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Abstract

An equilibrium problem based on a projection algorithm is investigated. A strong
convergence theorem for solutions of the equilibrium problems is established in a
nonuniformly smooth Banach space.
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1 Introduction

Recently, equilibrium problems have been studied as an effective and powerful tool for
studying a wide class of real world problems which arise in economics, finance, image re-
construction, ecology, transportation, and networks; see [1-16] and the references therein.
It is well known that equilibrium problems include many important problems in nonlinear
analysis and optimization such as the Nash equilibrium problem, variational inequalities,
complementarity problems, vector optimization problems, fixed point problems, saddle
point problems, and game theory. For the solutions of equilibrium problems, there are
several algorithms to solve the problem; see [17-28] and the references therein. However,
most of these results are obtained in the framework of Hilbert spaces or uniformly smooth
Banach spaces.

The purpose of this paper is to study solution problems of an equilibrium problem based
on a projection algorithm in a nonuniformly smooth Banach space. The organization of
this paper is as follows. In Section 2, we provide some necessary preliminaries. In Sec-
tion 3, a projection algorithm is introduced and the convergence analysis is given. A strong
convergence theorem is established in a nonuniformly smooth Banach space. Applications
of the main results are also discussed in this section.

2 Preliminaries
Let E be a real Banach space, and let E* be the dual space of E. We denote by J the nor-
malized duality mapping from E to 2£" defined by

Jx = {f* € E*: <x,f*> = ||x|* = \V* HZ}’

where (-, -) denotes the generalized duality pairing. A Banach space E is said to be strictly
convex if ||%|| <1 for all x,y € E with ||x|| = ||y|| =1 and x # y. It is said to be uniformly
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convex if lim,_, « ||%, — .|| = O for any two sequences {x,} and {y,} in E such that ||x,|| =
lyx]l =1 and lim,,—, o0 ||x”2ﬂ|| =1. Let Ug = {x € E : ||x|| = 1} be the unit sphere of E. Then

the Banach space E is said to be smooth provided

x+ty|| — ||x
i 1+ 21 = Il

t—0 t

exists for each x,y € Ug. It is also said to be uniformly smooth if the above limit is attained
uniformly for x,y € Ug. It is well known that if E is uniformly smooth, then J is uniformly
norm-to-norm continuous on each bounded subset of E. It is also well known that E is
uniformly smooth if and only if E* is uniformly convex.

Recall that a Banach space E enjoys the Kadec-Klee property if for any sequence {x,} C E
and x € E with x, — x and ||x,|| — |||, then ||x, — x|| = 0 as # — o0o. For more details
on the Kadec-Klee property, the readers can refer to [29] and the references therein. It is
well known that if E is a uniformly convex Banach space, then E enjoys the Kadec-Klee
property. In this paper, we use — and — to denote the strong convergence and weak
convergence, respectively.

Let C be a nonempty subset of E. Recall that a mapping Q : C — E* is said to be mono-

tone iff

(x—9,Qx—-Qy) >0, Vx,yeC.

Q: C — E*issaid to be a-inverse-strongly monotone iff there exists a positive real number
o such that

(x-%Qx—Qy) >allQx-Qyl*>, VxyeC.

Recall also that a monotone mapping Q is said to be maximal iff its graph Graph(Q) =
{(x,f) :f € Qx} is not properly contained in the graph of any other monotone mapping. It
is known that a monotone mapping Q is maximal iff for (x,f) € E x E*, (x—y,f —g) >0
for every (y,g) € Graph(Q) implies f € Qx. An operator Q from C into E is said to be hemi-
continuous if for all x,y € C, the mapping f of [0,1] into E defined by f(¢) = Q(¢x + (1 —£)y)
is continuous with respect to the weak* topology of E*. Let f be a bifunction from C x C
to R, where R denotes the set of real numbers. In this paper, we investigate the following

equilibrium problem. Find p € C such that

fpy)=0, VyeC. (2.1)

We use EP(f) to denote the solution set of equilibrium problem (2.1). That is,

EP(f)={peC:f(p,y) = 0,¥ye C}.

Given a mapping Q: C — E*, let

fxy) ={(Qx,y-x), Vx,yeC.
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Then p € EP(f) iff p is a solution of the following variational inequality. Find p such that

(Qp,y—p) =0, VyeC. (2.2)

In order to study the solution problem of equilibrium problem (2.1), we assume that f
satisfies the following conditions:

(Al) f(x,x)=0,Vx€C;

(A2) fis monotone, ie., f(x,y) +f(y,%) <0, Vx,y € C;

(A3)

limsupf(tz + (1 - t)x,y) <f(x,9), Vx,y,z€C;
£40

(A4) foreachx € C, y— f(x,y) is convex and weakly lower semi-continuous.

