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1 Introduction
The purpose of this paper is to derive the norm inequalities for the composite operator
D◦G of the Hodge-Dirac operatorD andGreen’s operatorG on differential forms. Specif-
ically, wewill develop the upper bounds for norms of the composite operatorD◦G applied
to differential form u in terms of the norm of u. We all know that there are different ver-
sions of Dirac operators, such as the Hodge-Dirac operator associated to a Riemannian
manifold and the euclidean Dirac operator arising in Clifford analysis. The Dirac operator
studied in this paper is the Hodge-Dirac operator defined byD = d+d�, where d is the ex-
terior derivative, and d� is the Hodge codifferential, which is the formal adjoint to d. Both
the Dirac operator D and Green’s operator G are widely studied and used in mathematics
and physics. Since it was initiated by Paul Dirac in order to get a form of quantum theory
compatible with special relativity, Dirac operators have been playing an important role
in many fields of mathematics and physics, such as quantum mechanics, Clifford analysis
and PDEs. Green’s operator is a key operator, which has been very well used in several
areas of mathematics. In many situations, the process of studying solutions to PDEs in-
volves estimating the various norms of the operators and their compositions. Hence, we
are motivated to establish the upper bounds for the composite operators in this paper. See
[–] for recent work on the Dirac operator, Green’s operator and their applications.
LetM be a bounded domain and B be a ball in R

n, n≥ , throughout this paper. We use
σB to express the ball with the same center as B and with diam(σB) = σ diam(B), σ > .We
do not distinguish the balls from cubes in this paper. We use |E| to denote the Lebesgue
measure of a set E ⊂ R

n. We call w a weight if w ∈ Lloc(R
n) and w >  a.e. Let e, e, . . . , en

be the standard unit basis ofRn, and let ∧l = ∧l(Rn) be the linear space of l-vectors, which
is spanned by the exterior products eI = ei ∧ ei ∧ · · · ∧ eil , corresponding to all ordered
l-tuples I = (i, i, . . . , il),  ≤ i < i < · · · < il ≤ n, l = , , . . . ,n. The Grassman algebra ∧ =
⊕∧l is a graded algebra with respect to the exterior products. For any α =

∑
αIeI ∈ ∧ and

β =
∑

β IeI ∈ ∧, the inner product in∧ is defined by 〈α,β〉 = ∑
αIβ I , with summation over
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all l-tuples I = (i, i, . . . , il) and all integers l = , , . . . ,n. TheHodge star operator �:∧ → ∧
is defined by the rule � = e ∧ e ∧· · ·∧ en and α ∧�β = β ∧�α = 〈α,β〉(�) for all α, β ∈ ∧.
The norm of α ∈ ∧ is given by the formula |α| = 〈α,α〉 = �(α ∧ �α) ∈ ∧ =R. The Hodge
star is an isometric isomorphism on � with � :∧l → ∧n–l and � � (–)l(n–l) :∧l → ∧l .
A differential l-form ω on M is a de Rham current (see [, Chapter III]) on M with

values in ∧l(Rn). Differential forms are extensions of functions. For example, in R
n,

the function u(x,x, . . . ,xn) is called a -form. Moreover, if u(x,x, . . . ,xn) is differen-
tiable, then it is called a differential -form. The -form u(x) in R

n can be written as
u(x) =

∑n
i= ui(x,x, . . . ,xn)dxi. If the coefficient functions ui(x,x, . . . ,xn), i = , , . . . ,n,

are differentiable, then u(x) is called a differential -form. Similarly, a differential k-form
u(x) is generated by {dxi ∧ dxi ∧ · · · ∧ dxik }, k = , , . . . ,n, that is, u(x) =

∑
I ωI(x)dxI =∑

ωii···ik (x)dxi ∧ dxi ∧ · · · ∧ dxik , where I = (i, i, . . . , ik),  ≤ i < i < · · · < ik ≤ n.
Let D′(M,∧l) be the space of all differential l-forms on M, and let Lp(M,∧l) be the
l-forms ω(x) =

