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Abstract

Background: Prognosis is of critical interest in breast cancer research. Biomedical studies suggest that genomic
measurements may have independent predictive power for prognosis. Gene profiling studies have been conducted
to search for predictive genomic measurements. Genes have the inherent pathway structure, where pathways are
composed of multiple genes with coordinated functions. The goal of this study is to identify gene pathways with
predictive power for breast cancer prognosis. Since our goal is fundamentally different from that of existing
studies, a new pathway analysis method is proposed.

Results: The new method advances beyond existing alternatives along the following aspects. First, it can assess
the predictive power of gene pathways, whereas existing methods tend to focus on model fitting accuracy only.
Second, it can account for the joint effects of multiple genes in a pathway, whereas existing methods tend to
focus on the marginal effects of genes. Third, it can accommodate multiple heterogeneous datasets, whereas
existing methods analyze a single dataset only. We analyze four breast cancer prognosis studies and identify 97
pathways with significant predictive power for prognosis. Important pathways missed by alternative methods are
identified.

Conclusions: The proposed method provides a useful alternative to existing pathway analysis methods. Identified
pathways can provide further insights into breast cancer prognosis.

Background
Amongst women in the US, breast cancer is the most
commonly diagnosed malignancy after skin cancer, and
is the second leading cause of cancer deaths after lung
cancer. According to the American Cancer Society, in
2009, an estimated 192,370 new cases of breast cancer
were diagnosed, and 40,610 died from breast cancer.
Women in the US have a 1 in 8 lifetime risk of develop-
ing invasive breast cancer and a 1 in 33 overall chance
of dying from it. Biomedical studies suggest that geno-
mic measurements may have independent predictive
power for breast cancer prognosis [1,2].
Multiple gene profiling studies have been conducted,

searching for genomic measurements with predictive
power for breast cancer prognosis. “Breast cancer has
probably been the carcinoma most intensively studied
by gene expression profiling” [1]. In this article, when
referring to “prognosis”, we limit ourselves to relapse-
free survival. The overall and other types of survival

have different patterns and different genomic bases, and
need to be investigated separately. Examples of gene
expression profiling studies on breast cancer prognosis
include [3], which used Affymetrix U133A microarrays
and identified 97 genes including UBE2C, KPNA2,
TPX2, FOXM1, STK6, CCNA2, BIRC5, and MYBL2.
Ivshina et al. [4] reported similar findings from a con-
current, independent study. Researchers at the Nether-
lands Cancer Institute identified a 70-gene prognostic
signature [5]. Many genes involving the hallmarks of
cancer were included: cell cycle, metastasis, angiogen-
esis, and invasion. This gene signature was then vali-
dated on an independent cohort of 295 patients [6].
References to more studies can be found in [1,2].
When searching for genomic measurements with pre-

dictive power for breast cancer prognosis, it is necessary
to account for the inherent coordination among genes.
Such coordination can be described with the pathway
structure, where pathways are composed of multiple
genes with coordinated biological functions.
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In cancer genomic studies, tremendous effort has been
devoted to pathway based analysis. “Pathway analysis is
a promising tool to identify the mechanisms that under-
lie diseases, adaptive physiological compensatory
responses, and new avenues for investigation” [7]. Com-
pared with individual gene based analysis, pathway
based analysis may lead to results that are more repro-
ducible and more interpretable. Examples of pathway
analysis methods include the gene set enrichment analy-
sis (GSEA) [8], the Globaltest approach [9], the Max-
mean approach [10], and others. We refer to [11-13] for
comprehensive reviews on the subject.
Consider a pathway composed of m genes. Denote

X = (X1, ..., Xm)’ as the gene expressions. Consider
breast cancer relapse-free survival. We refer to the
“Methods” section for detailed descriptions of the data
and model setup. Determining the predictive power
amounts to determining whether there exists a length-m
vector b such that b’X can be used to separate patients
into groups with different survival risks. We first note
that,

(a) Different pathways have different biological func-
tions. Thus, it is reasonable to study each pathway
separately. Among the many pathways, only a few
have predictive power for cancer development.
Among genes within predictive pathways, there are a
subset having small to moderate predictive power,
whereas the remainder are “noisy” genes. Within
each pathway, instead of investigating each Xi sepa-
rately (i.e, the marginal effect of each gene), it is
more sensible to study b’X (i.e, the joint effects of
multiple genes);
(b) Cancer genomic studies often have small sample
sizes, and sizes of gene pathways can be large. When
investigating the joint effects of multiple genes in a
pathway, if the same dataset is used for estimation
of b as well as evaluation of predictive power, the
evaluation can be seriously biased [14].

