel, i.e. a metric
of similarity between data-points (Roughly speaking, if
we also view a function as a vector with an infinite
number of components, then that function can be repre-
sented as a point in an infinite-dimensional space of a
specific family of functions and a Gaussian process as an
infinite-dimensional Gaussian distribution over that
space).
In the context of expression trajectory estimation, a

Gaussian process coupled with the squared-exponential
covariance function (or radial basis function, RBF) – a
standard covariance function used in regression tasks –
makes the reasonable assumption that the underlying
true signal in a profile is a smooth function [23], i.e. a

Figure 1 Temporal information removed from the profile of
gene Cyp1b1 in the experimental mouse data. (a) The centred
profile of the gene Cyp1b1 (probeID 1416612_at in the GSE10562
dataset). The blue crosses represent zero-mean hybridised gene
expression in time of measurement (log2 ratios between treatment
and control). (b) The same profile with its timepoints randomised.
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function with an infinite degree of differentiability. This
property endows the GP with a large degree of flexibility
in capturing the underlying signals without imposing
strong modeling assumptions (e.g. number of basis func-
tions) but may also erroneously pick up spurious pat-
terns (false positives) should the time-course profiles
suffer from temporal aggregation. From a generative
viewpoint, the profiles are assumed to have been cor-
rupted by additive white Gaussian noise. This property
makes the GP an attractive tool for bootstrapping simu-
lated biological replicates [24].
In a different context, Gaussian process priors have

been used for modeling transcriptional regulation. For
example in [25], while using the time-course expression
of a-priori known direct targets (genes) of a transcrip-
tion-factor, the authors went one step further and
inferred the concentration rates of the transcription-fac-
tor protein itself and [26] extended the same model for
the case of regulatory repression. The ever-lingering
issue of outliers in time series is still critical, but is not
addressed here as there is significant literature on this
issue in the context of GP regression, which is comple-
mentary to this work.
For example [19,27] developed a probabilistic model

using Gaussian processes with a robust noise model spe-
cialised for two-sample testing to detect intervals of dif-
ferential expression, whereas the present work
optionally focuses on one-sample testing, to rank the
differential expression and ultimately detect quiet/active
genes. Other examples can also be easily applied; [28]
use a Student-t distribution as the robust noise model
in the regression framework along with variational
approximations to make inference tractable, and [29]
employ a Student-t observation model with Laplace
approximations for inference. The standard GP regres-
sion framework is straightforward to use here with a
limited need for manual tweaking of a few hyper-para-
meters. We describe the GP framework, as used here
for regression, in more detail in the Methods section.

Results and Discussion
We apply standard Gaussian process (GP) regression
and the Bayesian hierarchical model for the analysis of
time-series (BATS) on two in-silico datasets simulated
by BATS and GPs, and on one experimental dataset
coming from a study on primary mouse keratinocytes
with an induced activation of the TRP63 transcription
factor, for which a reverse-engineering algorithm was
developed (TSNI: time-series network identification) to
infer the direct targets of TRP63 [13].
We assume that each gene expression profile can be

categorized as either quiet or differentially expressed.
We consider algorithms that provide a rank ordering of
the profiles according to which is most likely to be non-

quiet (or differentially expressed). Given ground truth
we can then evaluate the quality of such a ranking and
compare different algorithms. We make use of receiver
operating characteristic curves (ROC curves) to evaluate
the algorithms. These curves plot the false positive rate
on the horizontal axis, versus the true positive rate on
the vertical axis; i.e. the percentage of the total negatives
(non-differentially expressed profiles) erroneously classi-
fied as positives (differentially expressed) versus the per-
centage of the total positives correctly classified as
positives.
From the output of each model a ranking of differen-

tial expression is produced and assessed with ROC
curves to quantify how well in accordance to each of
the three ground truths (BATS-sampled, GP-sampled,
TSNI-experimental) the method performs. The BATS
model can employ three different noise models, where
the marginal distribution of the error is assumed to be
either Gaussian, Student-t or double exponential respec-
tively. For the following comparisons we plot four ROC
curves, one for each noise model of BATS and one for
the GP. We demonstrate that the ranking of the GP fra-
mework outperforms that of BATS with respect to the
TSNI ranking on the experimental data and on GP-
sampled profiles.

