
SOFTWARE Open Access

BALL - biochemical algorithms library 1.3
Andreas Hildebrandt1,3*, Anna Katharina Dehof1, Alexander Rurainski1, Andreas Bertsch2, Marcel Schumann2,
Nora C Toussaint2, Andreas Moll1, Daniel Stöckel1, Stefan Nickels1,3, Sabine C Mueller1,3, Hans-Peter Lenhof1,
Oliver Kohlbacher2

Abstract

Background: The Biochemical Algorithms Library (BALL) is a comprehensive rapid application development
framework for structural bioinformatics. It provides an extensive C++ class library of data structures and algorithms
for molecular modeling and structural bioinformatics. Using BALL as a programming toolbox does not only allow
to greatly reduce application development times but also helps in ensuring stability and correctness by avoiding
the error-prone reimplementation of complex algorithms and replacing them with calls into the library that has
been well-tested by a large number of developers. In the ten years since its original publication, BALL has seen a
substantial increase in functionality and numerous other improvements.

Results: Here, we discuss BALL’s current functionality and highlight the key additions and improvements: support
for additional file formats, molecular edit-functionality, new molecular mechanics force fields, novel energy
minimization techniques, docking algorithms, and support for cheminformatics.

Conclusions: BALL is available for all major operating systems, including Linux, Windows, and MacOS X. It is
available free of charge under the Lesser GNU Public License (LPGL). Parts of the code are distributed under the
GNU Public License (GPL). BALL is available as source code and binary packages from the project web site at
http://www.ball-project.org. Recently, it has been accepted into the debian project; integration into further
distributions is currently pursued.

Background
Developing programs for structural bioinformatics is a dif-
ficult and often tedious task. Even if the algorithms have
been carefully designed, the programmer has to solve a
variety of complex and recurring problems not fundamen-
tally related to the algorithm at hand, but necessary for
real-world applications. Not only more advanced tasks like
inferring missing atoms or bonds, energy evaluations, or
structural minimization require considerable program-
ming effort that can hardly be repeated for every new pro-
ject, but also the most basic and mundane steps. For
example, many molecular file formats are as hard to parse
correctly as they are to write. To avoid costly and error-
prone re-inventing of the wheel for any new structural
bioinformatics application, two approaches can be ima-
gined: a collection of loosely coupled tools and utilities for
recurring subtasks, or powerful libraries and frameworks
for rapid application development (RAD). Obviously, the

second approach encompasses the first, i.e., creating small,
specialized tools for a pipeline concept is trivial when rely-
ing on such a library. In addition, it allows its users simple
access to the molecular data structures and algorithms
that form building blocks of many algorithmic approaches
and that often require complex implementations. With the
Biochemical Algorithms Library (BALL) [1], we have cre-
ated a versatile C++ class library for structural bioinfor-
matics that is supplemented with a Python interface for
scripting functionality and a number of applications like
the molecular modeling frontend BALLView [2]. BALL
has been used successfully for a large number of projects,
both of our own (e.g. [3-7]) and of external researchers
(for a small selection of recent publications, see e.g.
[8-14]). In recent years, BALL has seen a significant
increase in functionality and substantial useability
improvements. It has been ported to further operating sys-
tems; indeed, it currently supports all major brands. More-
over, BALL has evolved from a commercial product into a
free-of-charge, open source software licensed under the
Lesser GNU Public License (LGPL).