Ideally, there should be two independent datasets: a
training set and a testing set. b should be generated
using only subjects in the training set. Then predictions
can be made for subjects in the testing set using the
training set estimate, and the predictive power can be
evaluated.
Although there are many existing pathway analysis

methods, they are not suitable for detecting predictive
gene pathways for one or more of the following reasons.
(a) For a specific pathway, they analyze each gene sepa-
rately, and then draw conclusions on the pathway by
combining results on individual genes. Such methods,
including the GSEA and Maxmean, are suitable for
answering “which pathways are enriched with genes that

are marginally differentially expressed”. They cannot
quantify the joint effects of genes in a pathway; (b) They
focus on the model fitting aspect of genes, as opposed
to prediction. When studying one or a small number of
genes, model fitting performance can be a reasonable
proxy for prediction performance. However, when inves-
tigating a moderate to large number of genes, because
of the possibility of overfitting, model fitting perfor-
mance can be a biased proxy for prediction; and (c)
They analyze only a single dataset. Cancer genomic stu-
dies have small sample sizes and a large number of gene
expressions. Results obtained from analysis of a single
dataset may lack reliability [15].
In this article, we propose a new method for detection

of predictive gene pathways. It has the following desirable
features. (a) For each pathway, it uses a single statistical
model to describe the effects of all genes in the pathway.
Thus, it can account for the joint effects of genes; (b) A
penalized approach is used to construct b. The penalized
approach can carry out regularized estimation and gene
selection simultaneously. Adopting the penalized
approach has been motivated by the following considera-
tions. First, when the pathway sizes are larger than or
comparable to the sample size, the penalized approach
can effectively avoid overfitting. Second, even in a predic-
tive pathway, there may still exist noisy genes. The pena-
lized approach can separate predictive genes from noisy
ones and use only predictive genes in the statistical mod-
els. This can lead to better performance than using all
the genes; (c) A random partition is used to split data
into a training set and a testing set. Ideally, the training
and testing sets should come from independent studies.
However, for most cancer genomic studies, it can be dif-
ficult to find studies with a comparable design. For exam-
ple, different studies may use different platforms for
profiling. Estimates generated from a dataset using
cDNA cannot be directly used for prediction for a dataset
using Affymetrix. To make the proposed method broadly
applicable, we use random partitions to “generate” inde-
pendent datasets. To avoid an extreme partition, we will
carry out multiple partitions; (d) The proposed method
can analyze multiple datasets and generate results that
are more reliable than analysis of a single dataset.

Results and Discussion
Data collection and processing
Shen et al. [16] collected data from four breast cancer
prognosis studies, evaluated their designs, and con-
cluded that they are comparable and can be pooled for
meta analysis. In this study, we analyze the same four
datasets. Of note, Shen et al. [16] and the present study
focus on individual genes and gene pathways respec-
tively. Thus, results from the two studies are not directly
comparable.
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We provide brief descriptions of the four studies in
Table 1, and refer to the original publications for more
detailed information. Among the four datasets, two used
cDNA, one used oligonucleotide arrays, and one used
Affymetrix GeneChips for profiling. Considering the
incomparability of different profiling techniques, we can-
not straightforwardly combine the four datasets. Neither
can we use estimates from one dataset to make predic-
tions for subjects in another set. We refer to [15] for
more discussion on this issue.
We process each dataset separately as follows. We

conduct microarray normalization using a lowess nor-
malization for cDNA data and a robust normalization
for Affymetrix data. We impute missing measurements
using the k-nearest neighbors approach. We then nor-
malize gene expressions to have zero median and unit
variance.
We match genes in the four studies using their Uni-

gene Cluster IDs, and identify 2555 genes that are mea-
sured in all four studies.

Construction of gene pathways
For each gene, we search KEGG http://www.genome.ad.
jp/kegg/ for its pathway information. Only genes belong-
ing to known pathways are used in downstream analysis.
Since breast cancer prognosis is studied, we pay special
attentions to “cancer-related” pathways http://www.
sonycsl.co.jp/person/tetsuya/sub2.html. Among the 2555
genes, 711 belong to 169 KEGG pathways. The pathway
sizes range from 1 to 51, with median size 7.

Detection of predictive pathways
When implementing the proposed method, we select the
tuning parameter ln using 3-fold cross validation. We
set the bridge penalization parameter to g = 1/2. For
each dataset and each pathway, B = 100 random parti-
tions are employed to compute the Observed Predictive
Index (OPI) and Permuted Predictive Index (PPI) which
are defined in the “Methods” section. In the multiple
comparison adjustment, we set the target false discovery
rate to q = 0.2. We refer to the “Methods” section for
detailed descriptions of the aforementioned parameters
and measurements.
With the proposed method, we use the separation of