∑
I ωI(x)dxI on M satisfying

∫
M |ωI |p < ∞ for all ordered l-tuples I ,

l = , , . . . ,n. We denote the exterior derivative by d : D′(M,∧l) → D′(M,∧l+) for l =
, , . . . ,n – . The Hodge codifferential operator d� : D′(M,∧l+) → D′(M,∧l) is given
by d� = (–)nl+ � d� on D′(M,∧l+), l = , , . . . ,n – . The Dirac operator D involved
in this paper is defined by D = d + d�. It is easy to check that D = �, where � =
dd� + d�d is the Laplace-Beltrami operator. Let ∧lM be the lth exterior power of the
cotangent bundle, C∞(∧lM) be the space of smooth l-forms on M and W(∧lM) = {u ∈
Lloc(∧lM) : u has generalized gradient}. The harmonic l-fields are defined by H(∧lM) =
{u ∈ W(∧lM) : du = d�u = ,u ∈ Lp for some  < p < ∞}. The orthogonal complement of
H in L is defined by H⊥ = {u ∈ L : 〈u,h〉 =  for all h ∈ H}. Then the Green’s operator
G is defined as G : C∞(∧lM) → H⊥ ∩ C∞(∧lM) by assigning G(u) to be the unique ele-
ment of H⊥ ∩ C∞(∧lM) satisfying Poisson’s equation �G(u) = u – H(u), where H is the
harmonic projection operator that maps C∞(∧lM) onto H so that H(u) is the harmonic
part of u. See [] for more properties of these operators. We write ‖u‖s,M = (

∫
M |u|s)/s

and ‖u‖s,M,w = (
∫
M |u|sw(x)dx)/s, where w(x) is a weight.

Let ω ∈ Lloc(M,∧l), l = , , . . . ,n. We write ω ∈ locLipk(M,∧l), ≤ k ≤ , if

‖ω‖locLipk ,M = sup
σQ⊂M

|Q|–(n+k)/n‖ω –ωQ‖,Q <∞ (.)

for some σ ≥ . Further, we write Lipk(M,∧l) for those forms, whose coefficients are in
the usual Lipschitz space with exponent k and write ‖ω‖Lipk ,M for this norm. Similarly, for
ω ∈ Lloc(M,∧l), l = , , . . . ,n, we write ω ∈ BMO(M,∧l) if

‖ω‖�,M = sup
σQ⊂M

|Q|–‖ω –ωQ‖,Q <∞ (.)

for some σ ≥ . When ω is a -form, (.) reduces to the classical definition of BMO(M).
The definitions of Lipschitz and BMO norms above appeared in [].

2 Ls norm inequalities
In this section, we will develop Poincaré-type inequality with Ls norm for the composite
operator D ◦ G. This inequality will be used to prove other results in this paper. Using
the same way in the proof of Propositions . and . in [], we can prove that for any
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closed ball B = B∪ ∂B, we have

∥∥dd∗G(u)
∥∥
s,B +

∥∥d∗dG(u)
∥∥
s,B +

∥∥dG(u)∥∥s,B +
∥∥d∗G(u)

∥∥
s,B +

∥∥G(u)∥∥s,B ≤ C(s)‖u‖s,B.

Note that for any Lebesgue measurable function f defined on a Lebesgue measurable set
E with |E| = , we have

∫
E f dx = . Thus, ‖u‖s,∂B =  and ‖dd∗G(u)‖s,∂B + ‖d∗dG(u)‖s,∂B +

‖dG(u)‖s,∂B + ‖d∗G(u)‖s,∂B + ‖G(u)‖s,∂B =  since |∂B| = . Therefore, we obtain

∥∥dd∗G(u)
∥∥
s,B +

∥∥d∗dG(u)
∥∥
s,B +

∥∥dG(u)∥∥s,B +
∥∥d∗G(u)

∥∥
s,MB +

∥∥G(u)∥∥s,B

=
∥∥dd∗G(u)

∥∥
s,B +

∥∥d∗dG(u)
∥∥
s,B +

∥∥dG(u)∥∥s,B +
∥∥d∗G(u)

∥∥
s,B +

∥∥G(u)∥∥s,B

≤ C(s)‖u‖s,B
= C(s)‖u‖s,B.

Hence, we have the following lemma.