* Correspondence: anhi@bioinf.uni-sb.de
1Center for Bioinformatics Saar, Saarland University, Saarbrücken, Germany
Full list of author information is available at the end of the article

Hildebrandt et al. BMC Bioinformatics 2010, 11:531
http://www.biomedcentral.com/1471-2105/11/531

© 2010 Hildebrandt et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

http://www.ball-project.org
mailto:anhi@bioinf.uni-sb.de
http://creativecommons.org/licenses/by/2.0

Several frameworks for structural bioinformatics have
been reported in the literature; most of them, however,
with a different focus, scope, or intended audience.
Hence, comparison with these projects is difficult in
general. Among those projects, the most similar in
scope and functionality are commercial packages like
the suites from Schrödinger [15] or the Chemical Com-
puting Group’s Molecular Operating Environment
(MOE) [16]. While these packages typically focus on
sophisticated graphical user interfaces for concrete mod-
elling tasks, they also provide powerful scripting inter-
faces aimed at developers. Notable open source projects
in the field include Biopython [17], PyMOL [18] (which
provides extensive scripting functionality apart from the
molecular viewer), CDK [19], MESHI [20], JOELib [21],
the EGAD Library [22], and StrBioLib [23]. To the best
of our knowledge, BALL offers the widest range of func-
tionality for rapidly and robustly developing applications
in structural bioinformatics, it is growing fast and can
be easily extended. It addresses users of the implemen-
ted techniques as well as designers of completely new
approaches. An overview of BALL’s design can be found
in Figure 1.
A full description of BALL’s functionality would fall well

outside of the scope of this note; the current version (1.3
at the time of writing) contains more than 730 classes and
more than 700,000 lines of code (a comprehensive over-
view can be found in the online documentation at http://
www.ball-project.org). Instead, we want to briefly point
out some of BALL’s most important features, particularly

highlighting those that have been added since [1]. In addi-
tion, we will show some ways in which the use of such an
RAD framework can simplify the life of scientists and
developers.

Implementation
BALL has been implemented in C++, with some exten-
sions written in Python.

Results
From the start of its development in 1996, BALL’s
design principles have been wide functionality, ease of
use, openness, and robustness.

Wide functionality
To demonstrate BALL’s rich functionality, we describe a
typical application - namely docking - and point out
how BALL simplifies its implementation. In this case, a
large amount of time and code is devoted to the pro-
blem of importing the docking partners into suitable
structural representations and preparing them for
further use. Typically, this preparation consists in read-
ing the molecules from diverse file formats, checking
their content, adding missing information, running the
actual docking algorithm, and, finally, analysing its
result.
Reading the data doubtlessly belongs to the most

recurring tasks in molecular software development.
BALL supports a rich variety of molecular structure for-
mats. While the previously published version [1] only

Figure 1 Overview of the structure of BALL. The diagram shows the general layout of the structure of BALL, where every box symbolizes one
library or fundamental layer.

Hildebrandt et al. BMC Bioinformatics 2010, 11:531
http://www.biomedcentral.com/1471-2105/11/531

Page 2 of 5

http://www.ball-project.org
http://www.ball-project.org

supported the molecular file formats PDB and MOL2,
version 1.3 additionally reads and writes MOL, HIN,
XYZ, KCF, and SD files. Besides molecular files, it also
supports a variety of other data sources, like DCD,
DSN6, GAMESS, JCAMP, SCWRL, and TRR. Export to
most of these formats is possible as well. Apart from
importing molecules from external sources, the new ver-
sion also offers rich functionality for generating and
editing molecules. For instance, given only the amino
acid sequence and the corresponding torsion angles,
BALL’s PeptideBuilder creates a 3D structure of
that peptide. More general molecular structures, e.g., of
ligands, can be generated from SMILES-expressions or
programmatically by explicitly inserting atoms and
bonds.
The next step - not only in docking but in all applica-

tions processing molecular structures - is to validate the
structures and to prepare the data for the following
tasks. Some atoms, in particular, hydrogens, are often
missing, and structural information such as connectivity
or bond orders are often incorrect or even missing. For
proteins, DNA, and RNA, BALL can automatically infer
much of the missing information from an extensible
fragment database. This can also be used for validating
given structures. A rotamer library allows the user to
easily determine a protein’s most likely side-chain con-
formations or to easily switch between several rotameric
states. Both, fragment database and rotamer library have
been significantly improved since BALL’s first publica-
tion. Other molecules with a more diverse chemistry,
such as ligands, require more sophisticated approaches
to infer missing structural information. BALL’s new
BondOrderAssigner [5] heuristically determines all
possible bond order assignments for a given ligand
sorted by their probability. Favorable 3D conformations
can be achieved by employing BALL’s new QuickOp-
timizer, a randomized MDSimulator/Minimizer in
combination with several force fields (see below). Also
among the new features are a kekulizer and an aromati-
city processor.
Once the input has been prepared, the two core pro-