OPI and PPI to measure the predictive power. To gain

more insight, we show representative plots of the OPI
and PPI in Figure 1. For the dataset described in [17],
we select two pathways - the Dentatorubropallidoluysian
atrophy pathway which contains 5 genes and is identi-
fied as predictive, and the Thyroid cancer pathway
which also contains 5 genes and is not predictive. For a
better visualization, we plot the estimated densities,
rather than histograms, in Figure 1. We can see that for
the predictive pathway (left panel), the OPI and PPI are
well separated. However, for the pathway without pre-
dictive power (right panel), the OPI and PPI are almost
completely overlapped.
96 pathways are identified as having predictive power

for breast cancer prognosis. Those pathways have sizes
ranging from 1 to 51, with median size 7. We provide
detailed information, including pathway name, size,
and unadjusted p-value, on the top 20 pathways in
Table 2, and on all the identified pathways in the
Additional File 1.
The glutamate metabolism pathway has the smallest
unadjusted p-value. It contains five genes: GLUD1, GSS,
GCLM, CAD, and glutaminase. Glutamate is a central
junction for interchange of amino nitrogen. It facilitates
both amino acid synthesis and degradation. The meta-
botropic glutamate receptors (Grm) mediate a diverse
array of cellular signaling responses including hormone,
neurotransmitter, chemokine, autocrine, and paracrine
factors. Grm over-expression has been observed in sev-
eral malignancies. Gorski et al. [18] described this over-
expression of Grm in invasive breast cancer. Among the
five genes in the Glutamate metabolism pathway, inter-
rogation of the Comparative Toxigenomics Database
[19] suggests that four of them (all but gene CAD) have
been previously identified as breast cancer susceptibility
genes.
The pathway with the second highest significance is

the Amyotrophic lateral sclerosis (ALS) pathway, which
contains six genes: PPP3CA, KARS, CAT, RAB5A,
GPX1, and BCL2. Searching the Comparative Toxige-
nomics Database suggests that all six genes have been
previously identified as associated with breast cancer
prognosis. Of special interest are gene RAB5A, which is
a member of the RAS oncogene family, and gene CAT,
which has been identified to be associated with breast
cancer via multiple channels.
We have also examined the biological functions of

other identified pathways, and found that many of them
have independent evidences of being associated with
breast cancer prognosis. In particular, among the top
20, a few of them are known hallmarks of cancer,
including the cell cycle pathway (36 genes; rank 6),
apoptosis pathway (27 genes; rank 13), D-Glutamine
and D-glutamate metabolism pathway (2 genes; rank
16), and focal adhesion pathway (49 genes; rank 17). In

Table 1 Breast cancer prognosis studies

Reference Platform Gene Sample

Sorlie et al. [47] cDNA 8102 58

van’t Veer et al. [5] Oligonucleotide 24481 78

Huang er al. [48] Affymetrix 12625 71

Sotiriou et al. [17] cDNA 7650 98

Platform: platforms used for profiling; Gene: number of gene expressions
measured; Sample: sample size.
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addition, among the pathways ranking 21-76, many have
been established as having predictive power, including
the VEGF signaling pathway, Ribosome, MAPK signal-
ing pathway, Insulin signaling pathway, Wnt signaling
pathway, DNA polymerase, and others. The sound bio-
logical basis of identified pathways partly validates the
proposed method.
Among the 73 pathways identified as not having pre-

dictive power is the ErbB signaling pathway, which con-
tains 16 genes. Gene ErbB2 is an oncogene and has
been identified as associated with breast cancer.
There are multiple possible explanations for why the

proposed method does not identify the ErbB signaling
pathway, including for example limitations of the pro-
posed method and the limited data analyzed. Of note,
this pathway cannot be identified using any of the alter-
natives considered in the next subsection.
Interrogation of the remaining 72 pathways does not

suggest any obvious false negatives.

Analysis with alternative methods
To provide a more comprehensive understanding of the
proposed method, we also analyze the same data using
the following three alternatives. With each alternative
method, we first analyze each dataset separately, and

Table 2 Top 20 pathways identified using the proposed
approach

Pathway Size P-value

Glutamate metabolism 5 2.22E-16

Amyotrophic lateral sclerosis (ALS) 6 5.55E-15

Colorectal cancer 19 2.26E-13

Small cell lung cancer 27 1.15E-12

Streptomycin biosynthesis 2 1.95E-12

Cell cycle 36 3.10E-12

Prion disease 4 3.37E-12

Renin-angiotensin system 2 8.99E-12

Nicotinate and nicotinamide metabolism 5 1.13E-11

Circadian rhythm 2 4.24E-11

Glycerophospholipid metabolism 14 4.36E-11

Prostate cancer 20 1.21E-10

Apoptosis 27 4.67E-10

Oxidative phosphorylation 15 7.32E-10

Synthesis and degradation of ketone bodies 2 8.75E-10

D-Glutamine and D-glutamate metabolism 2 1.78E-09

Focal adhesion 49 2.07E-09

Dentatorubropallidoluysian atrophy (DRPLA) 5 2.24E-09

Renal cell carcinoma 17 5.06E-09

Neurodegenerative Disorders 10 5.56E-09

Size: number of genes in the pathway; p-value: unadjusted p-value.