Lemma . Let u be a smooth differential form defined in M and  < s < ∞. Then there
exists a positive constant C = C(s), independent of u, such that

∥∥dd∗G(u)
∥∥
s,B +

∥∥d∗dG(u)
∥∥
s,B +

∥∥dG(u)∥∥s,B +
∥∥d∗G(u)

∥∥
s,B +

∥∥G(u)∥∥s,B ≤ C(s)‖u‖s,B

for any ball B ⊂M.

The following results about the homotopy operator T can be found in [].

Lemma . Let u ∈ Lsloc(D,∧l), l = , , . . . ,n,  < s < ∞, be a differential form in a bounded
and convex domain D ⊂ R

n, and let T be the homotopy operator defined on differential
forms. Then there is also a decomposition u = Td(u) + dT(u) and

‖Tu‖s,D ≤ C|D|diam(D)‖u‖s,D.

Using the notation above, we can define the l-form ωD ∈D′(D,∧l) by

ωD = |D|–
∫
D

ω(y)dy, l = , and ωD = d(Tω), l = , , . . . ,n

for all ω ∈ Lp(D,∧l),  ≤ p < ∞.
We will use the following generalized Hölder’s inequality repeatedly in this paper.

Lemma . Let  < α < ∞,  < β < ∞ and s– = α– + β–. If f and g are measurable
functions on R

n, then

‖ fg‖s,E ≤ ‖f ‖α,E · ‖g‖β ,E

for any E ⊂R
n.

We now prove the following Ls norm inequality for the composite operator D ◦G of the
Dirac operator D and Green’s operator G applied to differential forms.
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Lemma . Let u ∈ Lsloc(M,∧l), l = , , , . . . ,n,  < s < ∞, be a differential form in a do-
main M, D be the Dirac operator and G be Green’s operator. Then there exists a constant
C, independent of u, such that

∥∥D(
G(u)

)∥∥
s,B ≤ C‖u‖s,B (.)

for all balls B ⊂M.

Proof Since the Dirac operator D can be expressed as D = d + d�, using Lemma ., we
have

∥∥D(
G(u)

)∥∥
s,B =

∥∥(
d + d�

)
G(u)

∥∥
s,B

≤ ∥∥(dG(u)∥∥s,B +
∥∥d�G(u)

∥∥
s,B

≤ C‖u‖s,B. (.)

We have completed the proof of Lemma ..
Next, we prove the Poincaré-type inequality for the composition of the Dirac operator

and Green’s operator, which forms the foundation of this paper. �

Theorem . Let u ∈ Lsloc(M,∧l), l = , , , . . . ,n,  < s < ∞, be a differential form in a
domainM,D be the Dirac operator and G be Green’s operator. Then there exists a constant
C, independent of u, such that

∥∥D(
G(u)

)
–

(
D

(
G(u)

))
B

∥∥
s,B ≤ C|B|diam(B)‖u‖s,B (.)

for all balls B ⊂M.

Proof Applying the decomposition of differential forms described in Lemma . to the
form D(G(u)) yields

D
(
G(u)

)
= d

(
T

(
D

(
G(u)

)))
+ T

(
d
(
D

(
G(u)

)))
=

(
D

(
G(u)

))
B + T

(
d
(
D

(
G(u)

)))
, (.)

where T is the homotopy operator appearing in Lemma .. From Lemma ., for any
differential form v, we have

∥∥T(v)∥∥s,B ≤ C|B|diam(B)‖v‖s,B, (.)

where C is a constant independent of v. Replacing v by d(D(G(u))) in (.) yields

∥∥T(
d
(
D

(
G(u)

)))∥∥
s,B ≤ C|B|diam(B)

∥∥d(
D

(
G(u)

))∥∥
s,B. (.)

Noticing that (D(G(u)))B = d(T(D(G(u)))) and using (.) and Lemma ., we obtain

∥∥D(
G(u)

)
–

(
D

(
G(u)

))
B

∥∥
s,B =

∥∥T(
d
(
D

(
G(u)

)))∥∥
s,B

≤ C|B|diam(B)
∥∥d(

D
(
G(u)

))∥∥
s,B

http://www.journalofinequalitiesandapplications.com/content/2013/1/436
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≤ C|B|diam(B)
∥∥d((

d + d�
)
G(u)

)∥∥
s,B

≤ C|B|diam(B)
∥∥dd�G(u)

∥∥
s,B

≤ C|B|diam(B)‖u‖s,B, (.)

that is,

∥∥D(
G(u)

)
–

(
D

(
G(u)

))
B

∥∥
s,B ≤ C|B|diam(B)‖u‖s,B.

