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1 Introduction

Let T be a locally compact Hausdorff space and let A be a C*-algebra of operators on
some Hilbert space H. We say that a field (x;).cr of operators in A is continuous if the
function ¢ > x; is norm continuous on 7. If in addition u is a Radon measure on 7T and
the function ¢ — ||| is integrable, then we can form the Bochner integral [, x,d(t),

which is the unique element in A such that

w( [T xtdum) _ /T o) dpu(t)

for every linear functional ¢ in the norm dual .A*.

Assume further that there is a field (¢;):cr of positive linear mappings ¢; : A — B from
A to another C*-algebra B of operators on a Hilbert space K. We recall that a linear map-
ping ¢ : A — B is said to be positive if ¢(x) > 0 for all x > 0. We say that such a field
(¢¢)ter is continuous if the function ¢ — ¢,(x) is continuous for every x € A. Let the
C*-algebras include the identity operators and let the function ¢ + ¢,(1y) be integrable
with [ ¢(1y) dju(t) = k1g for some positive scalar k. If [ ¢,(1y7) dju(t) = 1k, we say that a
field (¢y)ser is unital.

Let B(H) be the C*-algebra of all bounded linear operators on a Hilbert space H. We
define bounds of a self-adjoint operator x € B(H) by

m, = inf (x€,&) and M, := sup (x§,&) 1)
l§l=1 lEl=1

for & € H. If Sp(x) denotes the spectrum of x, then Sp(x) C [m,, M,].
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For an operator x € B(H), we define the operator |x| := (x*x)"/2. Obviously, if x is self-
adjoint, then |x| = (x?)V/2.

Jensen’s inequality is one of the most important inequalities. It has many applications in
mathematics and statistics and some other well-known inequalities are its special cases.

Let f be an operator convex function defined on an interval I. Davis [1] proved the so-
called Jensen operator inequality

f(¢W) <o(f)), (2)

where ¢: A — B(K) is a unital completely positive linear mapping from a C*-algebra A to
linear operators on a Hilbert space K, and « is a self-adjoint element in .4 with spectrum
in I. Subsequently, Choi [2] noted that it is enough to assume that ¢ is unital and positive.

Mond, Pecari¢, Hansen, Pedersen et al. in [3—6] studied another generalization of (2) for
operator convex functions. Moreover, Hansen et al. [7] presented a general formulation of
Jensen’s operator inequality for a bounded continuous field of self-adjoint operators and a
unital field of positive linear mappings:

f ( /T ¢t(xt)du(t)> < /T o (f(x0) du(t), 3)

where f is an operator convex function.

There is an extensive literature devoted to Jensen’s inequality concerning different re-
finements and extensive results, e.g., see [8—20]. Mici¢ et al. [21] proved that the discrete
version of (3) stands without operator convexity of f under a condition on the spectra
of operators. Recently, Mici¢ et al. [22] presented a discrete version of refined Jensen’s in-
equality for real-valued continuous convex functions. A continuous version is given below.

Theorem 1 Let (x;);er be a bounded continuous field of self-adjoint elements in a unital
C*-algebra A defined on a locally compact Hausdor(f space T equipped with a bounded
Radon measure . Let my and M;, m, < M, be the bounds of x;, t € T. Let (¢;)ic1 be a
unital field of positive linear mappings ¢, : A — B from A to another unital C*-algebra B3.
Let

(my, M) N [y, M) =0, teT, anda<b,
where m, and M, m, < M,, are the bounds of the operator x = fT d(x) du(t) and

a=sup{M;: M; <m,,t €T}, b=inf{m;: my > M,,t € T}.

Iff : I — R is a continuous convex (resp. concave) function provided that the interval I
contains all m;, M;, then

f( / mxt)du(t)) < / $0(F () dpa(t) — 875 < / 60 (F(x)) da)
T T T

(resp.

f( / ¢t(xt)du«(t)) > / b0 () dpa(t) — 875 > / 60(F () dua(2)) @)
T T T
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holds, where

8 = 8 (m, i) = f (i) + f () - 2f<ﬁ7 ;M)

<resp. 8 = 8, (i, M) = 2f<ﬁ’+TM) — f () - f(M)),
T 1 rh+1\7[1

X =x(m, )_§1<_1\_/[—rhx_ ) K

and m € [a,m,), M € [M,,b), i < M, are arbitrary numbers.

The proof is similar to [22, Theorem 3] and we omit it.