Figure 1 Densities of OPI and PPI. Left panel: the Dentatorubropallidoluysian atrophy pathway, which has predictive power; Right panel: the
Thyroid cancer pathway, which does not have predictive power. Black line: density of OPI; Blue line: density of PPI. Data from [17].
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then conduct meta analysis following a procedure simi-
lar to the one described in the “Methods/Meta analysis”
subsection.
Gene set enrichment analysis
With the GSEA [8], 16 pathways are identified, 7 of
which are also identified with the proposed method.
Detailed information is provided in the Additional File
1. Among the top 20 pathways identified using the pro-
posed method, the GSEA does not identify any.
Maxmean method
3 pathways are identified, all of which are identified by
the proposed method. Among the top 5 pathways iden-
tified using the proposed method, the Maxmean does
not identify any. Among the top 20, the Maxmean iden-
tifies 2. Detailed information on Maxmean identified
pathways is provided in the Additional File 1.
Globaltest method
With the Globaltest [9], 78 pathways are identified, 61
of which are also identified by the proposed method.
More detailed information is provided in the Additional
File 1. Among the top 5 pathways identified using the
proposed method, the Globaltest misses the Streptomy-
cin biosynthesis pathway (rank 5; size 2). Among the
top 20 pathways, the Globaltest also misses the Nicoti-
nate and nicotinamide metabolism pathway (rank 9; size
5) and the Dentatorubropallidoluysian atrophy pathway
(rank 18; size 5). Although at first look, these three
pathways do not seem to be directly linked with breast
cancer prognosis, interrogation of NCBI and CTD [19]
suggests that they in fact contain important, established
breast cancer markers.
Specifically, the Streptomycin biosynthesis pathway

contains two genes: PGM1 (Phosphoglucomutase 1) and
IMPA2 (Inositol(myo)-1(or 4)-monophosphatase 2),
which are involved in the metabolism of carbohydrate,
glucose, inositol, and phosphate. Phosphoglucomutases
(PGM) catalyze the transfer of phosphate between the 1
and 6 positions of glucose. In most cell types, PGM1
isozymes predominate, representing about 90% of total
PGM activity. This gene has been identified as one of
the ER status markers in the diagnosis and prognosis of
breast cancer patients [20]. Gene IMPA2 is also asso-
ciated with ER status in breast cancer patients [21] and
with breast cancer metastasis to bone [22]. It is one of
the breast cancer markers in the Genes-to-Systems
Breast Cancer Database [23].
The Nicotinate and nicotinamide metabolism pathway

contains five genes: ENPP1, ENPP2, NNMT, CD38 and
NP. Gene ENPP1 is overly expressed in breast tumors
[23], and is significantly associated with relapse-free sur-
vival upon tamoxifen treatment for recurrent disease
[24]. In addition, it may be also associated with breast
cancer development in an indirect way: it is a well estab-
lished marker for adult obesity, which is an important

risk factor for breast cancer after menopause. The pro-
tein encoded by gene ENPP2 functions as both a phos-
phodiesterase and a phospholipase, which catalyzes
production of lysophosphatidic acid (LPA) in extracellu-
lar fluids. LPA evokes growth factor-like responses
including stimulation of cell proliferation and chemo-
taxis. This gene product stimulates the motility of tumor
cells and has angiogenic properties, and its expression is
upregulated in several kinds of carcinomas. Expression of
this gene is closely linked to the invasiveness of breast
cancer cells [25]. It also contributes to the initiation and
progression of breast cancer [26]. In addition, overex-
pression of ENPP2 is also associated with development
and progression of prostate cancer and ovarian cancer,
which suggests that it may have a fundamental role in
cancer development. Gene NNMT is a novel Stat3-regu-
lated gene and is a candidate tumor marker for various
kinds of cancers, including lung cancer, colorectal cancer,
bladder cancer and thyroid cancer [27]. This suggests a
potential fundamental role of NNMT in cancer develop-
ment. CD38 is a novel multifunctional ectoenzyme
widely expressed in cells and tissues especially in leuko-
cytes. It also functions in cell adhesion, signal transduc-
tion and calcium signaling. According to CTD [19], this
gene is inferred to be associated with breast neoplasms
via at least eight chemicals: alitretinoin, dacarbazine,
dichlorodiphenyl, dichloroethylene, calcitriol, doxorubi-
cin, fluorouracil, tamoxifen and tretinoin.
The Dentatorubropallidoluysian atrophy (DRPLA)

pathway contains five genes: CASP1, WWp2, CASP3,
INSR, and CASP7. Gene CASP1 encodes a protein
which is a member of the cysteine-aspartic acid protease
(caspase) family. Sequential activation of caspases plays
a central role in the execution-phase of cell apoptosis. It
was identified by its ability to proteolytically cleave and
activate the inactive precursor of interleukin-1, a cyto-
kine involved in processes such as inflammation, septic
shock, and wound healing. It has been shown to induce
cell apoptosis and may function in various developmen-
tal stages. Gene WWP2 encodes a member of the
NEDD4-like protein family. It has been identified as a
prognostic marker for breast cancer [28]. Gene CASP3
also encodes a protein of the caspase family. Studies
have shown that CASP3 is overexpressed in a large pro-
portion of invasive breast carcinomas [29]. Its expression
is correlated with poor prognosis (higher histologic
grade and high proliferation) in breast cancer patients.
It may also affect response of breast tumor cell lines to
chemotherapy. High levels of insulin receptor (INSR)
expression in early stage breast cancers is independently
and significantly associated with more favorable clinical
outcomes [30]. Gene CASP7 also encodes a protein of
the caspase family. Modulation of CASP7 affects
response of breast tumor cell lines to chemotherapy.
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Remarks: differences and overlaps of identified pathways
Among the available pathway analysis methods, the
above three have been most extensively used. Results
presented in the above section suggest that the proposed
approach can identify pathways significantly different
from those obtained using alternatives. Although our
pursuit of the biological interpretation of identified
pathways is far from complete, it is already fairly clear
that alternative approaches may miss important
pathways.
The difference between pathways identified using the

