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Abstract
In this paper, we establish sufficient optimality conditions for the (weak) efficiency to
multiobjective fractional programming problems involving generalized
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1 Introduction
Fractional programming problems have been studied with different characteristics of
functions or diverse constraints. Singh has studied fractional programming problems
since . With convexity assumptions, Singh and Hanson [] constituted not only suffi-
cient conditions of Fritz John and Kuhn-Tucker type but also necessary conditions. With-
out convexity assumptions, Singh [] also extended necessary conditions based on a con-
straint qualification. At the same time, Weir [], under the concept of proper efficiency,
transformed these problems into nondifferentiable functions and also established the du-
ality theorems. Consequently, Kaul and Lyall [] discussed the efficiency for fractional
vector maximization problems and dual problems. Liu [] derived the necessary con-
ditions and duality for non-smooth, non-linear multiobjective fractional programming
problems. He also established the duality results under generalized (F ,ρ)-convexity con-
ditions. By applying Liu’s results, Bhatia and Garg [] established Bector-type dual results
for (F ,ρ)-convex functions. Then Bhatia and Pandey [] further changed the components
of the objective function to nonnegative, convex numerator, while the denominators were
concave and positive.
The concept of (F ,ρ)-convexity, which was introduced by Preda [], is as an extension of

F-convexity and ρ-convexity that are defined by Hanson and Mond [], and by Vial [],
respectively. Gulati et al. [] defined the generalized (F ,α,ρ,d)-V -type I function-a gen-
eralization of convexity. It combines three components: the concepts of V-type I func-
tions [], (F ,α,ρ,d)-convex functions [], and type I functions []. Then sufficient op-
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timality conditions and dual programs were established in []. Indeed, since the vector-
valued functions are not comparable, the concepts of efficiency and proper efficiency are
very important in fractional vector optimization problems. Thus many authors have been
studying those relevant problems to characterize the efficiency and proper efficiency of
fractional vector optimization problems (cf. [–]). In [], Singh derived the necessary
conditions for efficient optimality of differentiable multiobjective programming under a
constraint qualification. Using Singh’s results, Lee and Ho [] derived the necessary op-
timality conditions for the efficiency to multiobjective fractional programming problems.
This paper consists of four sections. In Section , some definitions and results are re-

called. In Section , we employ a necessary optimality condition with (F ,α,ρ,d)-V -type
I functions to establish sufficient optimality conditions for multiobjective fractional pro-
gramming problem (FP). Finally, in Section , a parametric dual problem of (FP) is per-
formedby using the results in Section , and parametric duality theoremsunder the frame-
work of generalized (F ,α,ρ,d)-V -type I functions are established.

2 Definitions and preliminaries
Let Rn denote the n-dimensional Euclidean space, and let Rn

+ denote its nonnegative or-
thant. For any x = (x,x, . . . ,xn) and y = (y, y, . . . , yn), we define:
() x = y if and only if xi = yi for all i = , , . . . ,n;
() x > y if and only if xi > yi for all i = , , . . . ,n;
() x� y if and only if xi ≥ yi for all i = , , . . . ,n;
() x≥ y if and only if x� y and x �= y.
Let X be a nonempty open set in Rn.
We consider the following multiobjective nonlinear fractional programming problem:

(FP) Minimize φ(x)≡
(
f(x)
g(x)

,
f(x)
g(x)

, . . . ,
fk(x)
gk(x)

)
,

≡ (
φ(x),φ(x), . . . ,φk(x)

)
,

subject to hj(x)≤ , j = , , . . . ,m,

where fi, gi : X −→ R, i = , , . . . ,k, and hj : X −→ R, j = , , . . . ,m, are differentiable func-
tions. We assume that fi(x)≥  and gi(x) >  for all x ∈ X, i = , , . . . ,k.
Denote by X◦ = {x ∈ X : h(x) = (h(x),h(x), . . . ,hm(x))� } the feasible set of (FP).

Definition  A functional F : X ×X ×Rn →R is sublinear in Rn if for any x,x ∈ X,

F(x,x;a + a)� F(x,x;a) + F(x,x;a) for all a,a ∈ Rn,

F(x,x;βa) = βF(x,x;a), β ∈R,β �  for all a ∈Rn.