On the other hand, Mond, Pecari¢, Furuta et al. in [6, 23—-27] investigated converses
of Jensen’s inequality. For presenting these results, we introduce some abbreviations. Let
f:[mM] — R, m <M. Then a linear function through (m, f(m)) and (M, f(M)) has the
form h(z) = krz + Iy, where

ks ;:fimﬁ :J;im) and [y = 2 Zmf () (”;/)[ :’Zf Wy, 5)

Using the Mond-Pecari¢ method, in [27] the following generalized converse of Jensen’s

operator inequality (2) is presented

F[¢(f(A)).g(¢(A)] = max Flkez+1r,g(2)]15, (©)

m=<z<M

for a convex function f defined on an interval [m, M], m < M, where g is a real-valued
continuous function on [m, M], F(u, v) is a real-valued function defined on U x V, operator
monotoneinu, U D f[m,M], V D g[m, M], ¢ : H, — Hj, is a unital positive linear mapping
and A is a self-adjoint operator with spectrum contained in [m, M].

A continuous version of (6) and in the case of fT ¢:(1y) du(t) = klg for some positive
scalar k, is presented in [28]. Recently, Mici¢ et al. [29] obtained better bound than the

one given in (6) as follows.

Theorem 2 [29, Theorem 2.1] Let (x:):c7 be a bounded continuous field of self-adjoint
elements in a unital C*-algebra A with the spectra in [m, M], m < M, defined on a locally
compact Hausdorff space T equipped with a bounded Radon measure |1, and let (¢p;)icT be
a unital field of positive linear maps ¢, : A — B from A to another unital C*-algebra B.
Let my and M,, m, < My, be the bounds of the self-adjoint operator x = [ ¢;(x,) du(t) and
f:mM]—->R,g:[m,M;] >R, F:UxV — R, where f([m,M]) C U, g([m,, My]) SV
and F is bounded.

Iff is convex and F is an operator monotone in the first variable, then

F|:/ ¢t(f(xt)) du(ﬂ:g(/ &e(xe) dﬂ(t)>i| < Glg = Clg, (7)
T T
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where constants Cy = C,(F,f,g, m, M, m, M) and C = C(F,f,g, m, M) are

Ci= sup F[kfz + lf,g(z)]

mx<z<Mjx

= sup  Flpf(m)+(1-p)f(M),g(pm+(1-p)M)],

M-My M-my
M=m <P=m

C= sup Flkz+1l;,g(2)]

m<z<M

= sup F [pf (m) + 1 = p)f (M), g(pm + 1 - p)M)].
<p=

Iff is concave, then reverse inequalities are valid in (7) with inf instead of sup in bounds
C1 and C.

In this paper, we present refined converses of Jensen’s operator inequality. Applying

these results, we further refine selected inequalities with power functions.

2 Main results

In the following we assume that (x;),c7 is a bounded continuous field of self-adjoint el-
ements in a unital C*-algebra .4 with the spectra in [m, M], m < M, defined on a locally
compact Hausdorff space T equipped with a bounded Radon measure x and that (¢;)er
is a unital field of positive linear mappings ¢, : A — I3 between C*-algebras.

For convenience, we introduce abbreviations ¥ and dr as follows:

m+M

Xt — 1x

;E%xmbz(m,M) = l11( - ; Ld’t( )d'u(t)’ (8)

2 M-m

where m, M, m < M, are some scalars such that the spectra of x;, t € T, are in [m, M];

8 = 8p(m, M) := f (m) + £ (M) _2f<”’;M>, )

where f : [m, M] — R is a continuous function.

Obviously, mly < x; < M1y implies —@11.1 <x — m;MlH < A%IH for t € T and

J7 bl — m;M1H|)d,u(t) < @fT(bt(lH)d,u(t) = @11@ It follows ¥ > 0. Also, if f is

convex (resp. concave), then §; > 0 (resp. &y < 0).

To prove our main result related to converse Jensen’s inequality, we need the following

lemma.

Lemma 3 Let f be a convex function on an interval I, m, M € I and p, p, € [0,1] such that
pr1+ps =1 Then

min{pl,p2}|:f(m) +f (M) —Zf(m ;M):|

< pif (m) + pof (M) — f(prm + p2M)

< max{py, pz}l:f(m) (M) - 2f<m ;M >] (10)
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Proof These results follow from [30, Theorem 1, p.717] for n = 2. For the reader’s conve-
nience, we give an elementary proof of (10).

Let a; < b;, i = 1,2, be positive real numbers such that A = a; + a; < B = by + b,. Using
Jensen’s inequality and its reverse, we get

Bf(M> _ Af<M>

B A
(by —a))m + (by — ax))M
< (B—A)f< B 4 )

< (br —a1)f (m) + (by — a2)f (M)
= bif (m) + baofa (M) = (arf (m) + azfo(M). (11)

Suppose that 0 < p; < p2 <1, p1 + p2 = 1. Replacing a; and a; by p; and p,, respectively,
and putting b; = b, = po, A =1and B = 2p, in (11), we get

m+ M
2

2pi( ) P (m) + paf ) < paf (m) + pafu(M) — (paf ) + pafs(OD),

which gives the right-hand side of (10). Similarly, replacing b; and b, by p; and p,, respec-
tively, and putting a; = a3 = p1, A = 2p; and B =1 in (11), we obtain the left-hand side of

(10).
If p1 =0,ps =1o0rp; =1, pp = 0, then inequality (10) holds, since f is convex. If p; = p; =
1/2, then we have an equality in (10). O

The main result of an improvement of the Mond-Pecari¢ method follows.