proposed method and those using the GSEA and Max-
mean is dramatic. Such a finding is not surprising. For a
specific pathway, both the GSEA and Maxmean analyze
each gene separately, and then combine the gene-level
analysis results to conclude the pathway-level signifi-
cance. They target finding pathways that are enriched
with genes marginally associated with cancer clinical
outcomes. In contrast, the proposed method evaluates
the joint predictive power of multiple genes in the
pathways.
The proposed approach and Globaltest identify a rela-

tively large number of common pathways. This is also
not surprising. Consider the statistical framework
described in the “Methods/Statistical modeling” subsec-
tion. Denote b as the regression coefficient in the Cox
model, and b0 as the true value of b. The Globaltest
approach tests H0 : b0 = 0 versus HA : b0 ≠ 0. Since a
necessary condition for significant predictive power is
b0 ≠ 0, it is reasonable that the proposed approach and
Globaltest identify common pathways. On the other
hand, the two approaches are not equivalent. Consider
for example a hypothetical scenario with two pathways.
Assume that gene expressions of the two pathways are
identical. For the first pathway, assume b0 =  (≠ 0).
For the second pathway, assume b0 = 2  . Since the
Globaltest puts more emphasis on the magnitude of b0,
the second pathway will be concluded as being more
significant than the first one. In contrast, since the pro-
posed method focuses on whether linear combination of
genes can separate subjects into groups with different
risks, the absolute magnitude is less relevant. Thus, with
the proposed method, the two pathways will have an
equal level of significance, as they should have.

Evaluation of predictive power
We consider evaluating the predictive power of path-
ways identified using different approaches. One possibi-
lity is to follow the proposed approach and use the
separation of the OPI and PPI to define predictive
power. However, since the proposed approach is based
on this separation, comparison of predictive power (of
pathways identified using different approaches) using
the OPI and PPI may not be fair.

As an alternative, we consider the following approach.
(a) For each dataset and each pathway, use expressions
of genes in this pathway and the K-means approach to
separate subjects into two clusters; (b) Compute the log-
rank statistic, which is nonparametric and measures dif-
ference of survival between the two groups, and obtain
the corresponding p-value; (c) For each pathway, use
Fisher’s approach (see the “Methods/Meta analysis” sec-
tion) to combine p-values across the four studies and
generate a meta analysis p-value.
With the approach described above, we investigate

whether it is possible to separate subjects into two
groups with different survival risks based on the pat-
terns of gene expressions. Compared with the proposed
approach, this approach is nonparametric, relies on
weaker assumptions, and is more suitable for comparing
different approaches. However, for a given pathway, all
genes in that pathway - including noisy genes - are uti-
lized. In addition, its nonparametric nature makes it less
efficient. Thus, it is not well suited for detecting predic-
tive pathways.
Gene set enrichment analysis
For the 16 pathways identified by the GSEA, the median
of the meta analysis p-values obtained above is 0.897;
The pathways not identified have a median (of the meta
analysis p-values) of 0.108.
Maxmean method
The three pathways identified by the Maxmean method
have a median p-value of 0.076, whereas those not iden-
tified have a median p-value of 0.143. We compare the
two sets of p-values using the two-sample Wilcoxon
rank sum test and obtain a p-value of 0.155, which sug-
gests no significant difference in predictive power
between pathways identified versus those not identified.
Globaltest method
Pathways identified by the Globaltest have a median
p-value of 0.022, whereas those not identified have a
median p-value of 0.223. The two-sample Wilcoxon
rank sum test yields a p-value < 0.001.
The proposed approach
Pathways identified using the proposed approach have a
median p-value of 0.014, whereas those not identified
have a median p-value of 0.251. The two-sample Wil-
coxon rank sum test yields a p-value < 0.001. The top
20 pathways have a median p-value of 0.007, whereas
those with rank greater than 20 have a median p-value
of 0.170. The two-sample Wilcoxon rank sum test yields
a p-value < 0.001.
Remarks
Evaluation of predictive power suggests that pathways
identified with the GSEA and Maxmean are not “more
predictable” than those not identified. Since these two
approaches focus on the marginal effects of genes, it is
not surprising that they cannot detect pathways where
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genes have joint predictive power. In contrast, pathways
identified with the Globaltest and the proposed
approach have predictive power, whereas those not
identified do not. The satisfactory performance of the
Globaltest is also not surprising, given the considerable
overlap of identified pathways with those of the pro-
posed approach. The performance of the proposed
approach is the strongest among the four approaches.