Definition  A function F̃(x) = (̃F(x), F̃(x), . . . , F̃k(x)) : X →Rk is said to be differentiable
at x if there exists a linear transformation A of Rn into Rk such that

lim
h→

‖F̃(x + h) – F̃(x) –Ah‖k
‖h‖n = ,
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then we say that F̃ is differentiable at x, and we write

F̃ ′(x) = A =

⎡⎢⎢⎢⎢⎣
∇F̃(x)
∇F̃(x)

...
∇F̃k(x)

⎤⎥⎥⎥⎥⎦
n×k

.

Here
. h ∈Rn,
. ‖ · ‖n and ‖ · ‖k denote any norm in Rn and Rm, respectively,
. ∇F̃i(x) denotes the gradient of F̃i at x for i = , , . . . ,k.

For convenience, the symbols are stated as follows to define generalized (F ,α,ρ,d)-V -
type I functions. Let K = {, , . . . ,k} and M = {, , . . . ,m} be the index sets. Let F be a
sublinear functional. The functions F = (F,F, . . . ,Fk) : X →Rk and � = (�,�, . . . ,�m) :
X → Rm are differentiable at x ∈ X. Let α = (α,α), where α = (α

 ,α
, . . . ,α

k), α =
(α

 ,α
 , . . . ,α

m), and α
i ,α

j : X × X → R+\{} for i ∈ K , j ∈ M, and let d(·, ·) : X × X → R

be a pseudometric. Also, for x ∈ X, let J(x) = {j : hj(x) = } and let hJ denote the vector of
active constraints at x.
In order to approve the sufficient optimality conditions holding for problem (FP) and

duality theorems holding with respect to primal problem (FP), the following definitions
of (F ,α,ρ,d)-V -type I functions are required for the framework. The functions are the
extensions of V-type I functions presented in [] and type I functions presented in [].

Definition  [] (F ,�) is said to be (F ,α,ρ,d)-V -type I at x ∈ X if there exist vectors α

and ρ = (ρ
 ,ρ

, . . . ,ρ
k ,ρ


 ,ρ

 , . . . ,ρ
m), with ρ

i ,ρ
j ∈ R for i ∈ K , j ∈ M, such that for each

x ∈ X◦ and for all i ∈ K , j ∈ M, we have

Fi(x) –Fi(x)� F
(
x,x;α

i (x,x)∇Fi(x)
)
+ ρ

i d
(x,x),

–�j(x)� F
(
x,x;α

j (x,x)∇�j(x)
)
+ ρ

j d
(x,x).

With the above definition, when the first inequality is satisfied as

Fi(x) –Fi(x) > F
(
x,x;α

i (x,x)∇Fi(x)
)
+ ρ

i d
(x,x),

then (F ,�) is said to be semistrictly (F ,α,ρ,d)-V -type I at x ∈ X.

Remark 
() If ρ

i = ρ
j =  for i ∈ K , j ∈M and F(x,x;a) = a�η(x,x), with η : X ×X −→Rn, the

inequalities become those V-type I functions introduced by Hanson et al. [].
() If α

i (x,x) = α
j (x,x) = , ρ

i = ρ
j =  for i ∈ K , j ∈ M and F(x,x;a) = a�η(x,x), the

definition of type I function given by Hanson and Mond [] can be obtained.
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Definition  [] (F ,�) is said to be quasi-(F ,α,ρ,d)-V -type I at x ∈ X if there exists
vector α and ρ = (ρ,ρ) ∈R such that for each x ∈ X◦ and for all i ∈ K , j ∈M, we have

k∑
i=

α
i (x,x)Fi(x)�

k∑
i=

α
i (x,x)Fi(x) ⇒ F

(
x,x;

k∑
i=

∇Fi(x)

)
� –ρd(x,x),

–
m∑
j=

α
j (x,x)�j(x)�  ⇒ F

(
x,x;

m∑
j=

∇�j(x)

)
� –ρd(x,x).