We have completed the proof of Theorem .. �

3 Upper bounds for Lipschitz and BMO norms
In this section, we establish the upper bounds for Lipschitz norms and BMO norms in
terms of Ls norms. Using Theorem ., we now obtain the upper bounds for Lipschitz
norm of the composite operator D ◦G.

Theorem . Let u ∈ Lsloc(M,∧l), l = , , , . . . ,n,  < s < ∞, be a differential form in a
domainM,D be the Dirac operator and G be Green’s operator. Then there exists a constant
C, independent of u, such that

∥∥D(
G(u)

)∥∥
locLipk ,M

≤ C‖u‖s,M, (.)

where k is a constant with ≤ k ≤ .

Proof From Theorem ., we find that

∥∥D(
G(u)

)
–

(
D

(
G(u)

))
B

∥∥
s,B ≤ C|B|diam(B)‖u‖s,B (.)

for all balls B⊂M. Using the Hölder inequality with  = /s + (s – )/s, we find that

∥∥D(
G(u)

)
–

(
D

(
G(u)

))
B

∥∥
,B

=
∫
B

∣∣D(
G(u)

)
–

(
D

(
G(u)

))
B

∣∣dx

≤
(∫

B

∣∣D(
G(u)

)
–

(
D

(
G(u)

))
B

∣∣s dx
)/s(∫

B
s/(s–) dx

)(s–)/s

= |B|(s–)/s∥∥D(
G(u)

)
–

(
D

(
G(u)

))
B

∥∥
s,B

= |B|–/s∥∥D(
G(u)

)
–

(
D

(
G(u)

))
B

∥∥
s,B

≤ |B|–/s(C|B|diam(B)‖u‖s,B
) ≤ C|B|–/s+/n‖u‖s,B. (.)

Hence, using the definition of the Lipschitz norm, (.), and  – /s + /n –  – k/n =  –
/s + /n – k/n > , we have

∥∥D(
G(u)

)∥∥
locLipk ,M

= sup
σB⊂M

|B|–(n+k)/n∥∥D(
G(u)

)
–

(
D

(
G(u)

))
B

∥∥
,B

= sup
σB⊂M

|B|––k/n∥∥D(
G(u)

)
–

(
D

(
G(u)

))
B

∥∥
,B
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≤ sup
σB⊂M

|B|––k/nC|B|–/s+/n‖u‖s,B

= sup
σB⊂M

C|B|–/s+/n–k/n‖u‖s,B

≤ sup
σB⊂M

C|M|–/s+/n–k/n‖u‖s,B

≤ C sup
σB⊂M

‖u‖s,B

≤ C‖u‖s,M. (.)

The proof of Theorem . has been completed.
We have proved an estimate for the Lipschitz norm ‖ · ‖locLipk ,M in Theorem .. Now,

we develop the estimates for the BMO norm ‖ · ‖�,M . Let u ∈ locLipk(M,∧l), l = , , . . . ,n,
 ≤ k ≤  and M be a bounded domain. Then from the definitions of the Lipschitz and
BMO norms, we know that

‖u‖�,M = sup
σB⊂M

|B|–‖u – uB‖,B

= sup
σB⊂M

|B|k/n|B|–(n+k)/n‖u – uB‖,B

≤ sup
σB⊂M

|M|k/n|B|–(n+k)/n‖u – uB‖,B

≤ |M|k/n sup
σB⊂M

|B|–(n+k)/n‖u – uB‖,B

≤ C sup
σB⊂M

|B|–(n+k)/n‖u – uB‖,B

≤ C‖u‖locLipk ,M,

where C is a positive constant. Hence, we have the following inequality between the Lip-
schitz norm and the BMO norm. �

Lemma . If a differential form u ∈ locLipk(M,∧l), l = , , . . . ,n,  ≤ k ≤ , in a bounded
domain M, then u ∈ BMO(M,∧l) and

‖u‖�,M ≤ C‖u‖locLipk ,M, (.)

where C is a constant.

Combining Theorems . and Lemma ., we obtain the following inequality between
the BMO norm and the Ls norm.