Limitations and possible extensions
As in many other pathway analysis studies, we focus on
genes with known pathway information. There is a
small chance of excluding important genes. However,
considering that the pathway information is accumu-
lated from numerous independent studies, such a possi-
bility is small. In addition, in the very near future, when
pangenomic arrays become routine, this limitation may
no longer be an issue. A possible alternative that uses
all genes is the hybrid approach, which uses statistical
clusters as a proxy for biological pathways [31]. In this
study, we construct pathways using KEGG. The pathway
structure may be refined if more databases are used. In
some studies, researchers view the pathways as direc-
tional networks. Here, we take a simpler prospective
and view the pathways as clusters of functionally related
genes.
In this study, we conclude statistical significance of

predictive power for a pathway if the separation between
its OPI and PPI is significant. The nonparametric eva-
luation approach described above also assesses statistical
significance. A different but related aspect that is not
investigated is the clinical significance of predictive
power (of identified gene pathways). In biomedical stu-
dies, it has been noted that, although statistical and clin-
ical significance can be closely related, they have
different implications. As in many other pathway analy-
sis studies, we focus on detecting the statistical signifi-
cance. We note that, ultimately, identified pathways
needs to be evaluated in independent clinical settings to
fully separate out the false positives and validate the
true positives. Although our pursuit of the biological
implications of identified pathways clearly shows advan-
tage of the proposed approach, we acknowledge that our
biological pursuit is still far from comprehensive.
Gene pathways are the functional units in this study.

However, given our limited knowledge of pathways, we
have also considered individual genes while pursing bio-
logical interpretations. We provide gene information for
all pathways at the study website [32]. Pursuit of biologi-
cal implications of all genes, however, is beyond scope
of this study.
The goal of this study is to identify, among the many

pathways, which ones have significant predictive power.
Thus, we have investigated each pathway separately and

compared them against each other. A related but differ-
ent statistical question is to build predictive models
using pathways. To solve such a problem, it would be
necessary to consider the joint effects of multiple path-
ways. Since the study goal and statistical techniques
would be significantly from those of the present study,
we defer such investigations to a future study.
Heuristic theoretical justifications are provided in the

“Methods” section. Since simulated gene expression data
is usually significantly different from observed data [33],
we have chosen not to conduct simulations here. Rather,
performance of the proposed approach has been investi-
gated using real data and also theoretically.
In the data analysis, only gene expressions are ana-

lyzed. Biomedical studies suggest that clinical and envir-
onmental risk factors may have additional predictive
power. However, with the four breast cancer microarray
datasets, we have failed to assemble a unified set of clin-
ical and environmental risk factors. This poses a poten-
tial limitation to the study, and accordingly, our findings
need to be explained with cautions. With other datasets,
if clinical and environmental risk factors are available,
the proposed method can be extended as follows. The
first possible extension is to define X = (Xclinical, Xgene),
where Xclinical includes the clinical risk factors and Xgene

contains the gene expressions. We can then apply the
proposed approach directly. To account for the different
characteristics of clinical risk factors and gene expres-
sions, different levels of penalties can be applied to the
two sets of risk factors. This extension can evaluate
which gene pathways, together with clinical risk factors,
have significant predictive power. The second possible
extension may evaluate a different aspect of gene path-
ways. We may first compute the OPI for the clinical risk
factors and gene expressions combined. We then com-
pute the OPI for the clinical risk factors only. We then
compare the two sets of OPIs. This extension can evalu-
ate which pathways have significant additional predic-
tive power beyond clinical measurements. In this study,
we focus exclusively on the linear effects of gene expres-
sions, which is the common practice in cancer profiling
studies. Following a similar strategy as in [34], the pro-
posed approach can be extended to accommodate non-
linear gene effects. Such an extension is nontrivial and
may greatly increase computational cost.

Conclusions
Tremendous effort has been devoted to identify genomic
measurements with predictive power for breast cancer
prognosis. In this article, we develop a new pathway
analysis method, and use it to analyze four breast cancer
gene profiling studies. The proposed method advances
beyond existing ones by focusing on the predictive
power as opposed to estimation accuracy. It can account
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for the joint effects of multiple genes in pathways, and it
uses multiple datasets from independent, comparable
studies to improve reliability.
With the proposed method, 96 pathways are identi-

fied, many of which have a sound biological basis and
have been identified as breast cancer markers in inde-
pendent studies. There are also pathways that have not
been previously identified. Further biomedical investiga-
tions are needed to fully understand those pathways.

Methods
Detection of pathways with predictive power consists of
the following steps.