Simulated data
The first set of in-silico profiles are simulated by the
BATS software http://www.na.iac.cnr.it/bats/ in accor-
dance to the guidelines given in [12]. In BATS [11] each
time-course profile is assumed to be generated by a
function expanded in an orthonormal basis (Legendre or
Fourier) plus noise. The number of bases and their coef-
ficients, are estimated with analytic computations in a
fully Bayesian manner. Thus the global estimand for
every gene expression trajectory is the linear combina-
tion of some number of bases whose coefficients are
estimated by a posterior distribution. In addition, the
BATS framework allows various types of non-Gaussian
noise models.
BATS simulation
We reproduce one instantiation of the simulations per-
formed in [11]; specifically, three sets of N = 8000 pro-
files, of n = 11 timepoints and kji = 2 replicates, for i =

1; ..., N, j = 1, ..., n except k2,5,7i = 3, according to the
model defined in [11, sec. 2.2]. In each of the three sets
of profiles, 600 out of 8000 are randomly chosen to be
differentially expressed (labeled as “1” in the ground
truth) and simulated as a sum of an orthonormal basis
of Legendre polynomials with additive i.i.d.(identically
and independently distributed) noise.
The other 7400 non-differentially expressed profiles

(labeled as “0” in the ground truth) are essentially zero

Kalaitzis and Lawrence BMC Bioinformatics 2011, 12:180
http://www.biomedcentral.com/1471-2105/12/180

Page 3 of 13

http://www.na.iac.cnr.it/bats/


functions with additive i.i.d. noise. The three simulated
datasets are induced with different kinds of i.i.d. noise;
respectively, Gaussian N(0, s 2), Student-t distributed
with 5(T(5)) and 3 (T(3)) degrees of freedom. Figure 2
(a, b, c) illustrates the comparison on the BATS-sampled
data with all three kinds of induced noise.
GP simulation
In a similar setup, the second in-silico dataset consists
of 8000 profiles sampled from Gaussian processes, with
the same number of replicates and time-points, among
which 600 were setup as differentially expressed. To
generate a differentially expressed profile, each of the
hyperparameters of the RBF covariance function, namely
the characteristic lengthscale, signal variance and noise

variance (cf. Methods) is sampled from separate
Gamma distributions. The three Gamma distributions
are fitted to sets of their corresponding hyperpara-
meters, which are observed for the true positive profiles
under a near zero FPR during the first test on BATS-
generated profiles. In this way, we attempt to resemble
the behaviour of the BATS-sampled profiles. Table 1
lists the parameters of the three fitted Gamma
distributions.
The other 7400 non-differentially expressed profiles

are simply zero functions with additive white Gaussian
noise of variance equal to the sum of two samples from
the Gamma distribution for the signal variance and the
noise variance. This addition serves to create a non-
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Figure 2 GP vs. BATS on simulated data. ROC curves for the GP and BATS methods on data simulated by BATS induced with (a) Gaussian
noise, (b) Student’s-t with 5 degrees of freedom, (c) Student’s-t with 3 degrees of freedom; and on (d) data simulated by Gaussian processes.
Each panel depicts one ROC curve for the GP method and three for BATS, each using a different noise model indicated by the subscript in the
legend ("G” for Gaussian, “T” for Student’s-t and “DE” for double exponential marginal distributions of error), followed by the area under the
corresponding curve (AUC).
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differentiated profile of comparative scale to the differ-
entiated ones, but nonetheless of completely random
nature. Figure 2(d) illustrates the comparison on the
GP-sampled data.

Experimental data
We apply the standard GP regression framework and
BATS on an experimental dataset coming from a study
on primary mouse keratinocytes with an induced activa-
tion of the TRP63 transcription factor (GEO-accession
number [GEOdataset:GSE10562]), where a reverse-engi-
neering algorithm was developed (TSNI: time-series net-
work identification) to infer the direct targets of TRP63
[13]. In that study, 786 out of 22690 gene reporters
were chosen based on the area under their curves, and
ranked by TSNI according to the probability of belong-
ing to direct targets of TRP63. The ranking list was pub-
lished in a supplementary file available for download
(genome.cshlp.org/content/suppl/2008/05/05/

gr.073601.107.DC1/DellaGatta_SupTable1.xls) and used
here as a noisy ground truth. We pre-process the data
with the robust multi-array average (RMA) expression
measure [30], implemented in the “affy” R-package.
We label the top 100 position of the TSNI ranking as

“1” in the ground truth as they are the most likely to be
direct targets of the TRP63 transcription factor and
because the binding scores (computed as the sum of
-log2 of p-values of all TRP63-binding regions identified
by ChIP-chip experiments) are most densely distributed
amongst the first 100 positions, see Figure 3. Further-
more, in [13] these 100 positions were further validated
by gene set enrichment analysis (GSEA) [31] to check if
their up/down regulation patterns were correlated to
genes that respond to TRP63 knock-downs in general.
In summary, “the top 100 TSNI ranked transcripts are
significantly enriched for the strongest binding sites” [13].
Figure 4 illustrates the comparison on the experimental
data.