Lemma 4 Let (x;)se1, (¢1)ieT, m and M be as above. Then

/ 6o (x0) dpn(t) < ks / o) () + [l — % < ks / bue)du®) + e (12)
T T T

Sfor every continuous convex function f : [m, M] — R, where'x and 8 are defined by (8) and
(9), respectively.

Iff is concave, then the reverse inequality is valid in (12).

Proof We prove only the convex case. By using (10) we get

Flpim + paM) = puf m) + pof M) — min{pr,ps) [f(m) L f M) - 2f(’” o )] 13)

for every p1, p> € [0,1] such that p; + p, = 1. Let functions py, p : [m, M] — [0,1] be defined
by

P()— ‘ ()_
z ) p2\zZ
! M—-m 2 M -

Then, for any z € [m, M], we can write

M-z zZ—m

f(2) :f(M— o+ M—mM> =f(p1(@)m + ps(2)M).
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By using (13) we get
M-z zZ—m - m+M
10 = 3=t = ) 2| m ) -2 ( M5 )] a4)
—m M —wmi 2
where
~_1 1 m+M
2T T M-m 2 |
since
M-z z-m 1 1 m+M
min , =— - z— .
M-m M-m 2 M-m 2

Now since Sp(x;) € [m, M], by utilizing the functional calculus to (14), we obtain

M —x; : — - M
S = M+ 2 pan —xt[f(m) eron -2 (" )}
where
~ 11 1 m+M1
xt_i H—M_mxt— ) H‘-

Applying a positive linear mapping ¢;, integrating and using [, (1) du(t) = 1¢, we get
the first inequality in (12) since

m+M

Xt — 1]—[

~ ~ 1 1
X = /T¢t(xt) du(t) = 511( M om /T(Pt( )du(t).

By using that §/% > 0, the second inequality in (12) holds. O

We can use Lemma 4 to obtain refinements of some other inequalities mentioned in the

introduction. First, we present a refinement of Theorem 2.

Theorem 5 Let m, and M,, m, < M, be the bounds of the operator x = fT de(x) d ()
and let mz be the lower bound of the operator %. Let f : [m,M] - R, g : [m,, M,] - R,
F:U x V — R, where f([m,M]) C U, g([m,, M,]) C V and F is bounded.

Iff is convex and F is operator monotone in the first variable, then

FUT o (f (x2)) du(t),g(/T ¢t(x¢)du(t))}

< F|:kfx +l— 5ﬂég</T & (%) dﬂ(ﬂ)]
=<

< sup F[kfz +1l - Sfm;,g(z)]lK sup F[kfz + lf,g(z)]lK. (15)

myx<z<Mx myx<z<My

Iff is concave, then the reverse inequality is valid in (15) with inf instead of sup.
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Proof We prove only the convex case. Then & > 0 implies 0 < §;mzlx < 8¢%. By using (12)
it follows that

/ q)t(f(xt)) Ap(t) < kex + I — 8% < kg + Iy — Spmizl e < kex + Uy
T
Using operator monotonicity of F(-,v) in the first variable, we obtain (15). d

3 Difference-type converse inequalities

By using Jensen’s operator inequality, we obtain that

ag( /T ¢t(xt)du(t)) < /T 00 (F(x) dpa(6) (16)

holds for every operator convex function f on [m, M], every function g and real number
a such that g < f on [m, M]. Now, applying Theorem 5 to the function F(u,v) = u — av,

a € R, we obtain the following converse of (16). It is also a refinement of [29, Theorem 3.1].

Theorem 6 Let m, and M,, m, < M,, be the bounds of the operator x = fT de(xs) da(t)
and f: [m,M] — R, g: [m,, M,] = R be continuous functions.
Iff is convex and a € R, then

/ ¢t(f(xt)) du(t) - Ofg(/ oe(xr) dM(t)> = ma)gw {ku + lf - Ofg(z)}lk - (Sf%- (17)
T T my=<z=<My

Iff is concave, then the reverse inequality is valid in (17) with min instead of max.

Remark1 (1) Obviously,

/ ¢t(f(xt)) au(t) - ag(/ b(xe) dﬂ(t))
T T

< max {kfz +1 - ozg(z)}lK -8y < mxr;l;l;(Mx{kfz +1lr - ag(z)}lK

My <z<My
for every convex function f, every « € R, and m;z1x <75 <X, where mi; is the lower bound
of %.
(2) According to [29, Corollary 3.2], we can determine the constant in the RHS of (17).