blems in protein docking are the generation of docking
poses and their evaluation. For both tasks, BALL offers
rich functionality. The first is facilitated by the prepara-
tion functionality (as described above) and BALL’s
transformation processors. Here, BALL’s selection
mechanisms also simplify matters by allowing, for
instance, the selection of certain parts of the molecule
through easily formulated expressions. Via a selector
class, certain predicates like element type can be used as
a selection filter. Additionally, BALL now provides an
expression class which allows selecting subsets of objects
by given SMILES and SMARTS strings as well as by
BALL predicates.

The second task often amounts to energy evaluations
and/or the checking of certain criteria. The former ver-
sion of BALL provided the force field classes CHARMM
[24] and AMBER [25]. In the current version, an imple-
mentation of the Merck Molecular Force Field
(MMFF94) [26], a fully parameterized force field that
allows handling of virtually all kinds of organic mole-
cules, has been added as well as some non-differentiable
scoring functions.
Force fields can not only be used for scoring: BALL’s

minimizer and molecular dynamics classes can be com-
bined with all of the implemented force fields. Minimi-
zers and simulation classes also support selection,
allowing the user to freely specify a set of movable
atoms from all atoms used for force field computation.
This is useful in a variety of contexts, e.g. when esti-
mated hydrogen positions have to be reoptimized. Since
the last version, we have greatly extended the minimiza-
tion capabilities [27], now offering standard (steepest
descent, conjugate gradient) and the best currently
known methods (L-BFGS and shifted L-VMM).
In addition to the features described above, version 1.3

has been greatly extended with further functionality. For
instance, secondary structure prediction and hydrogen-
bond detection [28] are now available.
In summary, BALL has developed into a powerful tool

for RAD covering fundamental functionality as well as
complex applications like molecular docking and drug
design. Due to its modular architecture, all classes and
algorithms can be combined in a building block manner
to easily implement even complex methods.

Ease of use
One measure of the usefulness of an RAD platform is
the time it saves compared to developing the functional-
ity from scratch. Hence, ease of use and a shallow learn-
ing curve are important goals for any large-scale
framework. On the other hand, after some time of
familiarization with the library, users will usually want
to fine-tune the methods, choose detailed parameters, or
even exchange parts of the algorithms. Supporting these
advanced users bears the risk of conflicting with the
ease-of-use principle, for instance, by confusing the user
with a wide array of tuneable options. BALL has been
very carefully designed to address both groups of users,
experts and novices alike, simultaneously. For example,
most algorithms implemented in BALL accept a wide
range of options to fine-tune their behavior, but all of
these come with sensible defaults. In this way, a novice
user can just instantiate a class and use it successfully,
while experts can adapt the options to their individual
needs. Similarly, the versatile Python interface offered by
BALL appeals to both groups of users, albeit in different
ways: while novice users and non-programming experts

Hildebrandt et al. BMC Bioinformatics 2010, 11:531
http://www.biomedcentral.com/1471-2105/11/531