Discussion
On BATS-sampled data, Figure 2(a, b, c), we observe
that the change in the induced noise is barely noticeable

in regards to the performances of both methods and
that BATS maintains its stable supremacy over the GP
framework. This performance gap is partially due to the
lack of a robust noise model for the GP (cf. Conclu-
sions). Furthermore, there is a modeling bias in the
underlying functions of the simulated profiles, which
contain a finite small degree of differentiability (maxi-
mum degree of Legendre polynomial is 6). This puts the
GP in a disadvantaged position as it models for
(smooth) infinitely differentiable functions when its cov-
ariance function is a squared exponential. Consequently,
for this simulated dataset the GP is more susceptible to
capturing spurious patterns as they are more likely to lie
within its modeling range, whereas for BATS modeling
the polynomials with a limited degree acts as a safe-
guard against spurious patterns, most of which vary
rapidly in time.
On GP-sampled data, Figure 2(d), we observe the

reversal of the performance gap in favor of the GP fra-
mework while its performance is almost unaffected. The

Table 1 Parameters of the Gamma distributions for sampling the RBF-hyperparameters

Sampling Gamma distribution Γ(a, b)

a (scale) b (shape)

Sampled
RBF-
Hyperparameters

ℓ
2 (characteristic lengthscale) 1.4 5.7

σ 2
f (signal variance) 2.76 0.2

σ 2
n (noise variance) 23 0.008

These are the parameters of the Gamma distributions from which we sample the RBF- hyperparameters. For example, the characteristic lengthscale is sampled
from a Gamma with scale 1.4 and shape 5.7. The hyperparameters are then used in the RBF covariance function to sample/simulate a profile from the Gaussian
process.

Figure 3 Distribution of binding scores along the TSNI ranking.
By inspection, the distribution of the binding scores is mostly dense
along the first 100 positions of the TSNI ranking. The authors in [13]
only selected the top 100 genes and the bottom 200 genes to
search for binding sites and thus showed that the top 100 genes
have more binding sites than the bottom 200 genes.
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GP is still prone to non-differentially expressed profiles
with spurious patterns and differentially expressed pro-
files with excessive noise. However, the limited polyno-
mial degree of BATS proves to be inadequate for many
of the GP-sampled functions and the two BATS variants
with robust noise models (BATST, BATSDE) only allevi-
ate the problem slightly. In Figure 4 we observe the GP
outperforming the Gaussian noise variant of BATS
(BATSG) by a similar degree as in Figure 2(d). The
experimental data are much more complex and appar-
ently the robust BATS variants now offer no increase in
performance. Since the ground truth focuses on the 100
most differentially expressed genes with respect to the
induction of the TRP63 transcription factor, then these
results indicate that the GP method of ranking pre-
sented here indeed highlights differentially expressed
genes and that it naturally features an attractive degree
of robustness against different kinds of noise.

Conclusions
We presented an approach to estimating the continuous
trajectory of gene expression time-series from microar-
ray data through Gaussian process (GP) regression and
ranking the differential expression of each profile via a
log-ratio of marginal likelihoods of two GPs, each one
representing the hypothesis of differential and non-dif-
ferential expression respectively. We compared our
method to a recent Bayesian hierarchical model (BATS)
via ROC curves on data simulated by BATS and GPs
and experimental data. Each evaluation was made on

the basis of matched percentages to a ground truth - a
binary vector which labeled the profiles in a dataset as
differentially expressed or not. The experimental data
were taken from a previous study on primary mouse
keratinocytes and the top 100 genes of its ranking were
used here as the noisy ground truth for the purposes of
assessment. The GP framework significantly outper-
formed BATS on experimental and GP-sampled data
and the results showed that standard GP regression can
be regarded as a serious competitor in evaluating the
continuous trajectories of gene expression and ranking
its differential expression.
This ranking scheme presented here is reminiscent of