Definition  [] (F ,�) is said to be pseudo-(F ,α,ρ,d)-V -type I at x ∈ X if there exists
vector α and ρ = (ρ,ρ) ∈R such that for each x ∈ X◦ and for all i ∈ K , j ∈M, we have

F

(
x,x;

k∑
i=

∇Fi(x)

)
� –ρd(x,x) ⇒

k∑
i=

α
i (x,x)Fi(x)�

k∑
i=

α
i (x,x)Fi(x),

F

(
x,x;

m∑
j=

∇�j(x)

)
� –ρd(x,x) ⇒ –

m∑
j=

α
j (x,x)�j(x)� .

Definition  [] (F ,�) is said to be pseudo-quasi-(F ,α,ρ,d)-V -type I at x ∈ X if there
exists vector α and ρ = (ρ,ρ) ∈ R such that for each x ∈ X◦ and for all i ∈ K , j ∈ M, we
have

k∑
i=

α
i (x,x)Fi(x) <

k∑
i=

α
i (x,x)Fi(x) ⇒ F

(
x,x;

k∑
i=

∇Fi(x)

)
< –ρd(x,x),

–
m∑
j=

α
j (x,x)�j(x)�  ⇒ F

(
x,x;

m∑
j=

∇�j(x)

)
� –ρd(x,x).

With the above definition, when the first inequality is satisfied as

k∑
i=

α
i (x,x)Fi(x)�

k∑
i=

α
i (x,x)Fi(x) ⇒ F

(
x,x;

k∑
i=

∇Fi(x)

)
< –ρd(x,x),

then (F ,�) is said to be strictly pseudo-quasi-(F ,α,ρ,d)-V -type I at x ∈ X.

Definition  [] (F ,�) is said to be quasi-pseudo-(F ,α,ρ,d)-V -type I at x ∈ X if there
exists vector α and ρ = (ρ,ρ) ∈ R such that for each x ∈ X◦ and for all i ∈ K , j ∈ M, we
have

F

(
x,x;

k∑
i=

∇Fi(x)

)
> –ρd(x,x) ⇒

k∑
i=

α
i (x,x)Fi(x) >

k∑
i=

α
i (x,x)Fi(x),

–
m∑
j=

α
j (x,x)�j(x) <  ⇒ F

(
x,x;

m∑
j=

∇�j(x)

)
< –ρd(x,x).

With the above definition, when the second inequality is satisfied as

–
m∑
j=

α
j �j(x)�  ⇒ F

(
x,x;

m∑
j=

∇�j(x)

)
< –ρd(x,x),

then (F ,�) is said to be quasi-strictly-pseudo-(F ,α,ρ,d)-V -type I at x ∈ X.

http://www.journalofinequalitiesandapplications.com/content/2013/1/435
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Definition  [] A feasible solution x∗ of (FP) is said to be an efficient solution of (FP) if
there does not exist any feasible solution x of (FP) such that

φ(x)≤ φ
(
x∗).

Definition  [] A feasible solution x∗ of (FP) is said to be a weakly efficient solution of
(FP) if there does not exist any feasible solution x of (FP) such that

φ(x) < φ
(
x∗).

Definition  [] Let Y ⊆ Rn. The vector μ ∈ Rn is called a convergent vector for Y at
ν◦ ∈ Y if and only if there exist a sequence {ν̃k} in Y and a sequence {αk̃} of positive real
numbers such that

if lim
k̃−→∞

ν̃k = ν◦ and lim
k̃−→∞

αk̃ = , then lim
k̃−→∞

(ν̃k – ν◦)
αk̃

= μ.

Let C(Y ,ν◦) denote the set of all convergent vectors for Y at ν◦.
We say that the constraint h of (FP) satisfies the constraint qualification at x◦ (see []) if

D ⊆ C
(
X◦,x◦), ()

whereC(X◦,x◦) is the set of all convergent vectors forX◦ at x◦ andD = {d ∈ Rn :∇hj(x◦)d�
 for all j ∈ J}, where J = {j : hj(x◦) = }.

3 Sufficient optimality conditions
The following theorem gives necessary optimality conditions for (FP) that are derived by
Lee and Ho [].