(i) Let f be convex. We can determine the value C, in

/ ¢t(f(xt)) au(t) - ag(/ ¢(xr) dﬂ(t)) < Colg — 8%
T T

as follows:

« ifa <0, gis convex or a > 0, g is concave, then

Cy = max{kfmx +1lr —ag(my), keM, + I — ag(Mx)}; (18)
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« ifa <0, g is concave or « > 0, g is convex, then

kemy + Iy —ag(my)  if agl (z) > kf for every z € (m,, M,),
| kpzo + b —aglzo)  if agl(z0) < kr < ag,(20) 19)
¢ for some zq € (m,, M,),

keMy + I —ag(M,)  if ag, (2) < kr for every z € (m,, M,).

(ii) Let f be concave. We can determine the value ¢, in

Colg — 8% < /Td’:(f(xt)) du(t) - ag (fT be(xe) dM@))

as follows:

« ifa <0, gis convex or a > 0, g is concave, then ¢, is equal to the right-hand side in
(19) with reverse inequality signs;

« ifa <0, g is concave or « > 0, g is convex, then ¢, is equal to the right-hand side in
(18) with min instead of max.

Theorem 6 and Remark 1(2) applied to functions f(z) = z” and g(z) = zZ give the following
corollary, which is a refinement of [29, Corollary 3.3].

Corollary 7 Let (x:)icT be a field of strictly positive operators, let m, and My, m, < M, be

the bounds of the operator x = fT &(xe) diu(t). Let X be defined by (8).
(i) Let p € (—00,0] U [1,00). Then

/ ¢t(xf)du(t)—a< f ¢t(xt>du<f>>q5CZIK—(m”+M"—21‘P<m+M>”)%,
T T

where the constant C} is determined as follows:
e ifa<0,q€(-00,0]U[l,00) ora >0, q€(0,1), then

C, = max{ktpmx + 1w —aml, kp My + by — ong}; (20)

e ife<0,q€(0,1) ora>0,q € (—00,0] U [1,00), then

ktpmx + lr}’ - am?c lf (aq/kﬂ’)l/(liq) = my,
Cy =l + alg - D aglkpy)?YD  if m, < (aqlkp)’"-D < M,, (21)
ko M + L — aM? if (aqlkp)V0=0 > M,,

where kp := (MP —m?)|(M — m) and lp := (Mm? — mMP)|(M — m).
(i) Let p € (0,1). Then

q
)

¢l + (2P 0m + MY — P — MP)E < /T 0 () du(t) — ( /T 6:(0) du(t)>

where the constant c), is determined as follows:
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e ifa<0,q€(-00,0]U[1,00) ora >0, q € (0,1), then c, is equal to the right-hand side
in (21);
o ifa<0,q€(0,1)ora>0,q e (—00,0]U[1,00), then c, is equal to the right-hand side

in (20) with min instead of max.

Using Theorem 6 and Remark 1 for g = f and « = 1 and utilizing elementary calculations,

we obtain the following converse of Jensen’s inequality.

Theorem 8 Let m, and M,, m, < M,, be the bounds of the operator x = fT de(x) da(t)
and let f : [m, M] — R be a continuous function.
Iff is convex, then

0< / ¢ (f(xe)) d () —f(f ¢z(xt)du(t)> < Clx - &%, (22)
T T
where'¥ and 8¢ are defined by (8) and (9), respectively, and

C= max {kfz+lf—f(z)}‘ (23)

My <z<My

Furthermore, if f is strictly convex differentiable, then the bound Cly — &% satisfies the

following condition:
0 < Clg — &% < {f(M) — f(m) — f'(m)(M — m) — 8 mz}1k,

where mz is the lower bound of the operator X. We can determine the value C in (23) as
follows:

C = krzo + Iy — f(20), (24)
where

My if f'(my) > kf;
20= "N ky) i f(ma) < Ky < (M), (25)

In the dual case, when f is concave, the reverse inequality is valid in (22) with min instead
of max in (23). Furthermore, if f is strictly concave differentiable, then the bound Cly — 8%

satisfies the following condition:
(M) f(m) —f (m)(M — m) = §;mz}1x < Clg — 8% < 0.

We can determine the value C in (24) with zy, which equals the right-hand side in (25) with

reverse inequality signs.

Example 1 We give examples for the matrix cases and T = {1,2}. We put f(¢) = £*, which
is convex, but not operator convex. Also, we define mappings ®;, &, : M3(C) — M,(C) by
®1((agh=ij<3) = 3(@y)1=ij<2, P2 = ®1 and measures by u({1}) = u({2}) = 1.

Page 9 of 20
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Figure 1 Refinement for two operators and a convex function f.

(I) First, we observe an example without the spectra condition (see Figure 1(a)). Then

we obtain a refined inequality as in (22), but do not have refined Jensen’s inequality.