Theorem . Let u ∈ Ls(M,∧l), l = , , , . . . ,n,  < s < ∞, be a differential form in a do-
main M, D be the Dirac operator and G be Green’s operator. Then there exists a constant
C, independent of u, such that

∥∥D(
G(u)

)∥∥
�,M ≤ C‖u‖s,M. (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/436


Ding and Liu Journal of Inequalities and Applications 2013, 2013:436 Page 7 of 14
http://www.journalofinequalitiesandapplications.com/content/2013/1/436

Proof Since inequality (.) holds for any differential form, we may replace u by D(G(u))
in inequality (.) and obtain

∥∥D(
G(u)

)∥∥
�,M ≤ C

∥∥D(
G(u)

)∥∥
locLipk ,M

, (.)

where k is a constant with ≤ k ≤ . On the other hand, from Theorem ., we have

∥∥D(
G(u)

)∥∥
locLipk ,M

≤ C‖u‖s,M. (.)

Combining (.) and (.) gives ‖D(G(u))‖�,M ≤ C‖u‖s,M . The proof of Theorem . has
been completed. �

We will need the following lemma that appeared in [].

Lemma . Let ϕ be a strictly increasing convex function on [,∞) with ϕ() = , and let
E be a bounded domain in R

n. Assume that u is a smooth differential form in E such that
ϕ(k(|u|+ |uE|)) ∈ L(E;μ) for any real number k >  and μ({x ∈ E : |u–uE| > }) > , where
μ is a Radon measure defined by dμ = w(x)dx for a weight w(x). Then for any positive
constant a, we have

∫
E
ϕ
(
a|u|)dμ ≤ C

∫
E
ϕ
(
a|u – uE|

)
dμ,

where C is a positive constant.

The followingWRH-class of differential forms was introduced in [].

Definition . We say a differential form u ∈ ∧l(E) belongs to theWRH(∧l,E)-class and
write u ∈ WRH(∧l,E), l = , , , . . . ,n, if for any constants  < s, t < ∞, the inequality

‖u‖s,B ≤ C|B|(t–s)/st‖u‖t,σB (.)

holds for any ball B with σB⊂ E, where σ >  and C >  are constants.
It is well known that any solutions of A-harmonic equations belong to WRH-class, see

[–] for example. Hence, theWRH-class is a large set of differential forms.

Theorem . Let u ∈ Lsloc(M,∧), l = , , , . . . ,n,  < s < ∞, be a differential form such
that u – uB ∈ WRH(∧l,M)-class and the Lebesgue measure |{x ∈ B : |u – uB| > }| >  for
any ball B ⊂M.Assume that D is the Dirac operator, and G is Green’s operator. Then there
exists a constant C, independent of u, such that

∥∥D(
G(u)

)∥∥
locLipk ,M

≤ C‖u‖�,M, (.)

where k is a constant with ≤ k ≤ .

Proof Using Lemma . with ϕ(t) = ts, w(x) =  over the ball B, we have

‖u‖s,B ≤ C‖u – uB‖s,B. (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/436
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From Theorem . and (.), we obtain

∥∥D(
G(u)

)
–

(
D

(
G(u)

))
B

∥∥
s,B ≤ C|B|diam(B)‖u‖s,B

≤ C|B|diam(B)‖u – uB‖s,B. (.)

From the definition of the Lipschitz norm, the Hölder inequality with  = /s+ (s–)/s and
(.), for any ball B with B⊂M, we find that

∥∥D(
G(u)

)
–

(
D

(
G(u)

))
B

∥∥
,B =

∫
B

∣∣D(
G(u)

)
–

(
D

(
G(u)

))
B

∣∣dx

≤
(∫

B

∣∣D(
G(u)

)
–

(
D

(
G(u)

))
B

∣∣s dx
)/s(∫

B


s
s– dx

)(s–)/s

= |B|(s–)/s∥∥D(
G(u)

)
–

(
D

(
G(u)

))
B

∥∥
s,B

= |B|–/s∥∥D(
G(u)

)
–

(
D

(
G(u)

))
B

∥∥
s,B

≤ C|B|–/s+/n‖u – uB‖s,B. (.)