the work in [19] on two-sample data (separate time-
course profiles for each treatment), where the two com-
peting hypotheses are represented in a graphical model
of two different generative models connected with a gat-
ing scheme; one where the two profiles of the gene
reporter are assumed to be generated by two different
GPs, and thus the gene is differentially expressed across
the two treatments, and one where the two profiles are
assumed to be generated by the same GP, and thus the
gene is non-differentially expressed. The gating network
serves to switch between the two generative models, in
time, to detect intervals of differential expression and
thus allow biologists to draw conclusions about the pro-
pagation of a perturbation in a gene regulatory network.
Instead, the issue presented in this paper is more basic
and so is the methodology to deal with it. However, we
note that the robust mechanisms against outliers used

Figure 4 GP vs. BATS on experimental data. ROC curves for the GP and BATS methods on experimental data from [13]. As in Figure 2, one
ROC curve and the area under it (AUC) are depicted for the GP method and three for BATS, each using a different noise model indicated by
the subscript in the legend. (a) Ground truth consists of 22690 labels among which only the 786 profiles chosen to be ranked by TSNI (based
on the area under their curves) are labeled as “1”, cf. Experimental data. (b) Same number of labels; here only the top 100 profiles ranked by
TSNI are labeled as “1”.
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in [19,28,29] are complementary to this work and one
should not hesitate to incorporate one into a framework
similar to ours. Practicalities aside, this paper also intro-
duces additional proof that Gaussian processes, naturally
and without much engineering, fit to the analysis of
gene expression time-series and that simplicity can still
be preferred over the ever-increasing – but sometimes
necessary – complexity of hierarchical Bayesian
frameworks.

Future work
A natural next step would be to add a robust noise
mechanism in our framework. In this regard, fine exam-
ples can be found in [19,28,29]. Finally, an interesting
biological question is about the potential periodicity of
the underlying signal in a gene expression profile. In
this regard a different of kind stationary covariance
function, the periodic covariance function [22], can fit a
time-series generated by an periodic process and thus
its lengthscale hyperparameter can be interpreted as its
cycle.

Methods
As we mentioned earlier, analysing time-course microar-
ray data by means of Gaussian process (GP) regression
is not a new idea (cf. Background). In this section we
review the methodology to estimating the continuous
trajectory of a gene expression by GP regression and
subsequently describe a likelihood-ratio approach to
ranking the differential expression of its profile. The fol-
lowing content is based on the key components of GP
theory as described in [21,22].

The Gaussian process model
The idea is to treat trajectory estimation given the
observations (gene expression time-series) as an interpo-
lation problem on functions of one dimension. By
assuming the observations have Gaussian-distributed
noise, the computations for prediction become tractable
and involve only the manipulation of linear algebra
rules.
A finite parametric model
We begin the derivation of the GP regression model by
defining a standard linear regression model (a more con-
crete example of such a model is for j = (1, x, x2)⊤, i.e. a
line mapped to a quadratic curve)

f (x) = φTw, y = f (x) + ε, (1)

where gene expression measurements in time y = {yn}n
= 1..N are contaminated with white Gaussian noise and
the inputs (of time) are mapped to a feature space F =
{j (xn)

⊤}n = 1..N. Furthermore, if we assume the noise to
be i.i.d. (identically and independently distributed) as a

Gaussian with zero mean and variance σ 2
n

∼ N (0, σ 2
n ), (2)

then the probability density of the observations given
the inputs and parameters (data likelihood) is Gaussian-
distributed

p(y|x,w) =
n∏
i=1

p(yi|xi,w)

=
n∏
i=1

1√
2πσ 2

n

exp

(
−(yi − φ�

i w)
2

2σ 2
n

)

=
1

(2π)n/2|�n|1/2
×

exp
(

−1
2
(y − �w)��−1(y − �w)

)
= N (�w,�n),

(3)

Where �n = σ 2
n I.

Introducing Bayesian methodology
Now turning to Bayesian linear regression, we wish to
encode our initial beliefs about the parameters w by
specifying a zero mean, isotropic Gaussian distribution
as a prior over the parameters

w ∼ N (0, σ 2
w). (4)

By integrating the product of the likelihood × prior
with respect to the parameters, we get the marginal like-
lihood

p(y|x) =
∫

dw p(y|x,w)p(w), (5)

which is jointly Gaussian. Hence the mean and covar-
iance of the marginal are

〈y〉 = 〈�w〉 + 〈ε〉 = 0 (6)

〈yy�〉 = �〈ww�〉�� + 〈εε�〉
= σ 2

w��� + σ 2
n I

= Kf + σ 2
n I = Ky

(7)

p(y|x) = 1

(2π)n/2|Ky|1/2
exp

(
−1
2
y�K−1

y y
)

= N (y;0,Ky).