IfXx;=2
0

—_ O
= O O
— = =

1 0 O 1 o
and X, =2]l0 0 0], thenX:2<0 )
0 0 O

and n1y = -1.604, My = 4.494, my = 0, My = 2, m = —1.604, M = 4.494 (rounded to three

decimal places). We have

(®1(X1) + B (Xn))* = (106 g) Z (zg ;2) = ®y(X}) + @2(X7)

and

40 24

111.742  39.327
39.327 142.858

243.758 0
0 227.758 )’

80 40
.01 + 0,01 (% 30)
<@ (X)) + Da(X3) + CL - 8X = (

< (<I>1(X1) + <I>2(X2))4 +Cl, = (

since C =227.758, §; = 405.762, X = ( %2> ~907),

(II) Next, we observe an example with the spectra condition (see Figure 1(b)). Then we

obtain a series of inequalities involving refined Jensen’s inequality and its converses.

-4 1 1 5 -1 -1
1{1 0
fxi=11 -2 -1 and X,=]-1 2 1|, thenX=-
2\0 O
1 -1 -1 -1 1 3

and n1 = —4.866, M; = —0.345, my = 1.345, M, = 5.866, m = —4.866, M = 5.866, a =
—0.345, b = 1.345 and we put m = a, M = b (rounded to three decimal places). We
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have

(®1() + D2(X))* =

—255  117.856
6415 -255

< P(X) + 82 (X:) 255 118 5)

731.649 —162.575)

. - 5
< (D1(X7) + Dy (X +CI, —6¢(m,M)X
(®10) + ®2(X2)) 2= & (m, M) ~162.575 32515

) 872.471 0
< (@106) + 2(X))" + CIy - ( 0 872 409) '

< @1 (X}) + Do (X7) - 8f(a, D)X (639 921 255 )

: % 0.5 0.325 -0.097 s
since &(a,b) = 3.158, X = (% ° ), 8;(m,M) = 1744.82, X = (52> ~99%7) and C =
872.409.

Applying Theorem 8 to f(t) = , we obtain the following refinement of [29, Corol-
lary 3.6].

Corollary 9 Let (x;);c1 be a field of strictly positive operators, let m, and M,, m, < M,, be
the bounds of the operator x = fT ¢(xe) diu(t). Let X be defined by (8). Then

0</¢t ) du(t) - </ delxe) dpn(t ))p

< Cmy, My, m, M, p)1gc — (m? + MP — 27 (m + M)? )%

< C(my, My, m, M, p)1x < C(m, M, p)1g
forp ¢(0,1), and

C(Wl,M:P)lK =< E(n'l;cr]v[x; Wl,MrP)lK

< c(my, My, m, M, p)1g + (21_p(m + MY —m? —M”)?c'

/«m ) du) (qutxt)du ))pso

for p €(0,1), where

kpmy + L —Wlfc] ifpmi_l > ke,
C(my, M, m, M, p) = C(m, M, p) ifpm§_1 <k SPMfc’_l: (26)
koM, +lp — M2 if pME™ < Ky,

and c(my, My, m, M, p) equals the right-hand side in (26) with reverse inequality signs.

C(m, M, p) is the known Kantorovich-type constant for difference (see, i.e., [6, §2.7]):

M? =P NV M — mMp
) —— forpeR.

C(W:M;P)Z(P—l)(m Mo
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4 Ratio-type converse inequalities
In [29, Theorem 4.1] the following ratio-type converse of (16) is given:

/ o) du(®) < max {"f“’f } ( / o) (e ) 27)
T my<z<My

where f is convex and g > 0. Applying Theorem 5 and Theorem 6, we obtain the following

two refinements of (27).

Theorem 10 Let m, and M,, m, < M,, be the bounds of the operator x = fT b)) da(t)
and let f : [m,M] — R, g: [m,, M;] — R be continuous functions.
Iff is convex and g > 0, then

[otrenane < mx 1o [ oiodu) -55 28)
and
ku + lf (SfWIx
/T b (f(x0)) dpu(t) < mxrgngx{—g(z } ( f bu(x,) A t)) (29)

where % and 85 are defined by (8) and (9), respectively, and ms is the lower bound of the
operator X. If f is concave, then reverse inequalities are valid in (28) and (29) with min
instead of max.

krz+l,
fEYS :
@ }. Then there is zg €

Proof We prove only the convex case. Let a; = max,,, <z<a, {

[m,, M,] such that a7 = k’;g(;lf and k’;;lf <o forall z € [m,, M,]. It follows that krzy + [y —

a1g(z0) = 0 and krz + Iy — a18(2) < O for all z € [m,, M,]. So,

max {kez + 1l —aig(z)} =

My <z=<My

By using (17), we obtain (28). Inequality (29) follows directly from Theorem 5 by putting
F(u,v) = v 12y 12, O

Remark 2 (1) Inequality (28) is a refinement of (27) since §;% > 0. Also, (29) is a refine-
ment of (27) since mz > 0 and g > 0 implies