Next, since u – uB ∈ WRH(∧l,M)-class, we have

‖u – uB‖s,B ≤ C|B|(–s)/s‖u – uB‖,σB (.)

for some constant σ > . Combination of (.) and (.) gives

∥∥D(
G(u)

)
–

(
D

(
G(u)

))
B

∥∥
,B ≤ C|B|–/s+/n‖u – uB‖s,B

≤ C|B|+/n‖u – uB‖,σB. (.)

Hence, we obtain

|B|–(n+k)/n∥∥D(
G(u)

)
–

(
D

(
G(u)

))
B

∥∥
,B ≤ C|B|/n–k/n‖u – uB‖,σB

= C|B|+/n–k/n|B|–‖u – uB‖,σB
≤ C|B|+/n–k/n|σB|–‖u – uB‖,σB
≤ C|M|+/n–k/n|σB|–‖u – uB‖,σB
≤ C|σB|–‖u – uB‖,σB. (.)

Thus, taking the supremum on both sides of (.) over all balls σB ⊂M with σ > σ and
using the definitions of the Lipschitz and BMO norms, we find that

∥∥D(
G(u)

)∥∥
locLipk ,M

= sup
σB⊂M

|B|–(n+k)/n∥∥D(
G(u)

)
–

(
D

(
G(u)

))
B

∥∥
,B

≤ C sup
σB⊂M

|σB|–‖u – uB‖,σB

≤ C‖u‖�,M, (.)
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that is,

∥∥D(
G(u)

)∥∥
locLipk ,M

≤ C‖u‖�,M. (.)

The proof of Theorem . has been completed. �

Replacing u by D(G(u)) in Lemma ., we obtain the following comparison inequality
between the Lipschitz norm and the BMO norm.

Corollary . Let u ∈ Ls(M,∧l), l = , , , . . . ,n,  < s < ∞, be a differential form in a do-
main M, D be the Dirac operator and G be Green’s operator. Then there exists a constant
C, independent of u, such that

∥∥D(
G(u)

)∥∥
�,M ≤ C

∥∥D(
G(u)

)∥∥
locLipk ,M

. (.)

4 Weighted inequalities
In this section, we establish the weighted norm comparison inequalities for the compo-
sition of the Dirac operator and Green’s operator applied to differential form defined in
a domain M ⊂ R

n. For ω ∈ Lloc(M,∧l,wα), l = , , . . . ,n, we write ω ∈ locLipk(M,∧l,wα),
 ≤ k ≤  if

‖ω‖locLipk ,M,wα = sup
σQ⊂M

(
μ(Q)

)–(n+k)/n‖ω –ωQ‖,Q,wα <∞ (.)

for some σ > , whereM is a bounded domain, the measure μ is defined by dμ = w(x)dx,
w is a weight. For convenience, we use the following simple notation locLipk(M,∧l)
for locLipk(M,∧l,w). Similarly, for ω ∈ Lloc(M,∧l,w), l = , , . . . ,n, we will write ω ∈
BMO(M,∧l,w) if

‖ω‖�,M,w = sup
σQ⊂M

(
μ(Q)

)–‖ω –ωQ‖,Q,w <∞ (.)

for some σ > , where the measure μ is defined by dμ = w(x)dx, w is a weight. Again, we
write BMO(�,∧l) to replace BMO(M,∧l,w) when it is clear that the integral is weighted.

Definition . We say the weight w(x) satisfies the Ar(M) condition, r > , write w ∈
Ar(M), if w(x) >  a.e., and

sup
B

(


|B|
∫
B
wdx

)(


|B|
∫
B

(

w

)/(r–)

dx
)(r–)

< ∞

for any ball B ⊂M.
For u ∈ WRH(∧l,M), using the Hölder inequality, we extend inequality (.) into the

following weighted version

∥∥D(
G(u)

)
–

(
D

(
G(u)

))
B

∥∥
s,B,w ≤ C|B|diam(B)‖u‖s,σB,w (.)

for all balls B with σB⊂M, where σ >  is a constant.
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Theorem . Let u ∈ Ls(M,∧,μ), l = , , , . . . ,n,  < s < ∞, be a differential form in a
bounded domainM such that u ∈ WRH(∧l,M)-class.Assume that D is the Dirac operator,
and G is Green’s operator, where the measure μ is defined by dμ = wdx and w ∈ Ar(M) for
some r >  with w(x) ≥ ε >  for any x ∈ M. Then there exists a constant C, independent of
u, such that

∥∥D(
G(u)

)∥∥
locLipk ,M,w ≤ C‖u‖s,M,w, (.)

where k is a constant with ≤ k ≤ .