Theorem  ([] Necessary optimality conditions) Let x∗ be a (weakly) efficient solution
of (FP). Assume that the constraint qualification () is satisfied for h at x∗. Then there exist
y∗ ∈Rk , v∗ ∈Rk , and z∗ ∈Rm such that (x∗, v∗, y∗, z∗) satisfies

k∑
i=

y∗
i
[∇fi

(
x∗) – v∗

i ∇gi
(
x∗)] + m∑

j=

z∗
j ∇hj

(
x∗) = , ()

fi
(
x∗) – v∗

i gi
(
x∗) =  for all i = , , . . . ,k, ()

m∑
j=

z∗
j hj

(
x∗) = , ()

hj
(
x∗) ≤  for all j = , , . . . ,m, ()

y∗ ∈ I and z∗ ∈Rm
+ , ()

where I = {y∗ ∈Rk|y∗ = (y∗
 , y∗

, . . . , y∗
k) ≥ , and

∑k
i= y∗

i = }.

In this section, we establish some sufficient optimality conditions for a (weakly) effi-
cient solution, which are inverse of the above theorem with extra assumptions. Because

http://www.journalofinequalitiesandapplications.com/content/2013/1/435
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of these extra assumptions, the correlative duality theorems are various. We deduce the
fractional programming problem into a nonfractional programming problem by using the
Dinkelbach transformation [].

Theorem  (Sufficient optimality condition) Let x∗ be a feasible solution of (FP), and let
there exist y∗ ∈ I ⊂Rk , v∗ ∈Rk , z∗ ∈Rm satisfying conditions ()~() at x∗. Let

Ai(x) = fi(x) – v∗
i gi(x), i = , , . . . ,k,

where A(x) = (A(x),A(x), . . . ,Ak(x)). If
(a) (A,hJ ) is (F ,α,ρ,d)-V-type I at x∗ on X◦,

(b)
∑k

i=
y∗i ρi

αi (x,x
∗) +

∑
j∈J(x∗)

z∗j ρj
αj (x,x

∗) � ,

(c)
∑k

i= y∗
i ∇Ai(x∗) +

∑
j∈J(x∗) z∗

j ∇hj(x∗) = ,
then x∗ is a weakly efficient solution of problem (FP).

Proof Since (A,hJ ) is (F ,α,ρ,d)-V-type I at x∗, we have

Ai(x) –Ai
(
x∗)� F

(
x,x∗;α

i
(
x,x∗)∇Ai

(
x∗)) + ρ

i d
(x,x∗), i ∈ K ,

 = –hj
(
x∗) � F

(
x,x∗;α

j
(
x,x∗)∇hj

(
x∗)) + ρ

j d
(x,x∗), j ∈ J

(
x∗).

Since α
i (x,x∗) > , i ∈ K , and α

j (x,x∗) > , j ∈ J(x∗), the above inequalities along with the
property of sublinearity of F give

Ai(x)
α
i (x,x∗)

–
Ai(x∗)

α
i (x,x∗)

–
ρ
i d(x,x∗)
α
i (x,x∗)

� F
(
x,x∗;∇Ai

(
x∗)), i ∈ K ,

–ρ
j d(x,x∗)

α
j (x,x∗)

� F
(
x,x∗;∇hj

(
x∗)), j ∈ J

(
x∗).

From (c), (), and the property of sublinearity of F , we get

k∑
i=

y∗
i Ai(x)

α
i (x,x∗)

–
k∑
i=

y∗
i Ai(x∗)

α
i (x,x∗)

–
k∑
i=

y∗
i ρ


i d(x,x∗)

α
i (x,x∗)

–
∑
j∈J(x∗)

z∗
j ρ


j d(x,x∗)

α
j (x,x∗)

� F

(
x,x∗;

k∑
i=

y∗
i ∇Ai

(
x∗)) + F

(
x,x∗;

∑
j∈J(x∗)

z∗
j ∇hj

(
x∗)) � .

Then

k∑
i=

y∗
i Ai(x)

α
i (x,x∗)

–
k∑
i=

y∗
i Ai(x∗)

α
i (x,x∗)

�
( k∑

i=

y∗
i ρ


i

α
i (x,x∗)

+
∑
j∈J(x∗)

z∗
j ρ


j

α
j (x,x∗)

)
d(x,x∗).