{kfz+lf—8fm;}< {kfz+lf}
g(2) T me=z=My | glz) )’

max
My <z<Mjy

(2) Let the assumptions of Theorem 10 hold. Generally, there is no relation between the
right-hand sides of inequalities (28) and (29) under the operator order (see Example 2).
But, for example, if g( fT ¢,(xt du(t)) < g(zo)lk, where zg € [m,, M,] is the point where it

achieves max,, <;<r, { f; Z(;f }, then the following order holds:

/ $u(f(x) dpu(t) < max {kf“lf} ( / o) )>—5f35
T My <z<Mjy

k lr — §;miz
< max {M} (/ be(xy) du( t))
My <z<My g(2)
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Example 2 Let f(¢) = g(t) = t*, ®((aj)1=ij<3) = 3 (@y)1<ij<2 and n({k}) =1, k=1,2.

4 1 1 5 -1 -1 45 0
IfXx;=11 2 0 and Xp=|-1 2 1], thenX= ( O 2)
1 01 -1 1 3

and m1; = 0.623, M = 4.651, my = 1.345, M, = 5.866, m = 0.623, M = 5.866 (rounded to
three decimal places). We have

() + () (s )
<ar(@i06) + 2206))" -7 = (ﬁfﬁf 153:?2’5) 0
< a1(®1(X1) + <I>2(X2))4 = (797:.38 311(.)14-8> )
since o1 = Mk, <c<ur, { o’} = 19.447, 8 = 962.73, % = (157 095) Further,
sy (7 )
<o (P1(X0) + <I>2(X2))4 = (52406'13 204(.)696) (31)
<ar (@) + Bo(Xa))* = (7973 > 311(.)148) ’

. kpz+lg=dpmz . .
since oy = maxmxfszx{fZ;f(iz)me} =12.794. We remark that there is no relation between

matrices in the right-hand sides of equalities (30) and (31).

Remark 3 Similar to [29, Corollary 4.2], we can determine the constant in the RHS of
(29).
(i) Let f be convex. We can determine the value C in

/ o0 () du() < Cg( / ¢:(xt)du(t))
T T

as follows:
« if g is convex, then

kfm’?(’# ifg’ (z) > % for every z € (m,, M,),
ku()Jrlf—(Sfm; if o' < kfg(zo) <

Co = &(z0) ifg-(20) = gzpetr-syme <&4(20) (32)

for some zg € (11, M),
keMy+le—8pmz . krg(2)
i g&‘)f”f if g, (2) < k4f2+'2’g*§fm5e for every z € (my, M,);
« if g is concave, then
C_max{kfmx+lf—6fm; kax+lf—8fm;} (33)
g(mx) ’ g(Mx) '
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Also, we can determine the constant D in

/ ¢ (f (x0)) dM(t)SDg< / ¢t(xt)du(t)) - 8%
T T

in the same way as the above constant C but without .
(ii) Let f be concave. We can determine the value c in

Cg(/¢txtdﬂ ) /¢t (xe)) dpu(t)

as follows:
« if g is convex, then c is equal to the right-hand side in (33) with min instead of max;
« if g is concave, then c is equal to the right-hand side in (32) with reverse inequality
signs.

Also, we can determine the constant d in

dg(/T (f’r(xt)dﬂ(t)) -8x < /T¢:(f(xt)) du(t)

in the same way as the above constant ¢ but without m.

Theorem 10 and Remark 3 applied to functions f(z) = 2 and g(z) = z7 give the following
corollary, which is a refinement of [29, Corollary 4.4].

Corollary 11 Let (x;).cT e a field of strictly positive operators, let m, and My, m, < M,,
be the bounds of the operator x = fT (%) dn(t). Let X be defined by (8), mz be the lower
bound of the operator ¥ and 8, := m¥ + MP — 2P (m + M)P.

(i) Let p € (—00,0] U [1,00). Then

/¢t )dut <C*</ Pe du(t)>q

where the constant C* is determined as follows:
e ifg e (-00,0] U[1,00), then

kypmy+lp—8,mz . Lp—8pm5
i &; "5 f = ﬂ” P < m,,
x _ ) lp Spm; q q lﬂy —Spmz
¢ = ( q lﬂn—EpmN) lf My = 1-q K <M,, (34)
kwa+lﬂj Spmx . q le—épm; .
T if % = Ms

+ ifq€(0,1), then

(35)

. kpmy + lp — Spmz kg, My + L — 8,mz
C* = max 7 , 7 .
My Mx

Also,

q
[ a:62) du(t)sD*< / ¢t(xt)du(t)> -5,
T T
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holds, where D* is determined in the same way as the above constant C* but without
M.
(ii) Let p € (0,1). Then

q
C*(/;@(xt)dﬂ(t)) E/;@(xf) du(t),

where the constant c* is determined as follows:
e ifq € (—00,0] U [1,00), then c* is equal to the right-hand side in (35) with min instead
of max;
+ ifg €(0,1), then c, is equal to the right-hand side in (34).
Also,

q
d‘(/bet(x;)du(t)) - p?cS/T@(x‘j)du(t)

holds, where §, < 0, X > 0 and d* is determined in the same way as the above constant
d* but without mz.