As we all know, if C is a nonempty closed convex subset of a Hilbert space H and
Pc : H— C is the metric projection of H onto C, then Pc is nonexpansive. This fact ac-
tually characterizes Hilbert spaces and consequently it is not available in more general
Banach spaces. In this connection, Alber [30] recently introduced a generalized projec-
tion operator Il¢ in a Banach space E which is an analogue of the metric projection P¢ in
Hilbert spaces.

Next, we assume that E is a smooth Banach space. Consider the functional defined by

¢(,y) = %1 - 2(x,Jy) + Iy1?,  Vx,y€E.

Observe that in a Hilbert space H, the equality is reduced to ¢(x,y) = ||x — ||, x,y € H.
The generalized projection I1¢ : E — C is a map that assigns to an arbitrary point x € E
the minimum point of the functional ¢(x,y), that is, [1cx = X, where X is the solution to

the minimization problem
¢(x,x) = min ¢ (y, ).
yeC

The existence and uniqueness of the operator I1¢ follow from the properties of the func-
tional ¢(x, y) and strict monotonicity of the mapping /; see, for example, [29] and [30]. In
Hilbert spaces, I1¢ = Pc. It is obvious from the definition of a function ¢ that

(Il = Iyl < ¢(x,9) < (Il + Ixl)*,  Vx,y €E, (2.3)
and
d(x,9) = p(x,2) + d(z,9) +2(x —2z,Jz - Jy), Vx,y,z€LE. (2.4)

Let T: C — C be a mapping. In this paper, we use F(T) to denote the fixed point set
of T. A point p in C is said to be an asymptotic fixed point of T iff C contains a sequence
{x,} which converges weakly to p such that lim,_, [|*, — Tx,|| = 0. The set of asymp-
totic fixed points of T will be denoted by F(T). T is said to be relatively nonexpansive iff
E(T) = E(T) Z @ and ¢(p, Tx) < ¢(p,x) forall x € C and p € F(T). T is said to be quasi-¢-
nonexpansive iff F(T) # @ and ¢(p, Tx) < ¢p(p,x) for allx € C and p € F(T).
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Remark 2.1 The class of quasi-¢-nonexpansive mappings is more general than the class
of relatively nonexpansive mappings which requires the restriction: F(T) = E(T).

Remark 2.2 The class of quasi-¢-nonexpansive mappings is a generalization of quasi-
nonexpansive mappings in Hilbert spaces.

In this paper, we investigate the solution problem of equilibrium problem (2.1) based
on a projection algorithm. A strong convergence theorem for solutions of the equilibrium
problems is established in a reflexive, strictly convex, and smooth Banach space such that
both E and E* have the Kadec-Klee property.

In order to give our main results, we need the following lemmas.

Lemma 2.3 [30] Let C be a nonempty, closed, and convex subset of a smooth Banach space
E,and x € E. Then xo = lcx if and only if

(o —y,Jx —Jxo) =0, VyeC.

Lemma 2.4 [30] Let E be a reflexive, strictly convex, and smooth Banach space, let C be a
nonempty, closed, and convex subset of E, and x € E. Then

¢, Mex) + ¢(Mex, x) < d(y,x), VyeC.
Lemma 2.5 [30] Let E be a reflexive, strictly convex, and smooth Banach space. Then
P(xy)=0 < x=y.
The following lemma can be obtained from [15] and [31].

Lemma 2.6 Let C be a closed convex subset of a smooth, strictly convex, and reflexive
Banach space E. Let f be a bifunction from C x C to R satisfying (A1)-(A4). Let r > 0 and
x € E. Then

(a) There exists z € C such that

1
flzy)+ ;(J’—ZJZ—]x) >0, VyeC.

(b) Define a mapping T, : E — C by

Syx = {ze C:flz,y) + 1(y—z,]z—]x),\v’yec}.

r

Then the following conclusions hold:

(1) F(S)) = EP(f);

(2) S, is a firmly nonexpansive-type mapping, i.e., for all x,y € E,
<er -S:9,J8:x _]Sry> =< (er -8y, Jx _]y>;

(3) S, is single-valued,;
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¢(q’ Srx) + ¢(Spx,x) < ¢(%x)f Vg e F(S,);

(5) EP(f) is closed and convex;
(6) S, is quasi-p-nonexpansive.