Now, by using (b), the above inequality becomes

k∑
i=

y∗
i Ai(x)

α
i (x,x∗)

�
k∑
i=

y∗
i Ai(x∗)

α
i (x,x∗)

. ()

http://www.journalofinequalitiesandapplications.com/content/2013/1/435
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If x∗ is not a weakly efficient solution for problem (FP), then there exists x ∈ X◦ such that

fi(x)
gi(x)

<
fi(x∗)
gi(x∗)

= v∗
i for i ∈ K .

From relation () and α
i (x,x∗) > , we have

k∑
i=

y∗
i Ai(x)

α
i (x,x∗)

<
k∑
i=

y∗
i Ai(x∗)

α
i (x,x∗)

,

which contradicts (). Hence, x∗ is a weakly efficient solution of (FP). �

Example Consider the followingmultiobjective nonlinear fractional programming prob-
lem:

Minimize
(x(π – x)ecosx – πe

√



x

,
sin x + x
x + 


,
x + cosx – π


x

)
,

subject to h(x,x) = (π – x) ≤ , h(x,x) = – cosx ≤ ,

where
. X = {(x,x) :  < x < π

 ,  < x < π
 },

. f ≡ (f, f, f) ≡ (x(π – x)ecosx – πe
√


 , sin x + x,x + cosx – π
 ) : X →R,

. g ≡ (g, g, g) ≡ (x,x + 
 ,x) : X →R,

. h = (h,h) : X →R.
The feasible region is X◦ = {(x,x) : π

 ≤ x < π
 ,  < x ≤ π

 }.
By Theorem , we know

A(x,x) =
(
A(x,x),A(x,x),A(x,x)

)
=

(
x(π – x)ecosx –

πe
√



, sin x –



,x + cosx –

π



)
.

It can be seen that (A,h) is (F ,α,ρ,d)-V-type I at x∗ = (π
 ,

π
 ) ∈ X◦ for F(x,x∗;a) =

a�(x – x∗), d(x,x∗) =
√
(x – π

 ) + (x – π
 ), α = (α

 ,α
,α

,α
 ,α

), ρ = (ρ
 ,ρ

,ρ
,ρ

 ,ρ
 ),

v = (v∗
 , v∗

, v∗
) where α

 = , α
 =


x+ π


, α

 =

π , α

 =  = α
 , ρ

 =
–
 , ρ

 =
–
 , ρ

 =

 ,

ρ
 =  = ρ

 , v∗
 = , v∗

 = , v∗
 = . For y∗ = (y∗

 , y∗
, y∗

) = (, 
 ,


 ), z

∗ = (z∗
 , z∗

) = (  ,

 ).

It is easy to see that the relations (b) and (c) in Theorem  are also satisfied at the point
(π
 ,

π
 ). Hence, (π

 ,
π
 ) ∈ X◦ is a weakly efficient solution.

Theorem  (Sufficient optimality condition) Let x∗ be a feasible solution of (FP), and let
there exist y∗ ∈ I ⊂Rk , v∗ ∈Rk , z∗ ∈ Rm satisfying conditions ()~() at x∗. Let

Ai(x) = fi(x) – v∗
i gi(x), i = , , . . . ,k,

where A(x) = (A(x),A(x), . . . ,Ak(x)). If

http://www.journalofinequalitiesandapplications.com/content/2013/1/435
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(a) (y∗A, z∗
J hJ ) is pseudo-quasi-(F ,α,ρ,d)-V-type I at x∗ on X◦,

(b) ρ + ρ � ,
(c)

∑k
i= y∗

i ∇Ai(x∗) +
∑

j∈J(x∗) z∗
j ∇hj(x∗) = ,

then x∗ is a weakly efficient solution of problem (FP).

Proof Assume that x∗ is not a weakly efficient solution of (FP). Then there is a feasible
solution x ∈ X◦ such that

fi(x)
gi(x)

<
fi(x∗)
gi(x∗)

= v∗
i for i ∈ K .

From the above inequality, we have

fi(x) – v∗
i gi(x) < fi

(
x∗) – v∗

i gi
(
x∗) for i ∈ K .