Using Theorem 10 and Remark 3 for ¢ = f and utilizing elementary calculations, we

obtain the following converse of Jensen’s operator inequality.

Theorem 12 Let m, and M,, m, < My, be the bounds of the operator x = fT de(xe) dia(t).

Iff : [m,M] — R is a continuous convex function and strictly positive on [my, M,], then

/T 0 (f(x) du(e) < mxfggng{ el —yms +Jl,f(z_) i }f ( /T be(xe) du(t)> (36)
and
| srwo)anco < mg;;Mx{'V;(;lf }f( / @(x»du(t)) - 5% (37)

where % and 85 are defined by (8) and (9), respectively, and ms is the lower bound of the
operator X.

In the dual case, if f is concave, then the reverse inequalities are valid in (36) and (37)
with min instead of max.

Furthermore, if f is convex differentiable on [my, M), we can determine the constant

o1 = o (m, M, my, My, f) = max
My <z<My

{kfz+lf—8fm;g}
f@

in (36) as follows:

Kpma+ly 5y 1 if fz) = Mfor every z € (my, My),

S(my) kpz+lp—8pm
kezo+l—8pnrz . kef (z0)
_ ) Ko+l o kg
o = 7o) if f'(z0) = Koo vl b for some zq € (my, M,), (38)
keMautly=Spmz .o kef(2)
O if f'(z) < oy for every z € (m,, M,).
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Also, if f is strictly convex twice differentiable on [my, My, then we can determine the
constant

kez +1
Q) = a2(m1M» mx’Mx)f) = mngZaSXMx{ j;(:) ! }

in (37) as follows:

kuo + lf
Oy =
2 f(zo)

(39)

where zy € (my, M,) is defined as the unique solution of the equation kef (z) = (krz + lr)f'(2)
provided (kymy + )f' (my)[f (my) < ky < (keMy + lp)f' (M) [f (My). Otherwise, zy is defined
as my or M, provided ky < (kym,, + lp)f' (my)[f (my) or ky > (keM + I )f (M) [f (M), respec-
tively.

In the dual case, if f is concave differentiable, then the value o, is equal to the right-hand
side in (38) with reverse inequality signs. Also, if f is strictly concave twice differentiable,
then we can determine the value oy in (39) with zy, which equals the right-hand side in (39)

with reverse inequality signs.

Remark 4 If f is convex and strictly negative on [m,, M,], then (36) and (37) are valid
with min instead of max. If f is concave and strictly negative, then reverse inequalities are
valid in (36) and (37).

Applying Theorem 12 to f(t) = t, we obtain the following refinement of [29, Corol-
lary 4.8].

Corollary 13 Let (x;):c1 be a field of strictly positive operators, let m, and My, m, < M,,
be the bounds of the operator x = fT (%) din(t). Let X be defined by (8), mz be the lower
bound of the operator % and 8, := m? + MP — 217 (m + M)

Ifp ¢(0,1), then

_ p
0< / o) dpa(t) < 1<(mx,Mx,m,M,p,0)( / ¢t(xt)du(t)) ~s,
T T
_ p
S I<(merx) WI’M:P; O) (/ d)t(xt) d,u-(t))
T
p
< K(m,M,p) (/ Pe(%2) du(t)) (40)
T
and
— p
T T
_ p
S [<(mxny, m, Mrp) 0) (/ ¢t(xt) dﬂ(t))
T

p
sK(m,M,p)( /T ¢t(xt)du(t)) , (41)
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where
kypmy+lp—cs . p(lp—cdp)
=g ) > (1 )k,
K(my, My,m, M, p,c) = { K(m,M,p,c) if p(l“"m—;ca") <A =pkp < NWT;CBI’), (42)
Kp Mytlp—c5 .y pllp—cs
widp=eif M < (1- pks.

K(m,M,p,c) is a generalization of the known Kantorovich constant K(m,M,p) = K(m,
M, p,0) (defined in [6, §2.7]) as follows:

K(m,M,p,c)

_ mMP —Mm” +c5,(M -m) (p-1 MP —m? s
B p-1)M-m) p mMP — MmP + c,(M — m) ’

forpeRand 0 <c¢<0.5.
Ifp €(0,1), then

p
/ 6u(x8) () = (mx,Mx,m,M,p,O)( /T ¢t(xt)du(t)) 5%
_ V4
Z k(mx:Mx: Wl,M,P; 0) (/’; ¢t(xt) dﬂ(t))
p
> K(m, M, p) ( / ¢t(xt)du(t)) >0
T

and

p
/ 60(x2) dpu(0) = K(mzy My 1, M, p, ) ( /T bl du(t))
— p
Z k(mx;Mx) Wl,M:P: O) (/ ¢t(xt) d,LL(t))
T
> K(m,M,p)< dn(xt)du(t)y >0,
T

where k(rmy, My, m, M, p, ) equals the right-hand side in (42) with reverse inequality signs.