(8)

By computing the marginal likelihood in eq. (8), we
can compare or rank different models, without fear of
overfitting on the data, or having to explicitly apply a
regulariser to the likelihood; the marginal likelihood
implicitly penalises too complex models [21, sec. 5.4].
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Notice in eq. (7) how the structure of the covariance
implies that choosing a different feature space F results
in a different Ky. Whatever Ky is, it must satisfy the fol-
lowing requirements to be a valid covariance matrix of
the GP:

• Kolmogorov consistency, which is satisfied when
Kij = K(xi, xj) for some covariance function K, such
that all possible K are positive semidefinite (y⊤ Ky ≥
0).
• Exchangeability, which is satisfied when the data
are i.i.d.. It means that the order in which the data
become available has no impact on the marginal dis-
tribution, hence there is no need to hold out data
from the training set for validation purposes (for
measuring generalisation errors, etc.).

Definition of a Gaussian process
More formally, a Gaussian process is a stochastic process
(or collection of random variables) over a feature space,
such that the distribution p (y(x1), y(x2),..., y(xn)) of a
function y(x), for any finite set of points {x1, x2, ..., xn}
mapped to that space, is Gaussian, and such that any of
these Gaussian distributions is Kolmogorov consistent.
If we remove the noise term σ 2

n I from Ky in eq. (7) we
can have noiseless predictions of f(x) rather than y(x) = f
(x) + ε. However, when dealing with finite parameter
spaces Kf may be ill-conditioned (cf. sec. SE derivation),
so the noise term guarantees that Ky will have full rank
(and an inverse). Having said that, we now formulate
the GP prior over the latent function values f by rewrit-
ing eq. (8) as

p(f|x) = 1

(2π)n/2|Kf |1/2
×

exp
(

−1
2
(f − m)�K−1

f (f − m)
)
,

or f|x ∼ GP (f;m(x), Kf (xi, xj)),

(9)

where the mean function (usually defined as the zero
function) and the covariance function respectively are

m(x) = 〈f (x)〉, (10)

Kf (xi, xj) = 〈(f (xi) − m(xi))(f (xj) − m(xj))〉. (11)

The squared-exponential kernel
In this paper we only use the univariate version of the
squared-exponential (SE) kernel. But before embarking
on its analysis, the reader should be aware of the exist-
ing wide variety of kernel families, and potential combi-
nations of them. A comprehensive review of the

literature on covariance functions is found in [21, chap.
4].
Derivation and interpretation of the SE kernel
In the GP definition section we mentioned the possibi-
lity of an ill-conditioned covariance matrix. In the case
of a finite parametric model (as in eq. (1)), Kf can have
at most as many non-zero eigenvalues as the number of
parameters in the model. Hence for any problem of any
given size, the matrix is non-invertible. Ensuring Kf is
not ill-conditioned, involves adding the diagonal noise
term to the covariance. In an infinite-dimensional fea-
ture space, one would not have to worry about this
issue as the features are integrated out and the covar-
iance between datapoints is no longer expressed in
terms of the features but by a covariance function. As
demonstrated in [22, sec.45.3] and [21, sec.4.2.1], with
an example of a one-dimensional dataset, we express
the covariance matrix Kf in terms of the features F

Kij = σ 2
w

∑
h

φh(xi)φh(xj), (12)

then by considering a feature space defined by radial
basis functions and integrating with respect to their cen-
ters h, eq. (12) becomes

K(xi, xj) = lim
N→∞

σ 2
w

N

N∑
h=1

φh(xi)φh(xj)

= S
∫ ∞

−∞
dhφh(xi)φh(xj)

= S
∫ ∞

−∞
dh exp

(
−(xi − h)2

2r2

)
exp

(
−(xj − h)2

2r2

)

=
√

πr2S exp

(
−(xi − xj)

2

4r2

)
,

(13)

where one ends up with a smooth (infinitely differenti-
able) function on an infinite-dimensional space of (radial
basis function) features. Taking the constant out front as
a signal variance σ 2

f and squaring the exponential gives
rise to the standard form of the univariate squared-
exponential (SE) covariance function. The noisy univari-
ate SE kernel – the one used in this paper is