Proof Since w(x) ≥ ε > , we have

μ(B) =
∫
B
wdx ≥

∫
B
ε dx = C|B|,

which gives


μ(B)

≤ C

|B| (.)

for any ball B. Using (.) and the Hölder inequality with  = /s + (s – )/s, we find that

∥∥D(
G(u)

)
–

(
D

(
G(u)

))
B

∥∥
,B,w

=
∫
B

∣∣D(
G(u)

)
–

(
D

(
G(u)

))
B

∣∣dμ

≤
(∫

B

∣∣D(
G(u)

)
–

(
D

(
G(u)

))
B

∣∣s dμ

)/s(∫
B
s/(s–) dμ

)(s–)/s

=
(
μ(B)

)(s–)/s∥∥D(
G(u)

)
–

(
D

(
G(u)

))
B

∥∥
s,B,w

=
(
μ(B)

)–/s∥∥D(
G(u)

)
–

(
D

(
G(u)

))
B

∥∥
s,B,w

≤ (
μ(B)

)–/s(C|B|diam(B)‖u‖s,σB,w
)

≤ C
(
μ(B)

)–/s|B|+/n‖u‖s,σB,w. (.)

From the definition of the weighted Lipschitz norm, (.) and (.), we obtain

∥∥D(
G(u)

)∥∥
locLipk ,M,w

= sup
σB⊂M

(
μ(B)

)–(n+k)/n∥∥D(
G(u)

)
–

(
D

(
G(u)

))
B

∥∥
,B,w

= sup
σB⊂M

(
μ(B)

)––k/n∥∥D(
G(u)

)
–

(
D

(
G(u)

))
B

∥∥
,B,w

≤ C sup
σB⊂M

(
μ(B)

)–/s–k/n|B|+/n‖u‖s,σB,w

≤ C sup
σB⊂M

|B|–/s–k/n++/n‖u‖s,σB,w

≤ C sup
σB⊂M

|M|–/s–k/n++/n‖u‖s,σB,w

http://www.journalofinequalitiesandapplications.com/content/2013/1/436
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≤ C|M|–/s–k/n++/n sup
σB⊂M

‖u‖s,σB,w

≤ C‖u‖s,M,w (.)

since –/s – k/n +  + /n >  and |M| < ∞. We have completed the proof of Theorem ..
Next, we estimate the BMO norm in terms of the Ls norm. Let u ∈ locLipk(M,∧l),

l = , , . . . ,n,  ≤ k ≤ , in a bounded domain M. From the definitions of the weighted
Lipschitz and the weighted BMO norms, we have

‖u‖�,M,w = sup
σB⊂M

(
μ(B)

)–‖u – uB‖,B,w

= sup
σB⊂M

(
μ(B)

)k/n(
μ(B)

)–(n+k)/n‖u – uB‖,B,w

≤ sup
σB⊂M

(
μ(M)

)k/n(
μ(B)

)–(n+k)/n‖u – uB‖,B,w

≤ (
μ(M)

)k/n
sup

σB⊂M

(
μ(B)

)–(n+k)/n‖u – uB‖,B,w

≤ C sup
σB⊂M

(
μ(B)

)–(n+k)/n‖u – uB‖,B,w

≤ C‖u‖locLipk ,M,w, (.)

where C is a positive constant. Thus, we have obtained the following result. �

Theorem . Let u ∈ locLipk(M,∧l,μ), l = , , . . . ,n,  ≤ k ≤ , be any differential form
in a bounded domain M, where the measure μ is defined by dμ = wdx and w ∈ Ar(M) for
some r > . Then u ∈ BMO(�,∧l,w) and

‖u‖�,�,w ≤ C‖u‖locLipk ,�,w, (.)

where C is a constant.