Page 3 of 5

can profit from the easy-to-learn scripting languages,
experts can use it to create powerful scripts.
SIP is used to automatically create python classes for

all relevant C++ classes to allow for the same class
interfaces. The Python class has the same name as the
C++ class, so porting code that uses BALL from C++ to
Python (and vice versa) is usually a trivial task. For
instance, the following C++ code
// read a PDB file
PDBFile file (” test . pdb”);
System S;
file >> S;
file . close ();
// add missing information
// e . g . hydrogens and bonds
FragmentDB fragment_db (” “);
S . apply (fragment_db . normalize_names);
S . apply (fragment_db . add_hydrogens);
S . apply (fragment_db . build_bonds);
// check for charges, bond lengths ,
// and missing atoms
ResidueChecker checker (fragment_db);
S . apply (checker);
// create an AMBER force field
AmberFF FF;
S . deselect ();
FF . setup (S);
Selector selector (” element (H) “);
S . apply (selector);
// optimize the hydrogen ‘ s positions
ConjugateGradientMinimizer minimizer;
minimizer . setup (FF);
minimizer . setEnergyOutputFrequency (1);
minimizer . minimize (50);
// write a PDB File
file . open (” test_out . pdb”, ios : : out);
file << S;
file . close ();
translates to
read a PDB file
file = PDBFile (” test . pdb”)
system = System ()
file . read (system)
file . close ()
add missing information
e . g . hydrogens and bonds
Fragment_db = FragmentDB(” “)
system . apply (fragment_db . normalize_names)
system . apply (fragment_db . add_hydrogens)
system . apply (fragment_db . build_bonds)
check for charges, bond lengths ,
and missing atoms
checker = ResidueChecker (fragment_db)

system . apply (checker)
create an AMBER force field
FF = AmberFF()
system . deselect ()
FF . setup (system)
selector = Selector (” element (H) “)
system . apply (selector)
optimize the hydrogen ‘ s positions
minimizer = ConjugateGradientMinimizer ()
minimizer . setup (FF)
minimizer . setEnergyOutputFrequency (1)
minimizer . minimize (50)
write a PDB File
outfile = PDBFile (” test_out . pdb”, File .MODE_OUT)
outfile . write (system).
outfile . close ()
Since the Python interface is fully integrated into the

molecular viewer and modeling tool BALLView [2], the
effects of the scripts can be visualized directly. Also, the
interface provides a simple way to automatize BALL-
View’s behaviour.
Finally, a number of tutorials guide inexperienced

users through the writing of their first applications.
These tutorials are provided with BALL’s extensive

documentation and have recently been supplemented
with a code library for recurring tasks on our wiki
http://ball-trac.bioinf.uni-sb.de/wiki.

Robustness
Apart from substantially simplifying the creation of
applications, the use of RAD frameworks can also help
greatly in ensuring their correctness and improving their
robustness, since the code in the library has often been
used and tested in a variety of situations by a large
number of people. To improve robustness, BALL
employs a large number of regression tests that are reg-
ularly executed on a number of different platforms. In
this way, it is easy to determine whether a change in
some part of the code will lead to a regression in
another part, or whether a new compiler release, for
instance, will result in different behavior.

Conclusions
The Biochemical Algorithms Library BALL is a compre-
hensive rapid application development framework for
structural bioinformatics. BALL has been carefully
designed to address programming experts as well as
novices. Users can take advantage of BALL’s rich func-
tionality being offered an extensive framework of data
structures and algorithms through both, C++ and the
python scripting interface. A variety of standard struc-
tural bioinformatics algorithms are offered and new
algorithms can be easily added.

Hildebrandt et al. BMC Bioinformatics 2010, 11:531
http://www.biomedcentral.com/1471-2105/11/531

Page 4 of 5

http://ball-trac.bioinf.uni-sb.de/wiki

With the new release 1.3 BALL is complemented with
a number of key features, e.g. additional file formats,
molecular edit-functionality, and new molecular
mechanics force fields. Fundamental parts of BALL’s
core have been rewritten, and the build system was
switched to CMake to increase portability.