Ky(xi, xj) = σ 2
f exp

(
−(xi − xj)

2

2�2

)
+ σ 2

n δij. (14)

The SE is a stationary kernel, i.e. it is a function of
d = xi - xj which makes it translation invariant in time.
δij is the Kronecker delta function which is unity when i
= j and zero otherwise and l2 is the characteristic
lengthscale which specifies the distance beyond which
any two inputs (xi, xj) become uncorrelated. In effect,
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the lengthscale l2 governs the amount that f varies along
the input (time). A small lengthscale means that f varies
rapidly along time, and a very large lengthscale means
that f behaves almost as a constant function, see
Figure 5. This parameterisation of the SE kernel
becomes very powerful when combined with hyperpara-
meter adaptation, as described in a following section.

Other adapted hyperparameters include the signal var-
iance σ 2

f which is a vertical scale of function variation

and the noise variance σ 2
n (introduced in eq. (2)) which

is not a hyperparameter of the SE itself, but unless we
consider it as a constant in the noisy case, its adaptation
can give different explanations about the latent function
that generates the data.

Figure 5 Gaussian process fit on expression profile of gene Cyp1b1 in the experimental mouse data. Figure 5: A GP fitted on the
centred profile of the gene Cyp1b1 (probeID 1416612_at in the GSE10562 dataset) with different settings of the lengthscale hyperparameter ℓ2.
The blue crosses represent zero-mean hybridised gene expression in time (log2 ratios between treatment and control) and the shaded area
indicates the point-wise mean plus/minus two times the standard deviation (95% confidence region). (a) Mean function is constant as ℓ2 ® ∞

(0 inverse lengthscale in eq. (14)) and all of the observed data variance is attributed to noise (σ 2
n ). (b) The lengthscale is manually set to a local-

optimum large value (ℓ2 = 30) and thus the mean function roughly fits the data-points. The observed data variance is equally attributed to
signal (σ 2

f ) and noise (σ 2
n ). Consequently, the GP features high uncertainty in its predictive curve. (c) The lengthscale is manually set to a local-

optimum small value (ℓ2 = 15.6) and thus the mean function tighly fits the data-points with high certainty. The interpretation from the
covariance function in this case is that the profile contains a minimal amount of noise and that most of the observed data variance is attributed
to the underlying signal (σ 2

f ). (d) The contour of the corresponding LML function plotted by an exhaustive search of ℓ2 and SNR values. The
two main local-optima are indicated by the green dots and a third optimum that corresponds to the 1st panel appears almost as flat in the
contour and its vicinity encompasses the whole lengthscale axis for very small values of SNR (i.e. given that SNR ≈ 0, the lengthscale is trivial).
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One can also combine covariance functions as long as
they are positive-definite. Examples of valid combined
covariance functions include the sum and convolution of
two covariance functions. In fact, eq. (14) is a combined
sum of the SE kernel with the covariance function of
isotropic Gaussian noise.

Gaussian process prediction
To interpolate the trajectory of gene expression at non-
sampled time-points, as illustrated in Figure 5, we infer
a function value f* at a new input (non-sampled time-
point) x*, given the knowledge of function estimates f at
known time-points x. The joint distribution p(f*, f ) is
Gaussian, hence the conditional distribution p(f*| f ) is
also Gaussian. In this section we consider predictions
using noisy observations; we know the noise is Gaussian
too, so the noisy conditional distribution does not differ.
By Bayes’ rule

p(f∗|y) = p(f∗, y)
p(y)

, (15)

where the Gaussian process prior over the noisy
observations is

p(y) = N (0, cov(y)) = N (0,Kf (x, x) + σ 2
n I) (16)

Predictive equations for GP regression
We start by defining the mean function and the covar-
iance between a new time-point x* and each of the ith

known time-points, where i = 1..N

mi = m(xi), (17)

(k∗)i = Kf (xi, x∗). (18)

For every new time-point a new vector k* is concate-
nated as an additional row and column to the covar-
iance matrix KC to give

KC+1 =
[
[KC] [k∗]
[k�

∗ ] [κ]