1. (1.1) Select multiple gene profiling datasets from
independent studies with comparable designs. The
clinical aspects of the studies need to be evaluated
to determine comparability. (1.2) Process each data-
set separately. Normalization and imputation of
missing data need to be carried out;
2. Match genes measured in different studies. Here
we focus on genes measured in all studies. One pos-
sible alternative is to use all the genes and impute
gene expressions not measured as zero;
3. Construct gene pathways using public databases.
Only genes with known pathway information are
used in downstream analysis;
4. For each dataset and each pathway, compute a
statistic and corresponding p-value that can quantify
the predictive power of genes within this specific
pathway;
5. For each pathway, pool p-values computed from
multiple datasets using Fisher’s approach, and com-
pute the overall significance level for predictive
power;
6. Apply the FDR (false discovery rate) approach and
identify pathways with significant predictive power.

Multiple datasets will be analyzed with the proposed
approach. If studies that generate those datasets investi-
gate the same clinical outcomes and have assembled
study subjects with similar characteristics, we say they
have comparable designs. On the other hand, they may
have different experimental settings. Particularly, they
may use different platforms for profiling. Studies with
comparable designs can be pooled for meta analysis.
However, when the experimental settings are not com-
parable, estimates generated from one study cannot be
used to make predictions for subjects in the other
studies.
Steps 1-3 will be carried out using well-developed

existing approaches. We refer to the published literature
[15,16] and the “Results and Discussion” section for data
selection, data processing, gene matching, and pathway

construction. In the following subsections, we provide
detailed descriptions of Steps 4-6.

Quantification of the predictive power of a single
pathway
In this subsection, we consider a single dataset and a
single pathway, and describe how to quantify its predic-
tive power.
Statistical modeling
Consider a pathway composed of m genes. Denote X =
(X1, ..., Xm) as the gene expressions. Denote U and V as
the relapse and censoring time, respectively. Under right
censoring, one observation consists of (T = min(U, V),
Δ = I(U ≤ V), X). We assume the Cox proportional
hazards model, where

  ( | ) ( )exp( ).u X u X= ′0 (1)

Here l0(u) is the unknown baseline hazard and b is
the length m regression coefficient. Assume n i.i.d.
observations: (Ti, δ i, Xi); i = 1 ... n. The log-partial like-
lihood function is:

R X Xn j
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where rj = {k: Tk ≥ Tj} is the risk set at time Tj.
Penalized estimation
Penalization has been extensively used as a regularized
estimation tool in cancer genomic studies [35]. With
cancer genomic data, it is common that the sizes of
some gene pathways are comparable to or even larger
than the sample size. For the four datasets we analyze,
the smallest sample size is 58, and the largest pathway
has 51 genes. With large pathways, direct maximization
of the log-likelihood function may lead to unreliable or
multiple maximizers. Penalization can regularize the
maximizer, making it “regular” and unique. In addition,
pathways defined in databases such as KEGG, BioCarta,
and GO are not tailored to any specific disease clinical
outcomes. Thus, even in a predictive pathway, there
may still exist noisy genes. Penalization can select pre-
dictive genes. Using only predictive genes can be more
informative than using all of the genes.
We propose estimating b with

ˆ ( ) | | ,    = −
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪=
∑argmax Rn n j

j

m

1

(3)

where ln is the data-dependent tuning parameter, bj is
the jth component of b, and 0 <g < 1 is the fixed penali-
zation parameter. ̂ defined in (3) is a bridge penalized
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estimate [36,37]. In a recent study, Huang et al. [37]
established that the bridge penalized estimate has the
“oracle” estimation and selection properties and per-
forms better than many alternative penalization
methods.
Determination of the significance of predictive power
Consider a single dataset with n subjects. For a pathway
composed of m genes, the significance of its predictive
power can be computed as follows.

1. Compute the Observed Predictive Index (OPI).
(a) Randomly partition the data into a training
set and a testing set with sizes 2n/3 and n/3,
respectively;
(b) Compute ̂ defined in (3) using only sub-
jects in the training set;
(c) For subjects in the testing set, compute the
predictive risk scores ̂ ’X using the training set
estimate. Dichotomize those scores at the median
and create two risk groups. Compute the logrank
statistic that measures the difference of survival
between the two groups;
(d) Repeat Steps (a)-(c) B (e.g. 100) times. The B
logrank statistics will be referred to as the OPI.

2. Compute the Permuted Predictive Index (PPI),
which serves as the reference distribution for the
OPI. The PPI is computed in a similar manner as
the OPI. The only difference is that, prior to each
partition, the survival time and event indicator
(T, Δ) are randomly permuted (and then coupled
with gene expressions).
3. Conduct a two-sample Wilcoxon rank sum test of
the OPI versus the PPI. The resulting p-value mea-
sures the significance of predictive power.

In Step 1(a), we “create” independent datasets using
partitions. As discussed above, even for studies with
comparable designs, their experimental settings may not
be comparable. To make the proposed method broadly
applicable, we use random partitions to guarantee the
comparability of training and testing sets. The random
split also closely mimics the 0.632 bootstrap [38]. In
Step 1(b), we estimate the best linear combination of
genes. In Step 1(c), we quantify the predictive power of
genes, or more accurately their linear combination ̂ ’X.
In cancer survival analysis, the logrank statistic has been
extensively used as a measure of predictive power [39].
For simplicity and interpretability, only two risk groups
are created and the two-sample logrank statistic is com-
puted. Possible alternatives to the two-sample logrank
statistic include the multi-sample logrank statistic, the
logrank statistic for a continuous marker, and the supre-
mum versions of the aforementioned statistics [40,41].