From relation () and α
i (x,x∗) > , for i ∈ K , we obtain

k∑
i=

α
i
(
x,x∗)y∗

i Ai(x) <
k∑
i=

α
i
(
x,x∗)y∗

i Ai
(
x∗). ()

Also, hj(x∗) = , j ∈ J(x∗) yield

∑
j∈J(x∗)

α
j
(
x,x∗)z∗

j hj
(
x∗) = . ()

By using (a), () and () imply

F

(
x,x∗;

k∑
i=

y∗
i ∇Ai

(
x∗)) < –ρd(x,x∗),

F
(
x,x∗;

∑
j∈J(x∗)

z∗
j ∇hj

(
x∗))� –ρd(x,x∗).

Summing up the two inequalities above and the property of sublinearity of F , we have

F

(
x,x∗;

k∑
i=

y∗
i ∇Ai

(
x∗) + ∑

j∈J(x∗)
z∗
j ∇hj

(
x∗))

� F

(
x,x∗;

k∑
i=

y∗
i ∇Ai

(
x∗)) + F

(
x,x∗;

∑
j∈J(x∗)

z∗
j ∇hj

(
x∗))

< –
(
ρ + ρ)d(x,x∗).

Using (b), we obtain

F

(
x,x∗;

k∑
i=

y∗
i ∇Ai

(
x∗) + ∑

j∈J(x∗)
z∗
j ∇hj

(
x∗)) < . ()

http://www.journalofinequalitiesandapplications.com/content/2013/1/435
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From relation (c), we get

F

(
x,x∗;

k∑
i=

y∗
i ∇Ai

(
x∗) + ∑

j∈J(x∗)
z∗
j ∇hj

(
x∗)) = ,

which contradicts (). Thus, the proof is complete. �

If the assumption of pseudo-quasi-type I in Theorem  above is replaced by the strictly
pseudo-quasi-type I, the stronger conclusion that x∗ is an efficient solution of (FP) may be
received. This result is stated as follows.

Theorem  (Sufficient optimality condition) Let x∗ be a feasible solution of (FP), and let
there exist y∗ ∈ I ⊂Rk , v∗ ∈Rk , z∗ ∈Rm satisfying conditions ()~() at x∗. Let

Ai(x) = fi(x) – v∗
i gi(x), i = , , . . . ,k,

where A(x) = (A(x),A(x), . . . ,Ak(x)). If
(a) (y∗A, z∗

J hJ ) is strictly pseudo-quasi-(F ,α,ρ,d)-V-type I at x∗ on X◦,
(b) ρ + ρ � ,
(c)

∑k
i= y∗

i ∇Ai(x∗) +
∑

j∈J(x∗) z∗
j ∇hj(x∗) = ,

then x∗ is an efficient solution of problem (FP).

Theorem  (Sufficient optimality conditions) Let x∗ be a feasible solution of (FP), and let
there exist y∗ ∈ I ⊂Rk , v∗ ∈Rk , z∗ ∈Rm satisfying conditions ()~() at x∗. Let

Ai(x) = fi(x) – v∗
i gi(x), i = , , . . . ,k,

where A(x) = (A(x),A(x), . . . ,Ak(x)). If
(a) (y∗A, z∗

J hJ ) is quasi-strictly-pseudo (F ,α,ρ,d)-V-type I at x∗ on X◦,
(b) ρ + ρ � ,
(c)

∑k
i= y∗

i ∇Ai(x∗) +
∑

j∈J(x∗) z∗
j ∇hj(x∗) = ,

then x∗ is a weakly efficient solution of problem (FP).

Proof Assume that x∗ is not a weakly efficient solution of (FP). We have

k∑
i=

α
i
(
x,x∗)y∗

i Ai(x) <
k∑
i=

α
i
(
x,x∗)y∗

i Ai
(
x∗), ()

∑
j∈J(x∗)

α
j
(
x,x∗)z∗

j hj
(
x∗) = . ()

Since (), (), and (a) hold,

F

(
x,x∗;

k∑
i=

y∗
i ∇Ai(x)

)
≤ –ρd(x,x∗), ()

http://www.journalofinequalitiesandapplications.com/content/2013/1/435
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and

F
(
x,x∗;

∑
j∈J(x∗)

z∗
j ∇hj

(
x∗)) < –ρd(x,x∗). ()

From (c) and the property of sublinearity of F , it yields

 = F

(
x,x∗;

k∑
i=

y∗
i ∇Ai(x) +

∑
j∈J(x∗)

z∗
j ∇hj

(
x∗))

� F

(
x,x∗;

k∑
i=

y∗
i ∇Ai(x)

)
+ F

(
x,x∗;

∑
j∈J(x∗)

z∗
j ∇hj

(
x∗)).