Proof The second inequalities in (40) and (41) follow directly from (37) and (36) by using
(39) and (38), respectively. The last inequality in (40) follows from

= kth + ltp
I<(mx1Mx; WI,M,P; O) = mxlg:zanMx{ T }

< max {@} = K(m, M, p).

m<z<M

The third inequality in (41) follows from

k(mijx) Wl,Mrp; m%) = max

my<z<Mjy

kwz + lp — 8,ms3
/4

} =< I_((mx)Mx’ WI,M,‘U, 0))

since §,mz > 0 for p ¢ (0,1) and M, > m, > 0. O


http://www.journalofinequalitiesandapplications.com/content/2013/1/353

Mici¢ et al. Journal of Inequalities and Applications 2013, 2013:353
http://www.journalofinequalitiesandapplications.com/content/2013/1/353

Figure 2 Relation between K(p, c) forp e Rand 0
<c=<0.5. \

Appendix A: A new generalization of the Kantorovich constant
Definition 1 Let /1 > 0. Further generalization of Kantorovich constant K(%, p) (given in
[6, Definition 2.2]) is defined by

W-h+ch” +1-2"7(h+1)?)(h-1)
p-Dh-1)

K(h,p,c):=

p-1 -1 ’
X
p W —h+ch? +1-2P(h+1)?)(h-1)

for any real number p € R and any ¢, 0 < ¢ < 0.5. The constant K (%, p,c) is sometimes
denoted by K(p, ) briefly. Some of those constants are depicted in Figure 2.

By inserting ¢ = 0 in K(/, p, c¢), we obtain the Kantorovich constant K (%, p). The constant
K(m, M, p, c) defined by (43) coincides with K (/, p, ¢) by putting h = M/m > 1.

Lemma 14 Let h > 0. The generalized Kantorovich constant K(h,p,c) has the following
properties:
(i) K(h,p,c)= K(%,p, c)forallp e R,
(i) K(h,0,¢) =K(h,1,¢)=1forall0 <c<0.5and K(1,p,c)=1forallp e R,
(iii) K(h,p,c) is decreasing of c for p ¢ (0,1) and increasing of ¢ for p € (0,1),
(iv) K(h,p,c) =1 forallp ¢ (0,1) and 0 < K(h,0.5,0) < K(h,p,c) <1forallp €(0,1),
) K(h,p,c) <h* forallp > 1.

Proof (i) We use an easy calculation:

) B =i (b 4 1= 2P+ 1) (- 1)
- -

1
(e G001
p-1 h? -1 ’
X( » h-P—h-l+c(h-P+1—21-P(h-1+1)P)(h-1—1))
=W (L4 = 2P (4 1) (1 - )
B p-1)1-h)
p-1 1-h r
x ( » h—hP+c(1+hP—21P(h+1)P)(1—h))
=K(h,p,c).

(ii) Let /2 > 1. The logarithms calculation and I'Hospital’s theorem give K (h, p,b) — 1 as
p— 1, K(hp,b)—1asp— 0and K(hp,b) - 1as h — 1+. Now using (i) we obtain (ii).
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(iii) Let z>0and 0 < ¢ < 0.5.

dK (h, p,c) <(h+1)p h”+1)
-9 _
dc 2 2

N p-1 -1 ’
p h=—h+ch? +1-22(h+1)P)(h-1))

Since the function z — 2 is convex (resp. concave) on (0, 00) if p ¢ (0,1) (resp. p € (0,1)),
then (;%1),7 < @ (resp. (%)p > @) for every 4 > 0. Then % <0ifp ¢ (0,1) and
% > 0 if p € (0,1), which gives that K(h,p,c) is decreasing of c if p ¢ (0,1) and in-
creasing of cif p € (0,1).

(iv)Let h>1and 0 < ¢ <0.5.If p> 1 then

0 < p-1h-1)
W—-h+ch? +1-21-(h+1)?)(h-1)
_r- 1 W -1
p W —h+ch?+1-2P(h+1))(h-1)
implies

p-1)(h-1)
W —h+clh? +1-212(h+1)?)(h-1)

<(p—1 -1 )”
“\ p W—h+ch+1-22h+1))h-1)) "

which gives K(h,p,c) > 1. Similarly, K(h,p,c) > 1if p <0 and K(h,p,c) <1if p € (0,1).
Next, using (iii) and [6, Theorem 2.54(iv)], K(h,p,c) > K(h,p,0) > K(h,0.5,0) for p €
(0,1).

(v) Let p > 1. Using (iii) and [6, Theorem 2.54(vi)], K(k,p, c) < K(h,p,0) < h?7L. (|
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