Under certain situations, the alternative statistics can be
more powerful at the cost of increased computational
complexity. Due to the risk of an extreme partition, a
single partition and a single logrank statistic may not be
sufficient. Thus, in Step 1(d), we generate multiple log-
rank statistics via multiple partitions.
The standardized and squared logrank statistics gener-

ated in Step 1 are asymptotically c2 distributed. In can-
cer genomic studies, the sample sizes are often small. It
is not clear how precise the asymptotic c2 approxima-
tion is in these settings. Thus, in Step 2, we use permu-
tations to generate the reference distribution of the OPI.
The two-sample Wilcoxon rank sum test in Step 3

measures how well the OPI and PPI are separated. Clear
separation of the OPI and PPI indicates that the linear
combinations of genes in this pathway are capable of
separating patients into groups with different survival
risks. Thus, a significant p-value from the Wilcoxon test
suggests significant predictive power of this pathway.

Meta analysis
In a single dataset and for a specific pathway, the proce-
dure described above can generate a p-value that mea-
sures its predictive power. For many cancer clinical
outcomes, there exist multiple studies with comparable
designs [2]. As shown in [15,16] and others, meta analy-
sis of multiple datasets can generate more reliable
results than analysis of a single dataset.
Assume there are D datasets from independent studies

with comparable designs. For a specific pathway, we first
analyze each dataset separately using the approach
described above. Denote p1 ... pD as the D p-values gen-
erated from the D datasets. With Fisher’s approach, the

pooled statistic is s Pii

D= − =∑2 1
log( ) , which is c2 dis-

tributed with degrees of freedom 2D [42]. The p-value

of s, denoted as p , measures the significance of predic-

tive power concluded from the D datasets.
One potential drawback of Fisher’s approach is that

the combined level of significance may be seriously
affected by a small number of extreme values. In our
data analysis, we examine the p-values across the four
studies and find that the significance levels are pretty
“uniform” (results provided in the Additional File 1).
If, with other datasets, significantly varying p-values

are observed, alternative meta analysis approaches may
be needed.

Controlling the FDR
Assume there are a total of N pathways. Denote
  p pN1 as the N p-values generated using Fisher ’s
approach. We use the following approach to control
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the FDR. (a) Set the target FDR to q = 0.2; (b) Order
the p-values    p p p N( ) ( ) ( )1 2≤ ≤ ≤ ; (c) Let r be the lar-
gest i such that p i( ) ≤ i/N × q/c(N); (d) Pathways cor-
responding to   p p r( ) ( )1 are concluded as having
significant predictive power.
Different pathways may share common genes, since

one gene may have multiple biological functions. To
account for possibly complicated correlations among p-
values caused by overlapping pathways, we set

c N
ii

N
( ) = =∑ 1

1
[43].

Asymptotic considerations
Consider a single dataset and a single pathway. Under
the Cox model, detection of the predictive power
amounts to properly estimating b and determining its
predictive power. Denote b0 as the true value of b.
When b0 = 0, genes in this pathway are not associated
with survival, and this pathway has no predictive
power. When b0 ≠ 0, this pathway is predictive, where
the predictive power can be measured with the logrank
statistic [44]. Following [37], under one of the follow-
ing two conditions, ̂ defined in (3) is a consistent
estimate of b0:

1. n ® ∞ and m = o(n1/2);
2. n ® ∞ and m = o(exp(na)), where a is a fixed
constant that depends on X. In addition, l = o(n1/2),
where l is the number of nonzero components of b0.
Moreover, the irrepresentable condition in [45] must
be satisfied.

With ̂ being a consistent estimate of b0, validity of
the p-value from the Wilcoxon rank sum test follows
from validity of the logrank statistic and permutation
test. In addition, validity of the meta analysis using Fish-
er’s approach has been discussed in [42] and references
therein.
Consider N pathways and their p-values   p pN1 . To

control the FDR, uniform consistency of the p-values is
needed. For a specific pathway, the consistency has been
discussed above. However, consistency for each indivi-
dual pathway does not automatically lead to uniform
consistency. As shown in [46], uniform consistency
further requires that log(N)/n ® 0, as n ® ∞.

Remarks
We have described the proposed approach in the con-
text of cancer prognosis studies using microarrays. With
minor modification, the approach is also applicable to
other disease clinical outcomes and other profiling plat-
forms. For example, for diagnosis studies with binary
outcomes, the Cox model can be replaced with the
logistic model, and the logrank statistic can be replaced

with the classification error. The remaining components
of the proposed approach will then be applicable.

Additional file 1: Predictive pathways identified using the proposed
and alternative approaches. This file contains information on all the
pathways identified using the proposed and alternative approaches.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1471-2105-11-1-
S1.XLS ]
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