Availability and Requirements
Project name: BALL - Biochemical Algorithms Library
Project home page: http://www.ball-project.org
Operating systems: Linux, Windows, and MacOS X
Programming language: C++, python
License: Lesser GNU Public License (LGPL)
Restrictions to use by non-academics: None

Acknowledgements
Over the years, numerous people have contributed to BALL either by
programming, reporting bugs, or sharing their thoughts and suggestions.
The authors want to express their gratitude to all of them. OK acknowledges
financial support from DFG (SFB 685/B1 and SFB 766/A9), AH financial
support from the Intel Visual Computing Institute (IVCI) of Saarland
University, AH and HPL financial support from DFG (BIZ4:1-4).

Author details
1Center for Bioinformatics Saar, Saarland University, Saarbrücken, Germany.
2Center for Bioinformatics Tübingen, Eberhard-Karls-Universität Tübingen,
Germany. 3Intel Visual Computing Institute of Saarland University, Germany.

Authors’ contributions
AH, HPL, and OK are heading the project. All authors contributed
significantly to the project through programming, documenting, and testing.
All authors read and approved the final manuscript.

Received: 17 May 2010 Accepted: 25 October 2010
Published: 25 October 2010

References
1. Kohlbacher O, Lenhof HP: BALL-rapid software prototyping in

computational molecular biology. Bioinformatics 2000, 16:815-824.
2. Moll A, Hildebrandt A, Lenhof HP, Kohlbacher O: BALLView: a tool for

research and education in molecular modeling. Bioinformatics 2006,
22:365-366.

3. Phillips M, Georgiev I, Dehof A, Nickels S, Marsalek L, Lenhof HP,
Hildebrandt A, Slusallek P: Measuring Properties of Molecular Surfaces
Using Ray Casting. Proceedings of 9th International Workshop on High
Performance Computational Biology 2010.

4. Röttig M, Rausch C, Kohlbacher O: Combining structure and sequence
information allows automated prediction of substrate specificities within
enzyme families. PLoS Comput Biol 2010, 6:e1000636.

5. Dehof AK, Rurainski A, Lenhof HP, Hildebrandt A: Automated Bond Order
Assignment as an Optimization Problem. GCB 2009, 201-209.

6. Kneissl B, Leonhardt B, Hildebrandt A, Tautermann CS: Revisiting
automated G-protein coupled receptor modeling: the benefit of
additional template structures for a neurokinin-1 receptor model. J Med
Chem 2009, 52(10):3166-3173.

7. Hildebrandt A, Blossey R, Rjasanow S, Kohlbacher O, Lenhof HP:
Electrostatic potentials of proteins in water: a structured continuum
approach. Bioinformatics 2007, 23(2):e99-103.

8. Brylinski M, Skolnick J: Comparison of structure-based and threading-
based approaches to protein functional annotation. Proteins 2010,
78:118-134.

9. Maghsoudi N, Tafreshi NK, Khodagholi F, Zakeri Z, Esfandiarei M, Hadi-
Alijanvand H, Sabbaghian M, Maghsoudi AH, Sajadi M, Zohri M, Moosavi M,
Zeinoddini M: Targeting enteroviral 2A protease by a 16-mer synthetic

peptide: inhibition of 2Apro-induced apoptosis in a stable Tet-on HeLa
cell line. Virology 2010, 399:39-45.

10. Materese CK, Savelyev A, Papoian GA: Counterion atmosphere and
hydration patterns near a nucleosome core particle. J Am Chem Soc
2009, 131(41):15005-15013.

11. Savelyev A, Papoian GA: Molecular renormalization group coarse-graining
of polymer chains: application to double-stranded DNA. Biophys J 2009,
96(10):4044-4052.

12. Segev E, Wyttenbach T, Bowers MT, Gerber RB: Conformational evolution
of ubiquitin ions in electrospray mass spectrometry: molecular dynamics
simulations at gradually increasing temperatures. Phys Chem Chem Phys
2008, 10(21):3077-3082.

13. Xu J, Jiao F, Berger B: A parameterized algorithm for protein structure
alignment. J Comput Biol 2007, 14(5):564-577.