3 Main results

Theorem 3.1 Let E be a reflexive, strictly convex, and smooth Banach space such that both
E and E* have the Kadec-Klee property. Let C be a nonempty, closed, and convex subset of E.
Let f be a bifunction from C x C to R satisfying (A1)-(A4) such that EF(f) is nonempty. Let
{x,,} be a sequence generated in the following manner:

xo € E  chosen arbitrarily,

G =C,

x1 = I %o,

v, € C such that f(y,,y) + i(_y—yrn]yn -Jxu) >0, VyeC,
Cu={z € Cu:9(2,yn) = P(z,%4)},

Xptl = HC,Hlxly

where {r,} is a real sequence such that liminf,_, . r, > 0. Then the sequence {x,} converges
strongly to Igpx1, where Igpy) is the generalized projection from E onto EP(f).

Proof First, we show that C, is closed and convex, that the projection on it is well defined.
It is obvious that C; = C is closed and convex. Suppose that C,, is closed and convex for
some m € N. We next prove that C,,,; is also closed and convex for the same m. Let For
21,22 € Cyui1, We see that z1, 2y € Cy,. It follows that z = tz; + (1 — t)z, € C,,,, where t € (0,1).
Notice that

P(z1,9m) < P21, %) and - (21, y4) < P21, %m).
The above inequalities are equivalent to

2(z1, o = Jym) < 1%l = 17l (3.1)
and

2(z0, Jm = Jym) = 16m® = 11y I*. (3.2)
Multiplying ¢ and (1 — £) on both sides of (3.1) and (3.2), respectively, yields that

22, = ) < 1% 1> = 1yl
That is,
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This gives that C,,,; is closed and convex. Then C,, is closed and convex. Now, we are in
a position to prove that EP(f) C C,. EP(f) C C; = C is obvious. Suppose that EP(f) C C,,
for some m € N. Fix p € EP(f) C C,,. It follows that

¢(p,ym) = ¢(P, Srmxm) =< ¢(p>xm),

which implies that p € C,,1. This proves that EP(f) C C,. In the light of x,, = [1¢, %1, from
Lemma 2.3, we find that (x, — z,Jx; — Jx,) > 0 for any z € C,,. It follows from EP(f) C C,
that

(g —w, Jx1 — Jx,) >0, Vwe EP(f). (3.3)
It follows from Lemma 2.4 that

DXy x1) = ¢(chx1,x1)
< ¢TI pryx1,%1) — QT (1) %1, %)
< @My, 21).
This implies that the sequence {¢(x,,x;)} is bounded. It follows from (2.3) that the se-
quence {x,} is also bounded. Since the space is reflexive, we may assume that x,, — x.

Since C, is closed and convex, we find that x € C,,. On the other hand, we see from the
weak lower semicontinuity of the norm that

P, x1) = 1X)1> = 2(x, 1) + || 1>

< liminf([[x, 1> = 24, Jx1) + [l21]]%)
n— 00
= liminf ¢ (x,,, x1)

S hm Sup ¢(xn1 xl)
n—00

= d)(?_c)xl)y

which implies that lim,,_, o, ¢ (x,,, %1) = ¢ (%, x1). Hence, we have lim,,_, . ||x,,]| = ||X]. In view
of the Kadec-Klee property of E, we find that x, — X as n — 0o. Next, we show that p €
EF(f). In view of construction of x,.,1 = Igp(rx; € Cp1 C Cy, we find that

¢(xn+l:xn) = ¢(xn+l; HCnxl)
< ¢(xn+17xl) - ¢(chx1’xl)
= 01, %1) — DX, 1) (3.4)
Since %, = I¢,x and %, = ¢, %1 € Cu C Cy, we arrive at @(x,,%1) < @(Xyr1,%1).