Theorem . Let u ∈ Ls(M,∧,μ), l = , , , . . . ,n,  < s < ∞, be a differential form in a
bounded domainM such that u ∈ WRH(∧l,M)-class.Assume that D is the Dirac operator,
and G is Green’s operator, where the measure μ is defined by dμ = wdx and w ∈ Ar(M) for
some r >  with w(x) ≥ ε >  for any x ∈ M. Then there exists a constant C, independent of
u, such that

∥∥D(
G(u)

)∥∥
�,M,w ≤ C‖u‖s,M,w (.)

holds for any bounded domain M.

Proof Replacing u by D(G(u)) in Theorem ., we have

∥∥D(
G(u)

)∥∥
�,M,w ≤ C

∥∥D(
G(u)

)∥∥
locLipk ,M,w, (.)

where k is a constant with ≤ k ≤ . Using Theorem ., we obtain

∥∥D(
G(u)

)∥∥
locLipk ,M,w ≤ C‖u‖s,M,w. (.)
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Substituting (.) into (.), we obtain

∥∥D(
G(u)

)∥∥
�,M,w ≤ C‖u‖s,M,w.

This ends the proof of Theorem .. �

5 Applications
As applications of the results proved in this paper, we consider the following examples.

Example . Let u be a differential -form in R
 – {(, , )} defined by

u(x, y, z) =
xdx√

x + y + z
+

ydy√
x + y + z

+
z dz√

x + y + z
, (.)

which can be considered as a vector field in R
. Let B ⊂ R

 be a ball with radius r such
that (, , ) /∈ B. It is easy to see that

‖u‖s,B =
(∫

B
|u|s dx∧ dy∧ dz

)/s

=
(∫

B
dx∧ dy∧ dz

)/s

= |B|/s.

Using Theorem ., we obtain an upper bound C|B|+/s diam(B) for the complicated op-
erator norm ‖D(G(u)) – (D(G(u)))B‖s,B. Specifically, we have

∥∥D(
G(u)

)
–

(
D

(
G(u)

))
B

∥∥
s,B ≤ C|B|+/s diam(B) = rC

(


πr

)+/s

.

Choosing M = B and u be the -form discussed in Example ., using Theorem ., we
obtain an upper bound for ‖D(G(u))‖�,M as follows

∥∥D(
G(u)

)∥∥
�,M ≤ C

(


πr

)/s

.

In fact, it would be very hard to estimate ‖D(G(u))‖�,M directly from calculation of the
operator norm.

Example . Let u(x, y, z) be a -form defined in R
 by

u(x, y, z) =

π

(
arctan

y
x – 

dx + arctan
y

x + 
dy + arctan

z
x + 

dz
)
. (.)

Let r >  be a constant, (x, y, z) be a fixed point with x > r, y > r, z > r and

M =
{
(x, y, z) : (x – x) + (y – y) + (z – z) ≤ r

}
.

It would be very complicated for us to obtain the upper bound for the Lipschitz norm
‖D(G(u))‖locLipk ,M if we evaluated

∥∥D(
G(u)

)∥∥
locLipk ,M

= sup
σQ⊂M

|Q|–(n+k)/n∥∥D(
G(u)

)
–

(
D

(
G(u)

))
Q

∥∥
,Q
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directly. However, using Theorem ., we can easily obtain the upper bound of the norm
‖D(G(u))‖locLipk ,M as follows. First, we know that |M| = 

πr
 and

∣∣u(x, y, z)∣∣ ≤ 
π

(∣∣∣∣arctan y
x – 

∣∣∣∣ +
∣∣∣∣arctan y

x + 

∣∣∣∣ +
∣∣∣∣arctan z

x + 

∣∣∣∣
)

≤ 
π

(
π


+

π


+

π



)

= . (.)

Applying (.), we have

∥∥D(
G(u)

)∥∥
locLipk ,M

≤ C‖u‖s,M

= C
(∫

M

∣∣u(x, y, z)∣∣s dx∧ dy∧ dz
)/s

≤ C
(∫

M
dx∧ dy∧ dz

)/s

= C|M|/s

= C
(


πr

)/s

.

Remark (i) The Poincaré-type inequalities for the composition of the Dirac operator and
Green’s operator presented in (.) and (.) can be extended into the global case. (ii) It
should be noticed that the domains involved in this paper are general bounded domains,
which largely increases the flexibility and applicability of our results.
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