14. Xu J, Berger B: Fast and accurate algorithms for protein side-chain
packing. Journal of ACM 2006, 53:533-557.

15. Schrödinger LLC: Schrödinger Product Catalog 2010 [http://www.
schrodinger.com/].

16. Chemical Computing Group: MOE: Molecular Operating Environment 2010
[http://www.chemcomp.com/].

17. Chapman B, Chang J: Biopython: Python tools for computational biology.
ACM SIGBIO Newsletter 2000, 20(2):19.

18. DeLano WL: The PyMOL molecular graphics system. 2002 [http://www.
pymol.org].

19. Steinbeck C, Han Y, Kuhn S, Horlacher O, Luttmann E, Willighagen E: The
Chemistry Development Kit (CDK): An open-source Java library for
chemo-and bioinformatics. J Chem Inf Comput Sci 2003, 43(2):493-500.

20. Kalisman N, Levi A, Maximova T, Reshef D, Zafriri-Lynn S, Gleyzer Y,
Keasar C: MESHI: a new library of Java classes for molecular modeling.
Bioinformatics 2005, 21(20):3931-3932.

21. Wegner J: JOELib. 2005 [http://www-ra.informatik.uni-tuebingen.de/
software/joelib/index.html].

22. Chowdry AB, Reynolds KA, Hanes MS, Voorhies M, Pokala N, Handel TM: An
object-oriented library for computational protein design. J Comput Chem
2007, 28(14):2378-2388.

23. Chandonia J: StrBioLib: a Java library for development of custom
computational structural biology applications. Bioinformatics 2007,
23(15):2018.

24. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M:
CHARMM: A program for macromolecular energy, minimization, and
dynamics calculations. Journal of Computational Chemistry 1983,
4(2):187-217.

25. Ponder J, Case D: Force fields for protein simulations. Advances in Protein
Chemistry 2003, 66:27-85.

26. Halgren TA: Merck molecular force field. I. Basis, form, scope,
parameterization, and performance of MMFF94. Journal of Computational
Chemistry 1996, 17(5-6):490-519.

27. Rurainski A, Hildebrandt A, Lenhof HP: A consensus line search algorithm
for molecular potential energy functions. Journal of Computational
Chemistry 2009, 30(9):1499-1509.

28. Kabsch W, Sander C: Dictionary of protein secondary structure: pattern
recognition of hydrogen-bonded and geometrical features. Biopolymers -
Peptide Science Section 1983, 22(12):2577-2637.

doi:10.1186/1471-2105-11-531
Cite this article as: Hildebrandt et al.: BALL - biochemical algorithms
library 1.3. BMC Bioinformatics 2010 11:531.

Hildebrandt et al. BMC Bioinformatics 2010, 11:531
http://www.biomedcentral.com/1471-2105/11/531

Page 5 of 5

http://www.ball-project.org
http://www.ncbi.nlm.nih.gov/pubmed/11108704?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11108704?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16332707?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16332707?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20072606?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20072606?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20072606?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19397376?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19397376?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19397376?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17237112?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17237112?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19731377?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19731377?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20096913?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20096913?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20096913?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19778017?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19778017?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19450476?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19450476?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18688371?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18688371?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18688371?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17683261?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17683261?dopt=Abstract
http://www.schrodinger.com/
http://www.schrodinger.com/
http://www.chemcomp.com/
http://www.pymol.org
http://www.pymol.org
http://www.ncbi.nlm.nih.gov/pubmed/12653513?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12653513?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12653513?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16105898?dopt=Abstract
http://www-ra.informatik.uni-tuebingen.de/software/joelib/index.html
http://www-ra.informatik.uni-tuebingen.de/software/joelib/index.html
http://www.ncbi.nlm.nih.gov/pubmed/17471459?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17471459?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17537750?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17537750?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14631816?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19086059?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19086059?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Implementation
	Results
	Wide functionality
	Ease of use
	Robustness

	Conclusions
	Availability and Requirements
	Acknowledgements
	Author details
	Authors' contributions
	References