]
, (19)

where C = N..N* is incremented with every new k*
added to KC. By considering a zero mean function and
eq. (19), the joint distribution p(f*, y) from eq. (15) can
be computed[

y
f∗

]
∼ N

(
0,

[
Kf (X,X) + σ 2I Kf (X,X∗)
Kf (X∗,X) Kf (X∗,X∗)

])
. (20)

Finally, to derive the predictive mean and covariance
of the posterior distribution from eq. (15) we use the
Gaussian identities presented in [21, sec.A.2]. These are

the predictive equations for GP regression of a single
new time-point

p(f∗|y) ∼ N (f∗;m∗, var(f∗)), where (21)

m∗ = k�
∗ (Kf + σ 2

n I)
−1y, (22)

var(f∗) = k(x∗, x∗) − k�
∗ (Kf + σ 2

n I)
−1k∗, (23)

and Kf = Kf (x, x). These equations can be generalised
easily for the prediction of function values at multiple
new time-points by augmenting k* with more columns
and k(x*, x*) with more components, one for each new
time-point x*.

Hyperparameter learning
Given the SE covariance function, one can learn the
hyperparameters from the data by optimising the log-
marginal likelihood function of the GP. In general, a
non-parametric model such as the GP can employ a
variety of kernel families whose hyperparameters can be
adapted with respect to the underlying intensity and fre-
quency of the local signal structure, and interpolate it in
a probabilistic fashion (i.e. while quantifying the uncer-
tainty of prediction). The SE kernel allows one to give
intuitive interpretations of the adapted hyperparameters,
especially for one-dimensional data such as a gene
expression time-series, see Figure 5 for interpretations
of various local-optima.
Optimising the marginal likelihood
In the context of GP models the marginal likelihood
results from the marginalisation over function values f

p(y|x) =
∫

df p(y|f, x)p(f|x), (24)

where the GP prior p(f|x) is given in eq. (9) and the
likelihood is a factorised Gaussian y|f ∼ N (f, σ 2

n I). The
integral can be evaluated analytically [21, sec. A.2] to
give the log-marginal likelihood (LML, it is common
practice to take the log of the antiderivative for the sake
of numerical stability, as it yields a sum instead of a pro-
duct)

ln p(y|x, θ) = −1
2
yTK−1

y y − 1
2
ln |Ky| − n

2
ln 2π ,

where Ky = Kf + σ 2
n I

(25)

We notice that the marginal here is explicitly condi-
tioned on θ (hyperparameters) to emphasise that it is a
function of the hyperparameters through Kf. To opti-
mise the marginal likelihood we take the partial deriva-
tives of the LML with respect to the hyperparameters
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∂

∂θ
ln p(y|x, θ) = 1

2
αT ∂Ky

∂θ
α − 1

2
tr

(
K−1
y

∂Ky

∂θ

)

=
1
2
tr

(
(αα� − K−1

y )
∂Ky

∂θ

)
,

whereα = K−1
y y and

∂Ky

∂θ
=

(
∂Ky

∂�
,

∂Ky

∂σ 2
f

,
∂Ky

∂σ 2
n

)�

=

(
Kf

(xi − xj)
2

�3
, exp

(
−(xi − xj)

2

2�2

)
, δij

)�
.

(26)

We use scaled conjugate gradients [32] – a standard
optimisation scheme – to maximise the LML.

Ranking with likelihood-ratios
Alternatively, one may choose to go “fully Bayesian” by
placing a hyper-prior over the hyperparameters p(θ |H),
where H represents some type of model, and compute a
posterior over hyperparameters

p(θ |y, x,H) =
p(y|x, θ ,H)p(θ |H)

∫dθp(y|x, θ ,H)p(θ |H)
, (27)

based on some initial beliefs, such as the functions
having large lengthscales, and optimise the marginal
likelihood so that the optimum lengthscale tends to a
large value, unless there is evidence to the contrary.
Depending on the model H, the integral in eq. (27) may
be analytically intractable and thus one has to resort to
approximating this quantity [33] (e.g. Laplace approxi-
mation) or using Markov Chain Monte Carlo (MCMC)
methods to sample from the posterior distribution [34].
In the case where one is using different types of mod-

els (e.g. with different number of hyperparameters), a
Bayesian-standard way of comparing between such two
models is through Bayes factors [11,19,23] – ratios of
the integral quantities in eq. (27)

K =
∫dθ1p(y|x, θ1,H1)p(θ1|H1)
∫dθ2p(y|x, θ2,H2)p(θ2|H2)