This shows that {¢(x,,x1)} is nondecreasing. It follows from the boundedness that

lim,,—, o @ (x, x1) exists. This implies from (3.4) that

lim ¢(x,.1,%,) = 0. (3.5)
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Since %41 = T¢,,, %1 € Cpi1, We arrive at @(X,41,¥4) < @(X41,%,). It follows that

lim ¢(xn+1yyn) =0.
n—00

In view of (2.3), we see that lim,_, oo (||%,1]l — ll¥xll) = 0. This in turn implies that
limy,, o [|¥4]l = |1%]|. It follows that lim,,—, o ||[/y, || = |/%||. This implies that {Jy,} is bounded.
Note that both E and E* are reflexive. We may assume that Jy, — y* € E*. In view of the
reflexivity of E, we see that J(E) = E*. This shows that there exists an element y € E such
that Jy = y*. It follows that

¢(xn+l:yn) = ||xn+1||2 = 2{%ps1,Jyn) + ||yn||2

= e 1? = 2001, ) + 1yl

Taking liminf,_, o on both sides of the equality above yields that

0> &2 - 2(®*) + |y’

= 1% = 2& ) + 12
= 172 - 245 ) + Iyl
=P, ).

That is, x = y, which in turn implies that y* = Jx. It follows that Jy, — Jx € E*. Since E*
enjoys the Kadec-Klee property, we obtain that lim,,_,» /v, = Jx. Notice that

xn = Jyull < xn =TXN + 1% = Jynll-

It follows that lim,,_, « ||Jx;, — Jy,|| = 0. From the restriction on the sequence {r,}, we find
that

lim W =Tyl
im ———— =

n—00 .

0. (3.6)
In view of y,, = S,,,x,,, we see that

1
SOy + r—(y—yn,]yn ~Jxy) >0, VyeC.

It follows from (A2) that

n - n 1
lly = yull M > r—<y—yn,]yn = Jxn) = ~fwy) = fy.), VYyeC.

n

By taking the limit as # — oo in the above inequality, from (A4) we obtain that
fn,x%) <0, VyeC.

For 0 <t <1 and y € C, define y, = ty + (1 — t)x. It follows that y, € C, which yields that
f,x) <0. It follows from (Al) and (A4) that

0=fey) <tfyey) + A=t)f 7,%) < tf 5, ).
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That is,

f()’t,y) Z 0

Letting ¢ | 0, we obtain from (A3) that f(x,y) > 0, Vy € C. This implies that x € EP(f).
Finally, we prove that X = ITgp(n¥;. Letting # — oo in (3.3), we see that

(X —w,Jx; —Jx) >0, VYw e EP(f).
In the light of Lemma 2.3, we find that x = ITgp(sx1. This completes the proof. O

We remark that L”, where p > 1 is a space which satisfies the restriction in Theorem 3.1.
Since every uniformly convex and uniformly smooth Banach space is a reflexive, strictly
convex, and smooth Banach space such that both £ and E* have the Kadec-Klee property,
we find from Theorem 3.1 the following result.

Corollary 3.2 Let E be a uniformly convex and uniformly smooth Banach space. Let C be
a nonempty, closed, and convex subset of E. Let f be a bifunction from C x C to R satisfying
(A1)-(A4) such that EF(f) is nonempty. Let {x,} be a sequence generated in the following

manner:

xo € E  chosen arbitrarily,

G =¢C,

x1 = I %o,

yu € C such that f (y,,y) + i(y—ym]yn —Jxu) 20, VyeC,
Cun={z€ Cy:9(2,y4) = P(2, %)},

Xne1 = g, %1,

where {r,} is a real sequence such that liminf,_, . r, > 0. Then the sequence {x,} converges
strongly to I gpyyx1, where Igpy) is the generalized projection from E onto EP(f).

In the framework of Hilbert spaces, we find from Theorem 3.1 the following result.

Corollary 3.3 Let E be a Hilbert space. Let C be a nonempty, closed, and convex subset of E.
Let f be a bifunction from C x C to R satisfying (A1)-(A4) such that EF(f) is nonempty. Let
{x,.} be a sequence generated in the following manner:

xo0 € E  chosen arbitrarily,

G =C,

x1 = P %0,

¥ € C such that f (y,,y) + i(y—yn,yn -x,) >0, VyeC,

Conn={z€Cpy:llz=yal* < llz—xal?},

Xn+l = PCn+1x1!

where {r,} is a real sequence such that liminf,_, r, > 0. Then the sequence {x,} converges
strongly to Pepyx1, where Pep(r) is the metric projection from E onto EP(f).
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Proof Notice that ¢(x,7) = [|lx — y||2. The generalized metric projection is reduced to the

metric projection and the normalized duality mappingJ is reduced to the identity mapping

I in Hilbert spaces. The result can be obtained from Theorem 3.1 immediately. O
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