From () and (b), we get

F

(
x,x∗;

k∑
i=

y∗
i ∇Ai(x)

)
� –F

(
x,x∗;

∑
j∈J(x∗)

z∗
j ∇hj

(
x∗)) > ρd(x,x∗) � –ρd(x,x∗),

which contradicts (). Thus, the proof is complete. �

4 Parametric duality theorem
In this section we give some weak, strong, converse duality relations between problems
(D) and (FP). We consider the following parametric duality (D) of (FP).

(D) Maximize v = (v, v, . . . , vk),

subject to

k∑
i=

yi
[∇fi(u) – vi∇gi(u)

]
+

m∑
j=

zj∇hj(u) = , ()

fi(u) – vigi(u) ≥  for all i = , , . . . ,k, ()
m∑
j=

zjhj(u) ≥ , ()

u ∈ X, y ∈ I ⊂ Rk , z ∈Rm
+ , vi ≥  for all i = , , . . . ,k. ()

Parametric duality results have been proven under generalized type I functions assump-
tions.

Theorem  (Weak duality) Let x be a feasible solution of (FP), and let (u, y, z, v) be a fea-
sible solution of (D). Let

Bi(·) = fi(·) – vigi(·), i = , , . . . ,k,

where B(·) = (B(·),B(·), . . . ,Bk(·)). Assume that
(a) (B,h) is (F ,α,ρ,d)-V-type-I at u,

http://www.journalofinequalitiesandapplications.com/content/2013/1/435
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(b)
∑k

i=
yi

αi (x,u)
=  and α

j (x,u) =  for all j ∈ M,

(c)
∑k

i=
yiρi

αi (x,u)
+

∑m
j= zjρ

j � .
Then φ(x)≮ v.

Proof Let x be a feasible solution of (FP), and let (u, y, z, v) be a feasible solution of (D). By
using (a), we have

Bi(x) – Bi(u)� F
(
x,u;α

i (x,u)∇Bi(u)
)
+ ρ

i d
(x,u) for i ∈ K , ()

–hj(u)� F
(
x,u;α

j (x,u)∇hj(u)
)
+ ρ

j d
(x,u) for j ∈ M. ()

Multiplying () by yi
αi (x,u)

� , i ∈ K , and () by zj � , j ∈ M, summing over all i and j
and using α

j (x,u) =  for j ∈M, we get

k∑
i=

yiBi(x)
α
i (x,u)

–
k∑
i=

yiBi(u)
α
i (x,u)

� F

(
x,u;

k∑
i=

yi∇Bi(u)

)
+

k∑
i=

yiρ
i d(x,u)

α
i (x,u)

,

–
m∑
j=

zjhj(u)� F

(
x,u;

m∑
j=

zj∇hj(u)

)
+

m∑
j=

zjρ
j d

(x,u).

Adding the two relations above and the property of sublinearity of F along with (), we
obtain

k∑
i=

yiBi(x)
α
i (x,u)

–
k∑
i=

yiBi(u)
α
i (x,u)

–
m∑
j=

zjhj(u)�
( k∑

i=

yiρ
i

α
i (x,u)

+
m∑
j=

zjρ
i

)
d(x,u),

which by virtue of (c) implies

k∑
i=

yiBi(x)
α
i (x,u)

�
k∑
i=

yiBi(u)
α
i (x,u)

+
m∑
j=

zjhj(u). ()

Suppose, on the contrary, that φ(x) < v. It would exhibit a contradiction.
Assume that φ(x) < v holds, from () and (b), we have

k∑
i=

yiBi(x)
α
i (x,u)

<
k∑
i=

yiBi(u)
α
i (x,u)

+
m∑
j=

zjhj(u).