, (28)

where the models H usually represent two different
hypotheses, namely H1 - the profile has a significant
underlying signal and thus it is truly differentially
expressed and H2 - there is no underlying signal in the
profile and the observed gene expression is just the
effect of random noise. The ranking is based on how
likely H1 in comparison to H2, given a profile.
In this paper we present a much simpler – but effec-

tive to the task – approach to ranking the differential
expression of a profile. Instead of integrating out the
hyperparameters, we approximate the Bayes factor with
a log-ratio of marginal likelihoods (cf. eq. (25))

ln
(
p(y|x, θ2)
p(y|x, θ1)

)
, (29)

with each LML being a function of different instantia-
tions of θ. We still maintain hypotheses H1 and H2 that
represent the same notions explained above, but in our
case they differ simply by configurations of θ. Specifi-
cally, on H1 the hyperparameters are fixed to θ1 = (∞,
0; var(y))⊤ to encode a function constant in time (l 2 ®
∞), with no underlying signal (σ 2

f = 0), which generates
a time-series with a variance that can be solely explained
by noise (σ 2

n = var(y)). Analogously, on H2 the hyper-
parameters θ2 are initialised to encode a function that
fluctuates in accordance to a typical significant profile
(e.g. ℓ2 = 20), with a distinct signal variance that solely
explains the observed time-series variance (σ 2

f = var(y))

and with no noise (σ 2
n = 0).

Local optima of the log-marginal likelihood (LML) function
These two configurations correspond to two points in
the three-dimensional function that is the LML, both of
which usually lie close to local-optimum solutions. This
assumption can be verified, empirically, by exhaustively
plotting the LML function for a number of profiles, see
Figure 5. In case the LML contour differs for some pro-
files, more initialisation points should be used to ensure
convergence to the maximum-likelihood solution.
Because the configuration of the second hypothesis (no
noise, σ 2

n = 0) is an extremely unlikely scenario, we let
θ2 adapt to a given profile by optimising the LML func-
tion, as opposed to keeping it fixed like θ1.
In most cases the LML (eq. (25)) is not convex. Multi-

ple optima do not necessarily pose a threat here;
depending on the data and as long as they have similar
function values, multiple optima present alternative
interpretations on the observations. To alleviate the pro-
blem of spurious local optimum solutions however, we
make the following observation: when we explicitly
restrict the signal variance hyperparameter (σ 2

f ) to low

values during optimisation, we also implicitly restrict the
noise variance hyperparameter (σ 2

f ) to large values. This
occurs as the explanation of the observed data variance
(var(y)) is shared between the signal and noise variance
hyperparameters, i.e. var(y) � σ 2

f + σ 2
n . This dependency

allows us to treat the three-dimension optimisation pro-
blem as a two-dimension problem, one of lengthscale ℓ

2 and one of signal-to-noise ratio SNR =
σ 2
f

σ 2
n

without fear

of missing out an optima.
Figure 5 illustrates the marginal likelihood as a func-

tion of the characteristic lengthscale ℓ
2 and the SNR. It

features two local optima, one for a small lengthscale
and a high SNR, where the observed data are explained
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with a relatively complex function and a small noise var-
iance, and one optimum for a large lengthscale and a
low SNR, where the data are explained by a simpler
function with high noise variance. We also notice that
the first optimum has a lower LML. This relates to the
algebraic structure of the LML (eq. (25)); the first term
(dot product) promotes data fitness and the second
term (determinant) penalizes the complexity of the
model [21, sec.5.4]. Overall, the LML function of the
Gaussian process offers a good fitness-complexity trade-
off without the need for additional regularisation.
Optionally, one can use multiple initialisation points
focusing on different non-infinite lengthscales to deal
with the multiple local optima along the lengthscale
axis, and pick the best solution (max LML) to represent
the H1 hypothesis in the likelihood-ratio during the
ranking stage.

Source code
The source code for the GP regression framework is
available in MATLAB code http://staffwww.dcs.shef.ac.
uk/people/N.Lawrence/gp/ and as a package for the R
statistical computing language http://cran.r-project.org/
web/packages/gptk/. The routines for the estimation and
ranking of the gene expression time-series are available
upon request for both languages. The time needed to
analyse the 22690 profiles in the experimental data, with
only the basic two initialisation points of hyperpara-
meters, is about 30 minutes on a desktop running
Ubuntu 10.04 with a dual-core CPU at 2.8 GHz and 3.2
GiB of memory.
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