This contradicts () and the proof is completed. �

Suppose that x∗ is a weakly efficient solution of (FP). Using x∗ and the optimality condi-
tions of (FP), we can find a feasible solution of (D). Furthermore, if we assume that some
reasonable conditions are fulfilled, then (FP) and (D) have the same optimal value, and we
have the following strong duality theorem.

Theorem  (Strong duality) Let x∗ be a weakly efficient solution to problem (FP), and let
the constraint qualification () be satisfied for h at x∗.Then there exist y∗ ∈ I ⊂Rk , z∗ ∈Rm,

http://www.journalofinequalitiesandapplications.com/content/2013/1/435
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and v∗ ∈ Rk such that (x∗, y∗, z∗, v∗) is a feasible solution of (D). If the hypotheses of Theo-
rem  are fulfilled, then (x∗, y∗, z∗, v∗) is a weakly efficient solution of (D) and their efficient
values of (FP) and (D) are equal.

Proof Let x∗ be a weakly efficient solution of (FP). Then there exist y∗ ∈ I ⊂ Rk , z∗ ∈ Rm,
and v∗ ∈Rk such that (x∗, y∗, z∗, v∗) satisfies the relations ()~(). Hence, it is obtained that
(x∗, y∗, z∗, v∗) is a feasible solution of (D). If (x∗, y∗, z∗, v∗) is not a weakly efficient solution
of (D), then there exists a feasible solution (x, y, z, v) of (D), and we have

vi > v∗
i =

fi(x∗)
gi(x∗)

for all i ∈ K .

It follows that φ(x∗) < v, which contradicts the weak duality (Theorem ). Hence
(x∗, y∗, z∗, v∗) is a weakly efficient solution of (D), and the efficient values of (FP) and (D)
are clearly equal to their respective weakly efficient solution points. �

Theorem  (Strict converse duality) Let x∗ and (u∗, y∗, z∗, v∗) be weakly efficient solutions
of (FP) and (D), respectively, with v∗

i =
fi(x∗)
gi(x∗) for all i = , , . . . ,k. Assume that the assump-

tions of Theorem  are fulfilled. Let

Ai(·) = fi(·) – v∗
i gi(·), i = , , . . . ,k,

where A(·) = (A(·),A(·), . . . ,Ak(·)).
Assume that
(a) (A,h) is semistrictly (F ,α,ρ,d)-V-type-I at u∗ with α

i (x∗,u∗) = , i ∈ K ,
α
j (x∗,u∗) = , j ∈M,

(b)
∑k

i= y∗
i ρ


i +

∑m
j= z∗

j ρ

j � .

Then x∗ = u∗.

Proof Assume that x∗ �= u∗. By (), (a), and summing over i and j, we have

k∑
i=

y∗
i Ai

(
x∗) – k∑

i=

y∗
i Ai

(
u∗) > F

(
x∗,u∗;

k∑
i=

y∗
i ∇Ai

(
x∗)) +

k∑
i=

y∗
i ρ


i d

(x∗,u∗),
–

m∑
j=

z∗
j hj

(
u∗) � F

(
x∗,u∗;

m∑
j=

z∗
j ∇hj

(
u∗)) +

m∑
j=

z∗
j ρ


j d

(x∗,u∗).
Adding the two inequalities above and the property of sublinearity of F along with (),
we obtain

k∑
i=

y∗
i Ai

(
x∗) – k∑

i=

y∗
i Ai

(
u∗) – m∑

j=

z∗
j hj

(
u∗) > ( k∑

i=

y∗
i ρ


i +

m∑
j=

z∗
j ρ


j

)
d(x∗,u∗),

which in view of (b) yields

k∑
i=

y∗
i Ai

(
x∗) > k∑

i=

y∗
i Ai

(
u∗) + m∑

j=

z∗
j hj

(
u∗). ()

http://www.journalofinequalitiesandapplications.com/content/2013/1/435
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Since

v∗
i =

fi(x∗)
gi(x∗)

for all i = , , . . . ,k,

from relations (), (), and (), we have

k∑
i=

y∗
i Ai

(
x∗) ≤

k∑
i=

y∗
i Ai

(
u∗) + m∑

j=

z∗
j hj

(
u∗),

which contradicts (). Hence, the proof is completed. �
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